A decision problem is a computational problem for which the output is either yes or no.

The input to a computational problem is encoded as a finite binary string s of length $|s|$.

For a decision problem X, $L(X)$ denotes the set of (binary) strings (inputs) for which the algorithm should output "yes". We refer to $L(X)$ as a language. We say that an algorithm A accepts a language $L(X)$ if A outputs "yes" for each $s \in L(X)$ and outputs "no" for every other input.

The complexity class P is the set of all decision problems X (or languages $L(X)$) that can be solved in polynomial time.

That is, there is an algorithm A that accepts language $L(X)$. The amount of time that algorithm A takes on input s is at most $p(|s|)$ where $p(n)$ is of the form $p(n) = n^k$ for a some constant k. ($p(n)$ is a polynomial in n).
The complexity class \textbf{EXP} is the set of all decision problems \(X\) (or languages \(L(X)\)) that can be solved in \textit{exponential} time.

That is, there is an algorithm \(A\) that accepts language \(L(X)\).
The amount of time that algorithm \(A\) takes on input \(s\) is at most \(p(|s|)\) where \(p(n)\) is a function of the form \(p(n) = 2^{nk}\) for some constant \(k\).

\textbf{Space complexity classes}

\textbf{PSPACE} is the set of all decision problems \(X\) (or languages \(L(X)\)) that can be solved in \textit{polynomial} space.

That is, there is an algorithm \(A\) that accepts language \(L(X)\).
The amount of \textit{computer memory} that algorithm \(A\) uses on input \(s\) is at most \(p(|s|)\) where \(p(n)\) is a polynomial in \(n\).

\textbf{More revision: Nondeterministic computation}

An algorithm that \textit{guesses} some number of \textit{non-deterministic bits} during its execution is called a \textit{non-deterministic algorithm}.

We say that a non-deterministic algorithm \(A\) accepts a string \(s\) if there exists a choice of non-deterministic bits that causes algorithm \(A\) to output “yes” with input \(s\). Otherwise, we say that \(A\) does not accept \(s\).

We say that a non-deterministic algorithm \(A\) \textit{accepts} a language \(L(X)\) if \(A\) accepts every string \(s \in L(X)\) and no other strings.

The complexity class \textbf{NP} is the set of all decision problems \(X\) (or languages \(L(X)\)) that can be non-deterministically accepted in polynomial time.

That is, there is a non-deterministic algorithm \(A\) that accepts language \(L(X)\). The amount of time that algorithm \(A\) takes on input \(s\) is at most \(p(|s|)\) where \(p(n)\) is a polynomial in \(n\).
It is easy to see that $P \subseteq NP$

If $L(X)$ is accepted by a polynomial-time algorithm A then it is also accepted by a non-deterministic algorithm in polynomial time.

The non-deterministic algorithm doesn’t have to make non-deterministic choices — it can just simulate algorithm A.

Polynomial-time reducibility

We say that a language L, defining some decision problem, is **polynomial-time reducible** to a language M (written $L \overset{\text{poly}}{\rightarrow} M$) if there is a polynomial-time-computable function f that takes as input a binary string s and outputs a binary string $f(s)$ so that $s \in L$ iff $f(s) \in M$.

As you saw in Comp202, if $L_1 \overset{\text{poly}}{\rightarrow} L_2$ and $L_2 \overset{\text{poly}}{\rightarrow} L_3$ then $L_1 \overset{\text{poly}}{\rightarrow} L_3$.

NP-completeness

We say that a language M, defining some decision problem, is **NP-hard** if every language $L \in NP$ is polynomial-time reducible to M.

We say that a language M is **NP-complete** if M is in NP and M is NP-hard.

The Cook-Levin Theorem is that the problem SAT is NP-complete.

Name: SAT
Instance: A Boolean formula F
Question: Does F have a satisfying assignment?

Recall that a **Boolean formula** is an expression like

$$ (x_{25} \land x_{12}) \lor \neg(x_{70} \lor (\neg x_3 \land x_{34})) $$

made up of the constants *true* and *false*, propositional variables x_i, parentheses and the connectives $\land, \lor, \neg, \Rightarrow, \Leftrightarrow$. An assignment of the *truth-values* true and false to the variables is **satisfying** if it makes the formula evaluate to true.
If a language M is NP-hard and $M \xrightarrow{\text{poly}} L$ then L is NP-hard.

Thus, to show that a language L is NP-complete, we do the following.

- Show that L is in NP, and
- Take some NP-hard problem M and find a polynomial-time reduction from M to L.

Make sure you don’t go the wrong direction!

We will now show that some problems are NP-complete.

3-Conjunctive Normal Form Satisfiability (3-CNF)

- **Input:** A boolean formula F expressed as an AND of clauses in which each clause is the OR of exactly three distinct literals.
- **Output:** Is there an assignment of boolean values to the variables which causes F to evaluate to true?

$$ F = (\neg y_1 \lor x_1 \lor y_1) \land (\neg y_1 \lor x_1 \lor \neg y_2) \land (\neg y_1 \lor x_1 \lor y_2) $$

Note that y_1 and $\neg y_1$ are distinct literals.

3-CNF is in NP.

The non-deterministic algorithm “guesses” a satisfying assignment then checks in polynomial time that the guess is a satisfying assignment for F.

To show that 3-CNF is NP-complete, we take some NP-complete problem, say SAT, and find a polynomial-time reduction from SAT to 3-CNF.

We will show that there is a polynomial-time computable function f that takes as input an input F of SAT and outputs an input $f(F)$ of 3-CNF so that $f(F)$ is a “yes” instance of 3-CNF iff F is a “yes” instance of SAT.
The transformation from F to $f(F)$

Step 1: Transform F into a formula F' which is the AND of clauses, each of which has at most 3 literals.

First, parse F

$$F = x_1 \land (\neg x_2 \iff (x_3 \lor x_4 \lor x_5)) \land \neg x_4$$

Now use the associativity of \land and \lor to form an equivalent tree in which every node has at most 2 children.
Now label the parent-edge out of every internal node (on the previous slide) by a new variable.

Rewrite the formula as an equation.

\[F' = y_1 \land (y_1 \Leftrightarrow (x_1 \land y_2)) \land (y_2 \Leftrightarrow (y_3 \land \neg x_4)) \land (y_3 \Leftrightarrow (\neg x_2 \Leftrightarrow y_4)) \land (y_4 \Leftrightarrow (x_3 \lor y_5)) \land (y_5 \Leftrightarrow (x_4 \lor x_5)) \]

We have now transformed \(F \) into a formula \(F' \) which is the AND of clauses, each of which has at most 3 literals. \(F' \) is satisfiable iff \(F \) is.

The transformation from \(F \) to \(f(F) \)

Step 2: Transform \(F' \) into a formula \(F'' \) which is the AND of clauses, each of which is the OR of at most 3 literals.

We will use a truth table to transform each clause of \(F' \) to the AND of at most 8 clauses which are algebraically equivalent.

For example, take this clause of \(F' \): \(y_1 \Leftrightarrow (x_1 \land y_2) \)

<table>
<thead>
<tr>
<th>(y_1)</th>
<th>(x_1)</th>
<th>(y_2)</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

The first 0 in the result column of the truth table says you can’t have \(y_1, x_1, \neg y_2 \) so insert the first clause below.

\[
(\neg y_1 \lor \neg x_1 \lor y_2) \land (\neg y_1 \lor x_1 \lor \neg y_2) \land (\neg y_1 \lor x_1 \lor y_2) \land (y_1 \lor \neg x_1 \lor \neg y_2)
\]
Having done steps 1 and 2 we have now shown how to transform F into a formula F'' which is the AND of clauses, each of which is the OR of at most 3 literals.

F'' is satisfiable iff F is.

The transformation can be accomplished in polynomial time.

We have shown that there is a polynomial-time computable function f that takes as input an input F of SAT and outputs an input $f(F)$ of 3-CNF so that $f(F)$ is a “yes” instance of 3-CNF iff F is a “yes” instance of SAT.

This is a polynomial-time reduction from SAT to 3-CNF.

Since SAT is NP-hard, we conclude that 3-CNF is NP-hard.

We already showed that 3-CNF is in NP, so we conclude that 3-CNF is NP-complete.

Another computational problem

Clique

- **Input:** An undirected graph G and an integer j
- **Output:** Is there a set of j vertices of G, each pair of which is connected by an edge?

The transformation from F to $f(F)$

Step 3: Transform F'' into a formula F''' which is the AND of clauses, each of which is the OR of exactly 3 literals. Let $f(F) = F'''$.

Transform a 2-literal clause like this, using a new variable p.

$$(x \lor y) \Rightarrow (x \lor y \lor p) \land (x \lor y \lor \neg p)$$

Transform a 1-literal clause like this, using new variables p and q.

$$x \Rightarrow (x \lor p \lor q) \land (x \lor p \lor \neg q) \land (x \lor \neg p \lor q) \land (x \lor \neg p \lor \neg q)$$
Clique is in NP

The non-deterministic algorithm "guesses" a set of j vertices then checks in polynomial time to see whether each pair is connected by an edge.

3-CNF $\text{poly} \rightarrow$ Clique

Let F be an input to 3-CNF. We show how to transform it to an input (G, j) of Clique such that G has a j-clique iff F is satisfiable.

Let $j = \text{number of clauses in } F$. For every clause $C_r = (x_1 \lor x_2 \lor \neg x_3)$, introduce vertices $x_{1,r}$, $x_{2,r}$, and $\neg x_{3,r}$. Introduce edges between vertices in different clauses, unless they are the negation of each other. For example...

$$
(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_4)
$$

Suppose we have a satisfying assignment. We can choose one "true" literal from each of the j clauses, and that gives us a clique.

Similarly, we can turn a clique into a satisfying assignment.

Note that the transformation takes polynomial time.

We have shown that Clique is NP-complete.

Another computational problem, familiar from our work on matchings

Vertex Cover

- **Input:** An undirected graph G and an integer k
- **Output:** Is there a set U of k vertices of G such that for every edge (u, v) of G, at least one of u and v is in U?
Vertex Cover is in NP

The non-deterministic algorithm "guesses" a set of k vertices then checks in polynomial time to see whether every edge is covered.

Clique \rightarrow Vertex Cover

Let $G = (V, E)$ and j be an input to clique. We show how to transform it to into an input (G', k) of Vertex Cover such that G' has a vertex cover of size k iff G has a clique of size j.

Method: Let $E = \{(u, v) \mid (u, v) \not\in E\}$ and $G' = (V, E)$ and $k = |V| - j$.

If U is a clique then $V - U$ covers all non-edges (and vice-versa).

This is a polynomial-time transformation, so we have shown that vertex cover is NP-complete.

One last computational problem (this one is pretty tricky!)

Subset Sum

- **Input:** A set S of non-negative integers and a non-negative integer t.
- **Output:** Is there a subset of S whose elements sum to t?

Example: $S = \{1, 3, 5\}$. What about $t = 4$? What about $t = 2$?

Subset Sum is in NP

The non-deterministic algorithm "guesses" the subset and checks that its elements sum to t.
Let $G = (V, E)$ and k be an input to vertex cover. We show how to transform it to an input S, t of subset sum such that G has a vertex cover of size k if S has a subset that sums to t.

Notation: Let $V = \{v_0, \ldots, v_{n-1}\}$. Let $E = \{e_0, \ldots, e_{m-1}\}$.

We claim that if G has a size-k vertex cover then S has a subset that sums to t.

- Start with a size-k vertex cover.
- Let S' contain x_is for vertices in the cover and y_js for edges incident once on cover.
- Sum of x_is in S' is $k4^m$.
- Edge incident twice on cover contributes $2 \cdot 4^j$ to x's
- Edge incident once on cover contributes 4^j to x's and 4^j to y's.
- Elements in S' sum to t.

We claim that if S has a subset that sums to t then G has a size-k vertex cover.

- Start with S' which sums to t.
- Each e_i contributes at most $2 \cdot 4^j$ to xs and 4^j to ys.
- The e_is do not contribute to the $k4^m$ in t.
- S' has k x_is.
- These k vertices are a vertex cover because each e_j contributes exactly $2 \cdot 4^j$ to t but only 4^j of this can come from y_j so it must be adjacent to one of the vertices in S'.

The (polynomial-time) transformation:

For $i \leftarrow 0$ to $n-1$
\[x_i \leftarrow 4^m \]
For $j \leftarrow 0$ to $m-1$
\[y_j \leftarrow 4^j \]
S ← \{x_0, \ldots, x_{n-1}, y_0, \ldots, y_{m-1}\}
\[t \leftarrow k4^m + \sum_{j=0}^{m-1} 2 \cdot 4^j \]
Return S and t
We have shown that Subset Sum is NP-complete.