3-Coloring is in \(NP \)

- **Certificate:** for each node a color from \(\{1, 2, 3\} \)
- **Certifier:** Check if for each edge \((u, v)\), the color of \(u\) is different from that of \(v\)

Hardness: We will show \(3\text{-SAT} \leq_P 3\text{-Coloring} \)
Start with 3-SAT formula ϕ with n variables x_1, \ldots, x_n and m clauses C_1, \ldots, C_m. Create graph G_ϕ such that G_ϕ is 3-colorable iff ϕ is satisfiable

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_ϕ.
- create triangle with node True, False, Base
- for each variable x_i two nodes v_i and \overline{v}_i connected in a triangle with common Base
- If graph is 3-colored, either v_i or \overline{v}_i gets the same color as True. Interpret this as a truth assignment to v_i
- For each clause $C_j = (a \lor b \lor c)$, create a small gadget graph
 - gadget graph connects to nodes corresponding to a, b, c
 - needs to implement OR
Property: if a, b, c are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

Property: if one of a, b, c is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.
• create triangle with node True, False, Base
• for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
• for each clause $C_j = (a \vee b \vee c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base
Example

\[\varphi = (u \lor \neg v \lor w) \land (v \lor x \lor \neg y) \]
Correctness of Reduction

\(\phi \) is satisfiable implies \(G_\phi \) is 3-colorable

- if \(x_i \) is assigned True, color \(v_i \) True and \(\bar{v}_i \) False
- for each clause \(C_j = (a \lor b \lor c) \) at least one of \(a, b, c \) is colored True. OR-gadget for \(C_j \) can be 3-colored such that output is True.

\(G_\phi \) is 3-colorable implies \(\phi \) is satisfiable

- if \(v_i \) is colored True then set \(x_i \) to be True, this is a legal truth assignment
- consider any clause \(C_j = (a \lor b \lor c) \). it cannot be that all \(a, b, c \) are False. If so, output of OR-gadget for \(C_j \) has to be colored False but output is connected to Base and False!