Efficient Sequential Algorithms, Comp309

University of Liverpool

2010–2011
Module Organiser, Igor Potapov
Part 4: NP-Completeness

References: T. H. Cormen, C. E. Leiserson, R. L. Rivest

A decision problem is a computational problem for which the output is either yes or no.

The input to a computational problem is encoded as a finite binary string s of length $|s|$.

For a decision problem X, $L(X)$ denotes the set of (binary) strings (inputs) for which the algorithm should output “yes”. We refer to $L(X)$ as a language. We say that an algorithm A accepts a language $L(X)$ if A outputs “yes” for each $s \in L(X)$ and outputs “no” for every other input.
A decision problem is a computational problem for which the output is either yes or no.

The input to a computational problem is encoded as a finite binary string s of length $|s|$.

For a decision problem X, $L(X)$ denotes the set of (binary) strings (inputs) for which the algorithm should output “yes”. We refer to $L(X)$ as a language. We say that an algorithm A accepts a language $L(X)$ if A outputs “yes” for each $s \in L(X)$ and outputs “no” for every other input.
A decision problem is a computational problem for which the output is either yes or no.

The input to a computational problem is encoded as a finite binary string s of length $|s|$.

For a decision problem X, $L(X)$ denotes the set of (binary) strings (inputs) for which the algorithm should output “yes”. We refer to $L(X)$ as a language. We say that an algorithm A accepts a language $L(X)$ if A outputs “yes” for each $s \in L(X)$ and outputs “no” for every other input.
The complexity class P is the set of all decision problems X (or languages $L(X)$) that can be solved in polynomial time.

That is, there is an algorithm A that accepts language $L(X)$. The amount of time that algorithm A takes on input s is at most $p(|s|)$ where $p(n)$ is of the form $p(n) = n^k$ for a some constant k. ($p(n)$ is a \textit{polynomial} in n).
The complexity class P is the set of all decision problems X (or languages $L(X)$) that can be solved in polynomial time.

That is, there is an algorithm A that accepts language $L(X)$. The amount of time that algorithm A takes on input s is at most $p(|s|)$ where $p(n)$ is of the form $p(n) = n^k$ for a some constant k. ($p(n)$ is a polynomial in n).
The complexity class **EXP** is the set of all decision problems X (or languages $L(X)$) that can be solved in exponential time.

That is, there is an algorithm A that accepts language $L(X)$. The amount of time that algorithm A takes on input s is at most $p(|s|)$ where $p(n)$ is a function of the form $p(n) = 2^{n^k}$ for some constant k.
The complexity class **EXP** is the set of all decision problems X (or languages $L(X)$) that can be solved in exponential time.

That is, there is an algorithm A that accepts language $L(X)$. The amount of time that algorithm A takes on input s is at most $p(|s|)$ where $p(n)$ is a function of the form $p(n) = 2^{nk}$ for some constant k.
Space complexity classes

PSPACE is the set of all decision problems \(X \) (or languages \(L(X) \)) that can be solved in polynomial space.

That is, there is an algorithm \(A \) that accepts language \(L(X) \). The amount of computer memory that algorithm \(A \) uses on input \(s \) is at most \(p(|s|) \) where \(p(n) \) is a polynomial in \(n \).
Space complexity classes

PSPACE is the set of all decision problems X (or languages $L(X)$) that can be solved in polynomial space.

That is, there is an algorithm A that accepts language $L(X)$. The amount of computer memory that algorithm A uses on input s is at most $p(|s|)$ where $p(n)$ is a polynomial in n.
An algorithm that guesses some number of non-deterministic bits during its execution is called a non-deterministic algorithm.

We say that a non-deterministic algorithm A accepts a string s if there exists a choice of non-deterministic bits that causes algorithm A to output “yes” with input s. Otherwise, we say that A does not accept s.

We say that a non-deterministic algorithm A accepts a language $L(X)$ if A accepts every string $s \in L(X)$ and no other strings.
An algorithm that guesses some number of non-deterministic bits during its execution is called a non-deterministic algorithm.

We say that a non-deterministic algorithm A accepts a string s if there exists a choice of non-deterministic bits that causes algorithm A to output “yes” with input s. Otherwise, we say that A does not accept s.

We say that a non-deterministic algorithm A accepts a language $L(X)$ if A accepts every string $s \in L(X)$ and no other strings.
An algorithm that guesses some number of non-deterministic bits during its execution is called a non-deterministic algorithm.

We say that a non-deterministic algorithm A accepts a string s if there exists a choice of non-deterministic bits that causes algorithm A to output “yes” with input s. Otherwise, we say that A does not accept s.

We say that a non-deterministic algorithm A accepts a language $L(X)$ if A accepts every string $s \in L(X)$ and no other strings.
The complexity class **NP** is the set of all decision problems X (or languages $L(X)$) that can be non-deterministically accepted in polynomial time.

That is, there is a non-deterministic algorithm A that accepts language $L(X)$. The amount of time that algorithm A takes on input s is at most $p(|s|)$ where $p(n)$ is a polynomial in n.
The complexity class NP is the set of all decision problems X (or languages $L(X)$) that can be non-deterministically accepted in polynomial time.

That is, there is a non-deterministic algorithm A that accepts language $L(X)$. The amount of time that algorithm A takes on input s is at most $p(|s|)$ where $p(n)$ is a polynomial in n.
The complexity class NP is the set of all decision problems X (or languages $L(X)$) that can be non-deterministically accepted in polynomial time.

That is, there is a non-deterministic algorithm A that accepts language $L(X)$. The amount of time that algorithm A takes on input s is at most $p(|s|)$ where $p(n)$ is a polynomial in n.
It is easy to see that $P \subseteq NP$

If $L(X)$ is accepted by a polynomial-time algorithm A then it is also accepted by a non-deterministic algorithm in polynomial time.

The non-deterministic algorithm doesn’t have to make non-deterministic choices — it can just simulate algorithm A.
We say that a language L, defining some decision problem, is **polynomial-time reducible** to a language M (written $L \xrightarrow{\text{poly}} M$) if there is a polynomial-time-computable function f that takes as input a binary string s and outputs a binary string $f(s)$ so that $s \in L$ iff $f(s) \in M$.

As you saw in Comp202, If $L_1 \xrightarrow{\text{poly}} L_2$ and $L_2 \xrightarrow{\text{poly}} L_3$ then $L_1 \xrightarrow{\text{poly}} L_3$.
Polynomial-time reducibility

We say that a language L, defining some decision problem, is **polynomial-time reducible** to a language M (written $L \xrightarrow{\text{poly}} M$) if there is a polynomial-time-computable function f that takes as input a binary string s and outputs a binary string $f(s)$ so that $s \in L$ iff $f(s) \in M$.

As you saw in Comp202, If $L_1 \xrightarrow{\text{poly}} L_2$ and $L_2 \xrightarrow{\text{poly}} L_3$ then $L_1 \xrightarrow{\text{poly}} L_3$.
NP-completeness

We say that a language M, defining some decision problem, is **NP-hard** if every language $L \in \text{NP}$ is polynomial-time reducible to M.

We say that a language M is **NP-complete** if M is in NP and M is NP-hard.
The Cook-Levin Theorem is that the problem SAT is NP-complete.

Name: SAT
Instance: A Boolean formula F
Question: Does F have a satisfying assignment?

Recall that a **Boolean formula** is an expression like

$$(x_{25} \land x_{12}) \lor \neg(x_{70} \lor (\neg x_3 \land x_{34})))$$

made up of the constants *true* and *false*, propositional variables x_i, parentheses and the connectives \land, \lor, \neg, \Rightarrow, \Leftrightarrow. An assignment of the *truth-values* true and false to the variables is **satisfying** if it makes the formula evaluate to true.
The Cook-Levin Theorem is that the problem SAT is NP-complete.

Name: SAT
Instance: A Boolean formula F
Question: Does F have a satisfying assignment?

Recall that a **Boolean formula** is an expression like

$$(x_{25} \land x_{12}) \lor \neg(x_{70} \lor (\neg x_{3} \land x_{34}))$$

made up of the constants *true* and *false*, propositional variables x_i, parentheses and the connectives \land, \lor, \neg, \Rightarrow, \Leftrightarrow. An assignment of the **truth-values** true and false to the variables is **satisfying** if it makes the formula evaluate to true.
The Cook-Levin Theorem is that the problem SAT is NP-complete.

Name: SAT
Instance: A Boolean formula F
Question: Does F have a satisfying assignment?

Recall that a **Boolean formula** is an expression like

$$(x_{25} \land x_{12}) \lor \neg (\neg x_{70} \lor (\neg x_{3} \land x_{34}))$$

made up of the constants *true* and *false*, propositional variables x_i, parentheses and the connectives \land, \lor, \neg, \Rightarrow, \Leftrightarrow. An assignment of the *truth-values* true and false to the variables is **satisfying** if it makes the formula evaluate to true.
If a language M is NP-hard and $M \xrightarrow{\text{poly}} L$ then L is NP-hard.

Thus, to show that a language L is NP-complete, we do the following.

1. Show that L is in NP, and
2. Take some NP-hard problem M and find a polynomial-time reduction from M to L.

Make sure you don’t go the wrong direction!

We will now show that some problems are NP-complete.
If a language M is NP-hard and $M \xrightarrow{\text{poly}} L$ then L is NP-hard.

Thus, to show that a language L is NP-complete, we do the following.

1. Show that L is in NP, and
2. Take some NP-hard problem M and find a polynomial-time reduction from M to L.

Make sure you don’t go the wrong direction!

We will now show that some problems are NP-complete.
If a language M is NP-hard and $M \xrightarrow{\text{poly}} L$ then L is NP-hard.

Thus, to show that a language L is NP-complete, we do the following.

1. Show that L is in NP, and

2. Take some NP-hard problem M and find a polynomial-time reduction from M to L.

Make sure you don’t go the wrong direction!

We will now show that some problems are NP-complete.
3-Conjunctive Normal Form Satisfiability (3-CNF)

- **Input:** A boolean formula F expressed as an AND of clauses in which each clause is the OR of exactly three distinct literals.

- **Output:** Is there an assignment of boolean values to the variables which causes F to evaluate to *true*?

$$F = (\neg y_1 \vee \neg x_1 \vee y_1) \land (\neg y_1 \vee x_1 \vee \neg y_2) \land (\neg y_1 \vee x_1 \vee y_2)$$

Note that y_1 and $\neg y_1$ are distinct literals.
3-Conjunctive Normal Form Satisfiability (3-CNF)

- **Input:** A boolean formula F expressed as an AND of clauses in which each clause is the OR of exactly three distinct literals.

- **Output:** Is there an assignment of boolean values to the variables which causes F to evaluate to *true*?

$$F = (\neg y_1 \lor \neg x_1 \lor y_1) \land (\neg y_1 \lor x_1 \lor \neg y_2) \land (\neg y_1 \lor x_1 \lor y_2)$$

Note that y_1 and $\neg y_1$ are distinct literals.
3-Conjunctive Normal Form Satisfiability (3-CNF)

- **Input:** A boolean formula F expressed as an AND of clauses in which each clause is the OR of exactly three distinct literals.

- **Output:** Is there an assignment of boolean values to the variables which causes F to evaluate to true?

$$F = (\neg y_1 \lor \neg x_1 \lor y_1) \land (\neg y_1 \lor x_1 \lor \neg y_2) \land (\neg y_1 \lor x_1 \lor y_2)$$

Note that y_1 and $\neg y_1$ are distinct literals.
3-CNF is in NP.

The non-deterministic algorithm “guesses” a satisfying assignment then checks in polynomial time that the guess is a satisfying assignment for F.
3-CNF is in NP.

The non-deterministic algorithm “guesses” a satisfying assignment then checks in polynomial time that the guess is a satisfying assignment for F.
To show that 3-CNF is NP-complete, we take some NP-complete problem, say SAT, and find a polynomial-time reduction from SAT to 3-CNF.

We will show that there is a polynomial-time computable function f that takes as input an input F of SAT and outputs an input $f(F)$ of 3-CNF so that $f(F)$ is a “yes” instance of 3-CNF iff F is a “yes” instance of SAT.
To show that 3-CNF is NP-complete, we take some NP-complete problem, say SAT, and find a polynomial-time reduction from SAT to 3-CNF.

We will show that there is a polynomial-time computable function f that takes as input an input F of SAT and outputs an input $f(F)$ of 3-CNF so that $f(F)$ is a “yes” instance of 3-CNF iff F is a “yes” instance of SAT.
The transformation from F to $f(F)$

Step 1: Transform F into a formula F' which is the AND of clauses, each of which has at most 3 literals.

First, parse F

$$F = x_1 \land (\neg x_2 \Leftrightarrow (x_3 \lor x_4 \lor x_5)) \land \neg x_4$$
\[F = x_1 \land (\neg x_2 \iff (x_3 \lor x_4 \lor x_5)) \land \neg x_4 \]
Now use the associativity of \land and \lor to form an equivalent tree in which every node has at most 2 children.
Now label the parent-edge out of every internal node (on the previous slide) by a new variable.

Rewrite the formula as an equation.

\[F' = y_1 \land (y_1 \Leftrightarrow (x_1 \land y_2)) \land (y_2 \Leftrightarrow (y_3 \land \neg x_4)) \land (y_3 \Leftrightarrow (\neg x_2 \Leftrightarrow y_4)) \land (y_4 \Leftrightarrow (x_3 \lor y_5)) \land (y_5 \Leftrightarrow (x_4 \lor x_5)) \]

We have now transformed \(F \) into a formula \(F' \) which is the AND of clauses, each of which has at most 3 literals. \(F' \) is satisfiable iff \(F \) is.
Now label the parent-edge out of every internal node (on the previous slide) by a new variable.

Rewrite the formula as an equation.

\[F' = y_1 \land (y_1 \leftrightarrow (x_1 \land y_2)) \land (y_2 \leftrightarrow (y_3 \land \neg x_4)) \land (y_3 \leftrightarrow (\neg x_2 \leftrightarrow y_4)) \land (y_4 \leftrightarrow (x_3 \lor y_5)) \land (y_5 \leftrightarrow (x_4 \lor x_5)) \]

We have now transformed \(F \) into a formula \(F' \) which is the AND of clauses, each of which has at most 3 literals. \(F' \) is satisfiable iff \(F \) is.
Now label the parent-edge out of every internal node (on the previous slide) by a new variable.

Rewrite the formula as an equation.

\[F' = y_1 \land (y_1 \iff (x_1 \land y_2)) \land (y_2 \iff (y_3 \land \neg x_4)) \land (y_3 \iff (\neg x_2 \iff y_4)) \land (y_4 \iff (x_3 \lor y_5)) \land (y_5 \iff (x_4 \lor x_5)) \]

We have now transformed \(F \) into a formula \(F' \) which is the AND of clauses, each of which has at most 3 literals. \(F' \) is satisfiable iff \(F \) is.
Note that the transformation from F to F' can be implemented in polynomial time. Each connective in F introduces at most one variable and one clause to F' to $|F'|$ is at most a polynomial in $|F|$.
The transformation from \(F \) to \(f(F) \)

Step 2: Transform \(F' \) into a formula \(F'' \) which is the AND of clauses, each of which is the OR of at most 3 literals.

We will use a truth table to transform each clause of \(F' \) to the AND of at most 8 clauses which are algebraically equivalent.
Step 2: Transform F' into a formula F'' which is the AND of clauses, each of which is the OR of at most 3 literals.

We will use a truth table to transform each clause of F' to the AND of at most 8 clauses which are algebraically equivalent.
For example, take this clause of F': $y_1 \Leftrightarrow (x_1 \land y_2)$

<table>
<thead>
<tr>
<th>y_1</th>
<th>x_1</th>
<th>y_2</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

The first 0 in the result column of the truth table says you can’t have $y_1x_1\neg y_2$ so insert the first clause below.

\[
(\neg y_1 \lor \neg x_1 \lor y_2) \land (\neg y_1 \lor x_1 \lor \neg y_2) \land \\
(\neg y_1 \lor x_1 \lor y_2) \land (y_1 \lor \neg x_1 \lor \neg y_2)
\]
Having done steps 1 and 2 we have now shown how to transform \(F \) into a formula \(F'' \) which is the AND of clauses, each of which is the OR of at most 3 literals.

\(F'' \) is satisfiable iff \(F \) is.

The transformation can be accomplished in polynomial time.
Having done steps 1 and 2 we have now shown how to transform F into a formula F'' which is the AND of clauses, each of which is the OR of at most 3 literals.

F'' is satisfiable iff F is.

The transformation can be accomplished in polynomial time.
The transformation from F to $f(F)$

Step 3: Transform F'' into a formula F''' which is the AND of clauses, each of which is the OR of exactly 3 literals. Let $f(F) = F'''$.

Transform a 2-literal clause like this, using a new variable p.

$$(x \lor y) \Rightarrow (x \lor y \lor p) \land (x \lor y \lor \lnot p)$$

Transform a 1-literal clause like this, using new variables p and q.

$$x \Rightarrow (x \lor p \lor q) \land (x \lor p \lor \lnot q) \land (x \lor \lnot p \lor q) \land (x \lor \lnot p \lor \lnot q)$$
We have shown that there is a polynomial-time computable function f that takes as input an input F of SAT and outputs an input $f(F)$ of 3-CNF so that $f(F)$ is a “yes” instance of 3-CNF iff F is a “yes” instance of SAT.

This is a polynomial-time reduction from SAT to 3-CNF.

Since SAT is NP-hard, we conclude that 3-CNF is NP-hard.

We already showed that 3-CNF is in NP, so we conclude that 3-CNF is NP-complete.
We have shown that there is a polynomial-time computable function f that takes as input an input F of SAT and outputs an input $f(F)$ of 3-CNF so that $f(F)$ is a “yes” instance of 3-CNF iff F is a “yes” instance of SAT.

This is a polynomial-time reduction from SAT to 3-CNF.

Since SAT is NP-hard, we conclude that 3-CNF is NP-hard.

We already showed that 3-CNF is in NP, so we conclude that 3-CNF is NP-complete.
We have shown that there is a polynomial-time computable function f that takes as input an input F of SAT and outputs an input $f(F)$ of 3-CNF so that $f(F)$ is a “yes” instance of 3-CNF iff F is a “yes” instance of SAT.

This is a polynomial-time reduction from SAT to 3-CNF.

Since SAT is NP-hard, we conclude that 3-CNF is NP-hard.

We already showed that 3-CNF is in NP, so we conclude that 3-CNF is NP-complete.
We have shown that there is a polynomial-time computable function f that takes as input an input F of SAT and outputs an input $f(F)$ of 3-CNF so that $f(F)$ is a “yes” instance of 3-CNF iff F is a “yes” instance of SAT.

This is a polynomial-time reduction from SAT to 3-CNF.

Since SAT is NP-hard, we conclude that 3-CNF is NP-hard.

We already showed that 3-CNF is in NP, so we conclude that 3-CNF is NP-complete.
Another computational problem

Clique

- **Input:** An undirected graph G and an integer j
- **Output:** Is there a set of j vertices of G, each pair of which is connected by an edge?
Clique is in NP

The non-deterministic algorithm “guesses” a set of j vertices then checks in polynomial time to see whether each pair is connected by an edge.
3-CNF $\xrightarrow{\text{poly}}$ Clique

Let F be an input to 3-CNF. We show how to transform it to into an input (G, j) of Clique such that G has a j-clique iff F is satisfiable.

Let $j =$ number of clauses in F. For every clause $C_r = (x_1 \lor x_2 \lor \neg x_3)$, introduce vertices $x_{1,r}$, $x_{2,r}$ and $\neg x_{3,r}$. Introduce edges between vertices in different clauses, unless they are the negation of each other. For example...

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

$\neg x_{3,1}$

$x_{4,2}$

$x_{2,1}$

$x_{2,2}$

$x_{1,1}$

$\neg x_{1,2}$
3-CNF poly \rightarrow Clique

Let F be an input to 3-CNF. We show how to transform it to into an input (G, j) of Clique such that G has a j-clique iff F is satisfiable.

Let $j =$ number of clauses in F. For every clause $C_r = (x_1 \lor x_2 \lor \neg x_3)$, introduce vertices $x_{1,r}, x_{2,r}$ and $\neg x_{3,r}$.

Introduce edges between vertices in different clauses, unless they are the negation of each other. For example...

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

\[
\begin{align*}
\neg x_{3,1} & \quad \neg x_{1,2} \\
\quad x_{4,2} & \\
\quad x_{2,2} & \\
\quad x_{2,1} & \\
\quad x_{1,1} &
\end{align*}
\]
Let F be an input to 3-CNF. We show how to transform it to into an input (G, j) of Clique such that G has a j-clique iff F is satisfiable.

Let $j = \text{number of clauses in } F$. For every clause $C_r = (x_1 \lor x_2 \lor \neg x_3)$, introduce vertices $x_{1,r}$, $x_{2,r}$ and $\neg x_{3,r}$. Introduce edges \textit{between} vertices in different clauses, \textbf{unless} they are the negation of each other. For example...

\[
(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_4)
\]
Let F be an input to 3-CNF. We show how to transform it to into an input (G, j) of Clique such that G has a j-clique iff F is satisfiable.

Let $j = \text{number of clauses in } F$. For every clause $C_r = (x_1 \lor x_2 \lor \neg x_3)$, introduce vertices $x_{1,r}$, $x_{2,r}$ and $\neg x_{3,r}$. Introduce edges between vertices in different clauses, unless they are the negation of each other. For example...

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$
Suppose we have a satisfying assignment. We can choose one “true” literal from each of the j clauses, and that gives us a clique.

Similarly, we can turn a clique into a satisfying assignment.

Note that the transformation takes polynomial time.

We have shown that Clique is NP-complete.
Suppose we have a satisfying assignment. We can choose one “true” literal from each of the j clauses, and that gives us a clique.

Similarly, we can turn a clique into a satisfying assignment.

Note that the transformation takes polynomial time.

We have shown that Clique is NP-complete.
Suppose we have a satisfying assignment. We can choose one “true” literal from each of the j clauses, and that gives us a clique.

Similarly, we can turn a clique into a satisfying assignment.

Note that the transformation takes polynomial time.

We have shown that Clique is NP-complete.
Suppose we have a satisfying assignment. We can choose one “true” literal from each of the j clauses, and that gives us a clique.

Similarly, we can turn a clique into a satisfying assignment.

Note that the transformation takes polynomial time.

We have shown that Clique is NP-complete.
Another computational problem

Vertex Cover

- **Input:** An undirected graph G and an integer k
- **Output:** Is there a set U of k vertices of G such that for every edge (u, v) of G, at least one of u and v is in U?
Vertex Cover is in NP

The non-deterministic algorithm “guesses” a set of k vertices then checks in polynomial time to see whether every edge is covered.
Let $G = (V, E)$ and j be an input to clique. We show how to transform it to into an input (G', k) of Vertex Cover such that G' has a vertex cover of size k iff G has a clique of size j.

Method: Let $\overline{E} = \{(u, v) \mid (u, v) \not\in E\}$ and $G' = (V, \overline{E})$ and $k = |V| - j$.

If U is a clique then $V - U$ covers all non-edges (and vice-versa).

This is a polynomial-time transformation, so we have shown that vertex cover is NP-complete.
Let $G = (V, E)$ and j be an input to clique. We show how to transform it to into an input (G', k) of Vertex Cover such that G' has a vertex cover of size k iff G has a clique of size j.

Method: Let $\overline{E} = \{(u, v) \mid (u, v) \not\in E\}$ and $G' = (V, \overline{E})$ and $k = |V| - j$.

If U is a clique then $V - U$ covers all non-edges (and vice-versa).

This is a polynomial-time transformation, so we have shown that vertex cover is NP-complete.
Clique $\xrightarrow{\text{poly}}$ Vertex Cover

Let $G = (V, E)$ and j be an input to clique. We show how to transform it to into an input (G', k) of Vertex Cover such that G' has a vertex cover of size k iff G has a clique of size j.

Method: Let $\overline{E} = \{ (u, v) \mid (u, v) \notin E \}$ and $G' = (V, \overline{E})$ and $k = |V| - j$.

If U is a clique then $V - U$ covers all non-edges (and vice-versa).

This is a polynomial-time transformation, so we have shown that vertex cover is NP-complete.
Let $G = (V, E)$ and j be an input to clique. We show how to transform it to into an input (G', k) of Vertex Cover such that G' has a vertex cover of size k iff G has a clique of size j.

Method: Let $\overline{E} = \{(u, v) \mid (u, v) \notin E\}$ and $G' = (V, \overline{E})$ and $k = |V| - j$.

If U is a clique then $V - U$ covers all non-edges (and vice-versa).

This is a polynomial-time transformation, so we have shown that vertex cover is NP-complete.
One last computational problem (this one is pretty tricky!)

Subset Sum

- **Input:** A set S of non-negative integers and a non-negative integer t.
- **Output:** Is there a subset of S whose elements sum to t?

Example: $S = \{1, 3, 5\}$. What about $t = 4$? What about $t = 2$?
Subset Sum is in NP

The non-deterministic algorithm “guesses” the subset and checks that its elements sum to \(t \).
Let $G = (V, E)$ and k be an input to vertex cover. We show how to transform it to an input S, t of subset sum such that G has a vertex cover of size k iff S has a subset that sums to t.

Notation: Let $V = \{v_0, \ldots, v_{n-1}\}$. Let $E = \{e_0, \ldots, e_{m-1}\}$.
The (polynomial-time) transformation:

For \(i \leftarrow 0 \) to \(n - 1 \)
\[
x_i \leftarrow 4^m
\]
For \(j \leftarrow 0 \) to \(m - 1 \)
\[
\text{If } e_j \text{ is incident on } v_i
\]
\[
x_i \leftarrow x_i + 4^j
\]
For \(j \leftarrow 0 \) to \(m - 1 \)
\[
y_j \leftarrow 4^j
\]
\(S \leftarrow \{x_0, \ldots, x_{n-1}, y_0, \ldots, y_{m-1}\} \)
\(t \leftarrow k4^m + \sum_{j=0}^{m-1} 2 \cdot 4^j \)
Return \(S \) and \(t \)
We claim that if G has a size-k vertex cover then S has a subset that sums to t.

- Start with a size-k vertex cover.
- Let S' contain x_is for vertices in the cover and y_js for edges incident once on cover.
- Sum of x_is in S' is $k4^m$.
- Edge incident twice on cover contributes $2 \cdot 4^i$ to x's
- Edge incident once on cover contributes 4^i to x's and 4^i to y's.
- Elements in S' sum to t.
We claim that if S has a subset that sums to t then G has a size-k vertex cover.

- Start with S' which sums to t.
- Each e^i contributes at most $2 \cdot 4^i$ to xs and 4^i to ys.
- The e^is do not contribute to the $k4^m$ in t.
- S' has k x_is.
- These k vertices are a vertex cover because each e^j contributes exactly $2 \cdot 4^j$ to t but only 4^j of this can come from y_j so it must be adjacent to one of the vertices in S'.
We have shown that Subset Sum is NP-complete.