
Efficient Sequential Algorithms, Comp309

University of Liverpool

2010–2011
Module Organiser, Igor Potapov

Module organiser: Dr. Igor Potapov.

Module website: http://www.csc.liv.ac.uk/∼igor/COMP309

1 / 22

Module Introduction

2 / 22

This module builds on the material that you learned in
Comp202, Complexity of Algorithms.

3 / 22



In Comp108 and Comp202, you learned about asymptotic
notation and using this notation to analyse algorithms. We will
be using this notation, and the techniques that you learned in
Comp202.

4 / 22

In Comp202, you learned basic algorithmic paradigms such as
divide-and-conquer, the greedy method, and dynamic
programming. We will be looking at the last two in more depth
and seeing how to use them to efficiently solve computational
problems.

5 / 22

You also learned some fundamental graph algorithms such as
depth-first-search and minimum spanning tree algorithms. In
COMP309 you will also study the all-pairs shortest paths
problem.

6 / 22

In Comp202, you learned about the complexity classes P and
NP. You learned about polynomial-time reductions and you
were told about several NP-complete problems. In this module,
we will do several polynomial-time reductions in detail and you
will learn how to tell for yourself whether a computational
problem is NP-complete.

7 / 22



We will also study the complexity of approximation problems.
Given that an optimisation problem is difficult to solve exactly,
we will want to know under what circumstances we can
efficiently compute an approximate solution.

8 / 22

Module Overview. Part 1: Algorithmic Paradigms

The two paradigms that we will consider are greedy algorithms
and dynamic programming.

Our study of greedy algorithms will focus on a scheduling
problem called the activity-selection problem. The idea is that
there are a collection of activities with associated start and
finish times and we want to schedule as many of them as
possible on shared resource.

Our study of dynamic programming will focus on the
matrix-chain multiplication problem. In this problem, we are
given a sequence of matrices and we want to figure out in
which order to multiply pairs of them so that the overall
multiplication can be done as quickly as possible.

9 / 22

We will also study the all-pairs shortest paths problem. In this
problem, we are given a graph and we want to compute the
shortest distance between every pair of vertices.

You will be given some exercises that give you more practice
using these paradigms, and more examples arise later in the
module.

10 / 22

Module Overview. Part 2: Pattern Matching

We will focus on an important application which arises in text
editing, DNA mapping, and the development of algorithms for
searching on the world-wide web.

The idea is that we have a pattern (a sequence of letters) and a
text (a much longer sequence of characters) and we want to
find all occurrences of the pattern in the text.

We will consider a simple, brute-force algorithm for this
problem, then we will look at an alternative approach inspired
by finite-state machines. Finally, we will study the algorithm of
Knuth, Morris and Pratt.

11 / 22



Module Overview. Part 3: String Algorithms

We will consider some applications related to the basic
pattern-matching application of Part 2.

We will study the problem of finding the longest common
subsequence between two strings. This is useful for
applications such as file comparison, and provides a further
example of dynamic programming.

We will also consider text compression including Huffman
coding (an example of a successful greedy algorithm).

12 / 22

Module Overview. Part 4: NP-Completeness

We will recall the basic definitions from Comp202, and then
have a detailed look at polynomial-time reductions, showing
that the following problems are NP-complete: 3-Conjunctive
Normal Form Satisfiability (3-CNF), Clique, Vertex Cover, and
Subset Sum.

13 / 22

Module Overview. Part 5: Approximation Algorithms
and Complexity

We will consider optimisation problems in which the goal is to
take a problem instance and find a feasible solution which is as
good as possible with respect to some measure.

We will typically look at problems for which it is NP-hard to
compute an optimal solution.

14 / 22

Sequential vs. Parallel Algorithms

Many software companies have applications which are in use
by their customers that have significant runtime and for which
fast runtime is a necessity or a competitive advantage. There
has always been the pressure to make such applications go
faster.

We will consider how to compute things faster in parallel by
breaking a problem into smaller pieces and solve larger
problems without resorting to larger computers.

What kind of parallel speedup is required, what architecture
should be used and whether a problem is amenable at all to a
parallel attack

15 / 22



Learning Outcomes

At the conclusion of the course students should:

Have an understanding of the role of algorithmics within
computer science.

Have expanded their knowledge of computational
complexity theory.

Be aware of current research-level concerns in the field of
algorithm design.

16 / 22

Learning Algorithms

Learning about algorithms and complexity is difficult because it
is not enough to understand the material in lecture.

Applying the ideas that we learn to a new problem takes some
ingenuity and mathematical skill.

The way to acquire the skill is to practise – I will give you lots of
example exercises, which you should solve yourself.

17 / 22

As in Comp202, we will describe algorithms in pseudocode
rather than using the full syntax of any particular language. You
should be able to implement the algorithms that we describe in
a real programming language.

18 / 22

Pseudocode conventions

Assignments will have the form a← b (a = b refers to the
comparison between a and b).

Sometimes elementary instructions will be expressed in
natural language (for instance “sort the array A in
increasing order” will be an elementary instructions).

if-else, for, and while control structures will be used for
selection statements and loops.

The instruction return e returns (i.e. “prints”) the value of e
and exits from the program execution.

Indentation will indicate block structure.

19 / 22



(Unless otherwise stated) variables will be local to the
given procedure.

Arrays are denoted by A[i], but also A[i ..j]. length(A)
denotes the number of elements of the array A.

Parameters are always passed by value.

More conventions as we meet them.

20 / 22

Textbooks

T. H. Cormen, C. E. Leiserson, R. L. Rivest Introduction
to Algorithms, Second Edition. MIT Press (2001).

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A.
Marchetti-Spaccamela, M. Protasi, Complexity and
Approximation Springer 2003.

Lovasz and Plummer, Matching Theory North-Holland
(1986).

21 / 22

Take notes.

Ask questions.

22 / 22


