
A Synergy Coalition Group based Dynamic Programming
Algorithm for Coalition Formation

Luke Riley
Dept. of Computer Science
University of Liverpool, UK

L.J.Riley@Liverpool.ac.uk

Katie Atkinson
Dept. of Computer Science
University of Liverpool, UK

K.M.Atkinson@Liverpool.ac.uk

Paul E. Dunne
Dept. of Computer Science
University of Liverpool, UK

P.E.Dunne@Liverpool.ac.uk

Terry R. Payne
Dept. of Computer Science
University of Liverpool, UK

T.R.Payne@Liverpool.ac.uk

ABSTRACT
Coalition formation in characteristic function games entails agents
partitioning themselves into a coalition structure and assigning the
numeric rewards of each coalition via a payoff vector. Various
coalition structure generation algorithms have been proposed that
guarantee that an optimal coalition structure is found. We present
the Synergy Coalition Group-based Dynamic Programming (SCG-
DP) algorithm that guarantees that an optimal coalition structure
and a least core stable payoff vector is found. This is completed
by extending the existing results for the Synergy Coalition Group
(SCG) representation to show that only coalitions in the SCG are
needed to find a weak-least core stable payoff vector. The SCG-
DP algorithm builds on this result by performing only the search
operations necessary to guarantee that coalitions in the SCG of the
given characteristic function game are found. The number of op-
erations required is significantly less for many coalition-value dis-
tributions compared to the original Dynamic Programming (DP)
algorithm [34] that finds an optimal coalition structure (e.g. only
∼60% of DP’s coalition lookup operations are performed in SCG-
DP for 18 agents using a normal coalition-value distribution). Our
experimental results show that a lower bound for these operations
in SCG-DP converges onto 50%. This is an increase on the ∼33%
bound of the optimal dynamic programming (ODP) algorithm [14],
but ODP does not search for a stable solution.

General Terms
Algorithms, Economics, Theory

Keywords
Coalition Formation; Dynamic Programming; Synergy Coalition
Groups; Cooperative Game Theory

1. INTRODUCTION
Coalition formation is a process whereby agents recognise that co-
operation with others can occur in a mutually beneficial manner
and therefore the agents can choose appropriate temporary groups

Appears in: Proceedings of the 15th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

(named coalitions) to form. But determining the set of coalitions
that should form is difficult due to: (a) the exponential number of
different possible coalitions; (b) the exponential number of possi-
ble sets of coalitions; and (c) the many ways in which the agents of
a coalition can agree to distribute its rewards between its members
(if this reward is transferable between the agents).

Therefore, coalition formation can be thought of as a three stage
process [25, 27]: (1) calculating the value of each possible coali-
tion; (2) finding an optimal set of coalitions; and (3) dividing the
value of the coalitions in a manner that no agent can object to.

A set of coalitions, known as a coalition structure, is an optimal
coalition structure if it has the - possibly joint - highest total value
of all the possible coalition structures (i.e. it maximises social wel-
fare). In characteristic function games, where the set of agents
must be divided into exhaustive and disjoint coalitions, finding an
optimal coalition structure is known as the coalition structure gen-
eration problem [27]. This problem has been proved to be NP-
complete [27], yet there have been algorithms developed to combat
this complexity [21]. The algorithms that provide a guarantee that
an optimal coalition structure will be found, can be divided into the
following two categories (for a more detailed description of these
two categories see [24]):

1. Dynamic programming algorithms: This is the collection
of algorithms where the main problem is solved by dividing
it up into sub-problems and then solving the smallest first.
The answers to the smallest problems help with answering
the larger problems [8]. There are coalition structure gen-
eration dynamic programming algorithms (e.g. see [14, 19,
22]) that are modifications of an algorithm presented in [34],
which solves the complete set partitioning problem. The
main advantage of the dynamic programming algorithms is
that an optimal coalition structure is guaranteed to be found
in O(3n) time. Yet a disadvantage is that an optimal coali-
tion structure is only returned when the algorithm completes.

2. Tree search algorithms: These algorithms divide the search
space into subspaces that are searched using depth-first and
branch-and-bound techniques, where the quality of the so-
lution gets better over time (in some well behaved manner).
Some example algorithms in this category are: [7, 15, 25,
27]. The main disadvantage of these algorithms is that the
worst case running time is O(nn).

Additionally, there exists algorithms that combine aspects of both
of these categories (e.g. see [14, 29]). However all of these coali-

tion structure generation algorithms do not consider the third stage
of coalition formation; payoff distribution. When agents are adver-
sarial, an agent will only join a coalition if it is given a payoff that
is stable (i.e. a payoff that cannot reasonably be objected to1). It
can even be beneficial for benevolent agents to only join a coalition
if the payoff they receive is stable [4].

In this paper, the Synergy Coalition Group-based Dynamic Pro-
gramming (SCG-DP) algorithm is introduced, that locates an op-
timal coalition structure and concurrently identifies the Synergy
Coalition Group (SCG), which is used to guarantee that a weak-
least core or weak-least core+ stable payoff distribution is also
found (where the plus sign indicates cross coalitional payoff trans-
fers are allowed). The SCG-DP algorithm achieves these results,
even though it cuts down significantly on the number of opera-
tions required by the original Dynamic Programming (DP) algo-
rithm [34] for many different coalition-value distributions.

The rest of the paper is structured as follows: Section 2 intro-
duces the background to characteristic function games, core-based
stability concepts and the SCG. Section 3 introduces the theoret-
ical foundations that SCG-DP is built upon, including a theorem
that shows a weak-least core solution can always be found using
the SCG. Section 4 details SCG-DP, discusses why SCG-DP satis-
fies certain solution concepts, and describes a SCG-DP example.
Section 5 evaluates SCG-DP against the Optimal Dynamic Pro-
gramming algorithm [14] and the DP algorithm [34], according to
the number of split operations performed and the number of coali-
tion lookup operations. Finally Section 6 concludes and describes
future work.

2. BACKGROUND

2.1 Characteristic Function Games
The characteristic function game model of coalition formation [18]
is denoted: G = 〈N, v〉 where N = {1, 2, ..., n} is the set of
agents, and v is the characteristic function (v(2N)→ R) which as-
signs every possible coalition a real numeric payoff. Characteristic
function games assumes that each coalition’s value is static, deter-
ministic and independent of the other coalitions that could form.

An outcome of a characteristic function game G = 〈N, v〉 for
n agents is a coalition structure and payoff vector pair, denoted:
〈CS, x〉, where CS is a set of k coalitions CS = {C1, ..., Ck}
and x is the payoff vector x = (x1, ..., xn). Occasionally in this
paper, notation is abused so that x(C) =

∑
i∈C xi. The coalition

structure CS has the following properties:
⋃k

j=1 Cj = N ; and
Ci ∩Cj = ∅ for any i, j ∈ {1, ..., k} where i 6= j. To find a stable
outcome of a characteristic function game, all the agents should
have no valid objection. Stability is a necessary but not sufficient
condition for a payoff vector (or coalition structure) to be agreed
upon, because there can be multiple possible stable outcomes.

2.2 Core-based Stability Solution Concepts
The idea of a valid objection changes depending on which stability
solution concept is used. Perhaps the most intuitive stability so-
lution concept is known as the core [10]. The core is the set of
stable outcomes where no subset of agents have an incentive to de-
viate, i.e., there is no payoff distribution that would make at least
one member of a deviating coalition better off, without negatively
affecting the other members of the deviating coalition2.
1Definitions of stability are discussed in Section 2.2.
2In this section, the core is introduced, not the CS-core, as the CS-
core has been shown to not be able to guarantee that the optimal
coalition structure is CS-core stable [2, 28].

Definition 1: The core:- For a characteristic function game G =
〈N, v〉, a payoff vector x = (x1, ..., xn) for the grand coalition is
in the core iff:∑

i∈N

xi = v(N)
∑
i∈C

xi ≥ v(C), ∀C ⊂ N

A problem with the core is that it can sometimes be empty. To
tackle this issue, the concept of the ε-core was introduced in [30],
where the ε-core is a more general case of the core. Two different
definitions of the ε-core were introduced, named the strong ε-core
and the weak ε-core. This paper focuses on the weak ε-core:
Definition 2: The weak ε-core:- For a characteristic function game
G = 〈N, v〉 and a value ε, a payoff vector x = (x1, ..., xn) for the
grand coalition is in the weak ε-core iff:∑

i∈N

xi = v(N)
∑
i∈C

xi ≥ v(C)− |C|ε, ∀C ⊂ N

Notice when ε = 0, the weak ε-core definition is equivalent to
the core. The difference between the strong and weak ε-cores is that
under the weak definition, the penalty of forming a new coalition is
dependent on its size, while the penalty for forming a new coalition
under the strong definition is a fixed amount for any coalition.

The weak least core is the smallest, non-empty weak ε-core [30]:
Definition 3: weak least core:- For a characteristic function game
G = 〈N, v〉, a payoff vector x is in the weak least core iff:

x is in the weak ε-core and ∀ε′ < ε, the weak ε′-core is empty

It should be mentioned that core/ε-core stable payoff vectors can
be found with payoff vector transfer schemes (such as [3, 13, 33]),
which take a characteristic function game outcome, iteratively ap-
ply an operation on it and converge to an element of the ε-core.
Yet all of [3, 13, 33] do not detail the search for the optimal coali-
tion structure (they assume the grand coalition forms) and only [13]
presents a method to find an element of the least core.

Additionally, a non-cooperative game theoretic approach to coali-
tion formation is through coalitional bargaining, which describes
how stable characteristic function game outcomes occur via a pro-
cess of non-cooperative bargaining and outlines equilibrium con-
cepts that characterise the agent’s behaviour in these games.

The coalitional bargaining papers of [5, 9, 17] detail how non-
cooperative game theoretic solution concepts match the cooperative
solution concept of the core. But these studies do not detail what
cooperative game solution concept is found when the core is empty.

2.3 Synergy Coalition Groups
When searching for stability, it may not be necessary to check all
possible coalitions. The synergy coalition group (SCG) [6] has
been shown to include all the coalitions needed to guarantee that
a core stable solution can be found. A coalition C is said to in-
troduce synergy, if C has a greater value than any possible disjoint
and non-overlapping partition of C. A SCG is defined as follows:
Definition 4: A synergy coalition group W consists of a set of
pairs of the form (C, v(C)). A pair is only inW if it details a coali-
tion that gives synergy to its members. The singleton coalitions are
assumed to always be represented within W . For any coalition
C ∈ (C, v(C)) ∈ W , the value of C is v(C). For any coalition
C′ /∈ W , the value of C′ is: v(C′) = max(

∑
Cj∈PC′

v(Cj))

where PC′ = {C1, C2, ..., Ck} is a partition of C′ such that:
(a)

⋃k
i=1 Ci = C′; (b) Ci∩Cj = ∅ for any Ci, Cj ∈ PC′ where

i 6= j; and (c) (Cj , v(Cj)) ∈W, for all Cj ∈ PC′ .

If a coalition C′ is not represented within W , then its value
comes from its highest valued partition, as long as this partition has
the following properties: (a) all the agents of C′ are in a coalition
of the partition and there are no additional agents in the partition;
(b) each agent of C′ occurs in only one coalition of the partition;
and (c) each coalition in the partition is represented within W .
Example 1: Consider the characteristic function gameG = 〈N, v〉
where N = {1, 2, 3, 4} and the SCG representation W gives the
following valuations: W = {({1}, 2), ({2}, 1), ({3}, 1), ({4}, 2),
({1, 2}, 5)} (i.e. the utility value of agent 1 by itself is 2, while the
utility value of the coalition, of agents 1 and 2, is 5) .

Example values of coalitions that are not explicitly represented
are: v({3, 4}) = v({3}) + v({4}) = 1 + 2 = 3; v({1, 2, 3}) =
v({1, 2})+v({3}) = 5+1 = 6; and v({1, 2, 3, 4}) = v({1, 2})+
v({3}) + v({4}) = 5 + 1 + 2 = 8.

The SCG model described in [6] can only represent superaddi-
tive characteristic functions. In [16] the original definition of SCG
was expanded on, by adding the requirement that if a coalition is
explicitly listed in W then it cannot be divided further (note: a
coalition may now be listed in W even if it gives no synergy):
Example 2: Consider the characteristic function gameG = 〈N, v〉
where N = {1, 2, 3, 4} and the SCG representation W gives the
following valuations: W = {({1}, 5), ({2}, 1), ({3}, 1), ({4}, 2),
({1, 2}, 3)} (i.e. the utility value of agent 1 by itself is 5, while the
utility value of the coalition, of agents 1 and 2, is 3) .

Example values of coalitions that are not explicitly represented
are: v({1, 3}) = v({1})+v({3}) = 5+1 = 6; and v({{1, 2, 3})
= v({1, 2}) + v({3}) = 3 + 1 = 4 (because {1, 2} is in W).

In [16], it was shown that it is guaranteed that there will always
be an optimal coalition structure (CS∗) with only coalitions in the
SCG. The proof consists of showing that if a coalition C is in a
coalition structure and not the SCG, then C can be replaced by a
partition of C (consisting of only coalitions in the SCG), which has
a value equal to or higher than v(C). This is a result you would
expect given Definition 4.

Additionally in [16], it was shown how an CS∗ could be iden-
tified given the SCG as input. This is a different problem from
the one studied in this paper, where the SCG-DP algorithm takes
a characteristic function game as input and locates an CS∗ while
concurrently searching for the SCG.

It should be noted that in this paper the additional requirement
of [16] is not used, instead the original [6] definition of a SCG is
preferred. We show that the original definition is satisfactory to
find an CS∗ when it is recognised in the SCG-DP algorithm that
the value of a coalition C /∈ W is in fact the value of C’s highest
valued partition. Therefore if C is included in CS∗, then in fact
SCG-DP should replaceC inCS∗ withC’s highest value partition,
and each coalition in the highest value partition will be replaced if
it is not in W (and so on until all the coalitions in CS∗ are in W).

3. THEORETICAL FOUNDATIONS
Now that the background has been introduced, the foundations that
the SCG-DP algorithm is built upon can be detailed.

In Section 3.1 the properties of a synergy coalition group (SCG)
are expanded upon. In Section 3.2 we detail what parts of the search
space the SCG-DP algorithm must consider.

3.1 Guaranteeing Stable Solutions
When the characteristic function game is superadditive, then the
grand coalition is the optimal coalition structure [18]. In Lemma 2
and Theorem 4 of [6] it is proven that theW set of the SCG allows a
core solution to be found if the core is non-empty. This Lemma and

Theorem have been extended below to show that a payoff vector in
the weak least core can also be guaranteed to be found for the grand
coalition using the W set (an example follows the lemma):

LEMMA 3.1. Given a characteristic function game G = 〈N, v〉
and a payoff vector x (where

∑
i∈N xi = v(N)), let εw be the

maximum weak ε penalty value that still gives an objecting coali-
tion for x given full knowledge on each coalition’s value. In this
situation, an objecting coalition D for εw will be present within
W .

PROOF. Suppose x is objected to by a coalition C through v(C)−
|C|εw because v(C)− |C|εw > x(C), and assume that ∀εwi > εw

there is no objecting coalition. If (C, v(C)) ∈ W then this proves
the lemma. If (C, v(C)) /∈ W then from the definition of a SCG,
it is known that the value of the coalition can be found through its
maximum value partition, i.e. v(C)−|C|εw =

∑
1≤j≤k(v(Cj)−

|Cj |εw), for some set of coalitions PC = {C1, ..., Ck} where:
1.

⋃k
j=1 Cj = C;

2. Ci ∩ Cj = ∅ for any i, j ∈ {1, ..., k} where i 6= j; and

3. (Cj , v(Cj)) ∈W , for all Cj ∈ {C1, ..., Ck}

Via substitution, it follows that
∑

1≤j≤k(v(Cj)−|Cj |εw) > x(C)

=
∑

1≤j≤k x(Cj) and hence for at least one Cj then the following
holds: v(Cj) − |Cj |εw > x(Cj). Therefore if a coalition C that
is not in the SCG representation objects to a payoff vector x given
the maximum εw that still gives an objecting coalition, it has been
shown that there exists a coalition Cj ⊂ C, that also objects to x
given εw, yet Cj is represented explicitly within the SCG represen-
tation (i.e. (Cj , v(Cj)) ∈W). Thus the proof is complete.

Lemma 3.1 shows that given a superadditive characteristic func-
tion game, the grand coalition and a payoff vector distributing the
grand coalition’s value, a coalition that objects to the payoff vector
for the maximum weak ε penalty value (that allows an objecting
coalition) will be present in the SCG representation. For further
understanding, consider the following example:
Example 3: Consider a characteristic function game with N =
{1, 2, 3, 4} agents, where the coalition C = {1, 2, 3} has a value
of v({1, 2, 3}) = 25. In this example, a payoff vector x gives the
coalition C the total payoff of x(C) = 18. Therefore it is known
that the maximum (integer) weak ε penalty value for x that C will
object to is εw = 2. This is because v(C)−|C|εw = 25−(3×2) =
25− 6 = 19 > x(C) = 18. Coalition {1, 2, 3} does not object to
x when εw = 3 because 25− (3× 3) = 16 < x(C) = 18.

IfC ∈W , then an objecting coalition for the maximum objection-
allowing weak ε value has been found in the SCG representation.
If C /∈ W then there must be coalitions within W that make up
a partition of C and have an equal or greater combined value
than C. For this example assume ({1, 2}, v({1, 2}) = 16), ({3},
v({3}) = 9) ∈ W . These valuations have been chosen because
v({1, 2}) + v({3}) = v({1, 2, 3}), i.e. the values total the mini-
mal needed to make sure that coalition {1, 2, 3} is not in the SCG
representation.

Given theses preliminaries, to stop coalition {1, 2} being an ob-
jecting coalition when εw = 2, then x({1, 2}) must be greater than
or equal to v({1, 2})− |{1, 2}|εw = 16− (2× 2) = 12. Assume
that x({1, 2}) = 12 (i.e. the minimal payoff to satisfy the coalition
has been given).

Recall that x({1, 2, 3}) = 18. Therefore x3 = x({1, 2, 3})−
x({1, 2}) = 18 − 12 = 6. But this gives v({3}) − |{3}|εw =
9 − (1 × 2) = 9 − 2 = 7 > x({3}) = 6 and so the singleton
coalition {3} will object to x when εw = 2 and this objecting
coalition has been found in the SCG (as singletons are in W).

In conclusion, this example demonstrates that if an objecting
coalitionC for the maximum weak ε penalty value (that still admits
an objecting coalition) is not present in the SCG representation,
then a coalition C′ ⊂ C that is present in the SCG representation
will object to the same weak ε penalty value.

The following theorem shows that given the grand coalition, the
coalitions in the SCG representation can be used to find a payoff
vector within the weak least core:

THEOREM 3.2. For the grand coalition, a payoff vector that
gives the minimum weak ε value for stability to occur can be found
using only the coalitions in W .

PROOF. The value of the grand coalition can be allocated by
the payoff vector x by solving the following linear program that
minimises ε:

min ε subject to:
xi ≥ 0 for each i ∈ N (1)
x(N) = v(N) (2)
x(C) ≥ v(C)− |C|ε, for all (C, v(C)) ∈W (3)

Only the coalitions in W are needed to be used in this linear pro-
gram, according to Lemma 3.1.

Before introducing the corollary to this theorem, a formal defi-
nition regarding cross-coalition side payments is required, which is
shown through the weak ε-core+ and weak least core+ definitions:
Definition 5: The weak ε-core+:- For a characteristic function
game G = 〈N, v〉, a coalition structure and payoff vector pair
〈CS∗, x〉 is in the weak ε-core+ iff:∑

i∈N

xi = CS∗
∑
i∈C

xi ≥ v(C)− |C|ε, ∀C ⊆ N

The difference of the weak ε-core+ compared to the weak ε-
core of Section 2.2 is that a weak ε-core+ payoff vector totals the
value of the optimal coalition structure, which may not be the grand
coalition. Additionally as the weak ε-core+ does not have the con-
dition that all the payoff of each coalition in the coalition structure
is given to that coalition (i.e. x(C) = v(C), ∀C ∈ CS∗ does
not have to hold), then cross-coalitional payoff vector transfers can
occur. As noted in [1, 11], allowing cross-coalition side payments
can benefit multi-agent systems, as it was argued that introducing
cross-coalition side payments can be considered a more fair payoff
mechanism. The additional fairness comes from eliminating the ef-
fect of the coalition structure on agent payoffs. The example given
in [1], is that it may be possible that in the optimal coalition struc-
ture some agents M ⊂ N are by themselves in singletons, or are
members of a comparatively small coalition compared to the size of
the other coalitions in the coalition structure. When cross-coalition
side payments are not allowed, these M agents do not benefit from
the cooperation of others, even when the M agents are in many
potential coalitions that have a high value, which the agents N\M
may have used to negotiate for a better payoff. Yet, for the greater
good of the population (i.e., maximizing social welfare), the M
agents may be forced to stay in the optimal coalition structure.

Given the definition of the weak ε-core+, the weak least core+

can be defined:
Definition 6: weak least core+:- For a characteristic function
game G = 〈N, v〉, a coalition structure and payoff vector pair
〈CS∗, x〉 is in the weak ε-core+ iff:

〈CS∗, x〉 is in the weak ε-core+

∀ε′ < ε, the weak ε′-core+ is empty

Given the formal definition regarding cross-coalition side pay-
ments, we can introduce the corollary to Theorem 3.2:

COROLLARY 3.2.1. For the grand coalition of a superadditive
cover, a payoff vector in the weak least core+ can be found using
only the coalitions in W .

PROOF. Replace the characteristic function v with the super-
additive cover characteristic function v∗ in Lemma 3.1 and The-
orem 3.2. Now the grand coalition’s value will be equal to the op-
timal coalition structure. This guarantees that a weak least core+

solution for the superadditive cover is found.

Given Corollary 3.2.1, the SCG-DP algorithm introduced in this
paper identifies the following to guarantee that a weak least core+

stable solution is found: (a) the coalitions in the SCG representa-
tion W ; and (b) an optimal coalition structure that maximises the
value of the superadditive cover of the grand coalition. If cross-
coalition side payments were not allowed, then it would be much
more difficult for the agents to reason over what is the most stable
coalition structure and payoff vector pair, as [2, 28] showed that op-
timal coalition structures may not be the most stable coalition struc-
ture. So in this case, multiple coalition structures will have to be
compared via not just their value, but also their stability. Searching
all possible coalition structures is a highly complex task because
the total possible number of coalition structures grows at a signifi-
cantly higher rate than the number of potential coalitions [27]. For
n agents, the number of possible coalition structures is found using
the Bell number Bn, which is ∼ θ(nn) and so significantly larger
then the θ(2n) growth of possible coalitions [27]. Therefore it is of
great benefit to the agents to significantly minimise the number of
possible coalition structures to compare.

In this paper, the SCG-DP algorithm assumes cross-coalition
side payments are allowed because it significantly reduces the com-
putation costs as multiple coalition structures will not have to be
compared according to their stability.

3.2 Search Space Guarantees
Before we detail our search space guarantees, various preliminaries
need to be introduced:
Definition 7: A split of a coalition C, is a two-set partition of C,
denoted [Cx, Cy] where:

|Cx| ≤ |Cy|, Cx ∪ Cy = C and Cx ∩ Cy = ∅.

Additionally the following condition holds (i.e. that if the same size,
then Cx has to be smaller lexicographically than Cy):

if |Cx| = |Cy| then Cx <lex C
y

A split [Cx, Cy] can also be written as [Cx,−], which indicates a
split that has only had its first partition generated. The second par-
tition can then be generated subsequently fromN\Cx if required.

A split of a coalition can be further divided into split-partitions:
Definition 8: A split-partition is a multi-partition set, denoted SP

= {Cx
1 , ..., C

x
p , C

y
1 , ..., C

y
q }, and is derived from a two-set parti-

tion [Cx, Cy] of an original coalition C. A split-partition has the
following properties:

p⋃
j=1

Cx
j = Cx,

q⋃
j=1

Cy
j = Cy ,

Cx
i ∩ Cx

j = ∅ for any i, j ∈ {1, ..., p} where i 6= j and

Cy
i ∩ C

y
j = ∅ for any i, j ∈ {1, ..., q} where i 6= j.

Therefore the previous definition states that the agents in coalition
Cx cannot be mixed with the agents of the coalition Cy in the split
partition. Next we define the following functions:

• AllSplits(C) returns all the splits that can be made from coali-
tion C.

• AllSParts([Cx, Cy]) returns all the split-partitions of [Cx, Cy].

Our last preliminary definition introduces the concept of split
coverage:
Definition 9: A split [Cx, Cy] is said to cover a split-partition SP
iff ∃SP ′ ∈ AllSParts([Cx, Cy]) where ∀Cj ∈ SP then Cj ∈
SP ′.

Example 4: Consider a coalition C1 = {1, 2, 3, 4, 5, 6} and the
splits [{2, 3}, {1, 4, 5, 6}] and [{1}, {2, 3, 4, 5, 6}]. A split par-
tition of [{2, 3}, {1, 4, 5, 6}] is SP1 = {{2, 3}, {1}, {4}, {5, 6}}.
Yet SP1 is covered by [{1}, {2, 3, 4, 5, 6}] because the larger coali-
tion {2, 3, 4, 5, 6} can be broken up into {2, 3}, {4} and {5, 6}.
Another split partition of [{2, 3}, {1, 4, 5, 6}] is SP2 = {{2, 3},
{1, 4}, {5, 6}}. But SP2 is not covered by [{1}, {2, 3, 4, 5, 6}] be-
cause, by the definition of a split-partition, {1} must be by itself (as
{1} cannot be grouped with any agents of {2, 3, 4, 5, 6}).

As the ODP algorithm showed [14], not all splits for each coali-
tion are needed to be analysed to guarantee that an optimal coalition
structure (CS∗) can be found. SCG-DP identifies the SCG of the
given characteristic function game, as there is always an CS∗ that
will only contain coalitions in the SCG [16]. Therefore when SCG-
DP searches for CS∗ it only considers: (i) coalitions from the SCG
that it has identified; and (ii) splits that can lead to an analysis of a
new coalition structure involving only SCG coalitions.

When SCG-DP is seeking to identify if a coalition C is in the
SCG, it does not have to check every possible split of that coali-
tion. This is because some splits include coalitions not in the SCG
and some splits cover only split-partitions previously analysed by
another split of C.

The SCG-DP algorithm starts generating splits of a coalition C
where the size of the smallest coalition in the split [Cx, Cy] is of
size |Cx| = 1 and SCG-DP continues generating splits of C until
the size of Cx is greater than b |C|

2
c (i.e. when all possible splits

have been generated).
Lemma 3.3 and Theorem 3.4 show that given a split [Cx, Cy] of

C where |Cy| < 2 ∗ |Cx|, then the value of [Cx, Cy] only needs
to be compared to v(C) (to find the best valued partition of C and
check if (C, v(C)) ∈ W) if both (Cx, v(Cx)), (Cy, v(Cy)) ∈
W . This is because, when |Cy| < 2 ∗ |Cx|, every possible split-
partition of [Cx, Cy] will have been covered by a split of C that
includes a smaller sized coalition than Cx.

LEMMA 3.3. Consider a coalition C and a split [Cx, Cy] ∈
AllSplits(C) where |Cy| < 2 ∗ |Cx|. Given [Cx, Cy] and a split-
partition SP ∈AllSParts([Cx, Cy]), then there exists another split
[Dx, Dy] ∈ AllSplits(C) where |Dx| < |Cx| and the following
holds: SP ∈ AllSParts([Dx, Dy]).

PROOF. Assume a split [Cx, Cy] ∈ AllSplits(C) has the prop-
erty |Cy| < 2 ∗ |Cx|, and that SP ∈ AllSParts([Cx, Cy]) cannot
be found by any [Dx, Dy] ∈ AllSplits(C) where |Dx| < |Cx|. For
this assumption to hold true, then SP cannot contain a partitionEx

i

of size |Ex
i | < |Cx|, otherwise SP would have been covered by a

split that includes Dx where Dx = Ex
i .

When |Cy| < 2 ∗ |Cx| then at least one of the partitions in
the split-partition SP has a size less than |Cx|. If the last coalition
Ey

q of the split-partition SP has the size of |Cx| then
∑p

i=1 |E
x
i |+∑q−1

i=1 |E
y
i | = |C

y|−|Cx|. But as |Cx| is greater than half of |Cy|,

then there exists an Ex
j ≤ |Cy| − |Cx| < |Cx|, which contradicts

the assumption as SP will have to contain at least one partitionEx
j

with a size smaller than |Cx|.

Exactly how small |Ex
j | is, depends on how many p elements of

Ex and q elements of Ey there are in the split-partition.
The following theorem shows that given a split [Cx, Cy] where
|Cy| < 2 ∗ |Cx|, then this split only needs to be assessed by SCG-
DP to find W , if both Cx and Cy are in the SCG:

THEOREM 3.4. Consider a coalition C and a split [Cx, Cy] ∈
AllSplits(C) where |Cy| < 2 ∗ |Cx|. Then the SCG-DP algorithm
needs to compare v(C) to f2[Cx]+f2[Cy] as part of the checks to
see if (C, v(C)) ∈W , only if (Cx, v(Cx)), (Cy, v(Cy)) ∈W .

PROOF. According to Lemma 3.3, each split-partition SP ∈
AllSParts([Cx, Cy]) has been covered by a split [Dx, Dy] where
|Dx| < |Cx|. Therefore the value of each SP has already been
compared against v(C) when analysing [Dx, Dy] because SCG-
DP generates the splits according to the size of the smallest coali-
tion in it (from size 1 to b |C|

2
c). Therefore, only the split [Cx, Cy]

(i.e. the split itself and not any split-partitions) has not been com-
pared against v(C). But if one of Cx or Cy is not in W , then
one of [Cx, Cy]’s split-partitions were of greater or equal value
than [Cx, Cy] and so the following is guaranteed to hold: v(C) ≥
f2(Cx) + f2(Cy).

The next lemma and theorem show that given a split [Cx, Cy] of
C where |Cy| ≥ 2 ∗ |Cx|, then the value of [Cx, Cy] needs to be
compared to v(C) if Cx in the SCG. This is because, when |Cy| ≥
2 ∗ |Cx|, there are many possible split-partitions of [Cx, Cy] that
will not have been covered by a split with a smaller sized coalition
than Cx.

LEMMA 3.5. Consider a coalition C and a split [Cx, Cy] ∈
AllSplits(C) where |Cy| ≥ 2 ∗ |Cx|. Given [Cx, Cy] and a split-
partition SP ∈ AllSParts([Cx, Cy]), then there may not exist a
split [Dx, Dy] ∈ AllSplits(C) where |Dx| < |Cx| and SP ∈
AllSParts([Dx, Dy]).

PROOF. Assume a split [Cx, Cy] ∈ AllSplits(C) has the prop-
erty |Cy| ≥ 2 ∗ |Cx|, and that SP ∈ AllSParts([Cx, Cy]) can
always be found by any [Dx, Dy] ∈ AllSplits(C) where |Dx| <
|Cx|. For this assumption to hold true, then SP cannot contain
only partitions of sizes≥ |Cx|, otherwise SP would not have been
covered by a split that included Dx.

When |Cy| ≥ 2 ∗ |Cx| then at least one split-partition SP can
be found that includes only partitions that have sizes ≥ |Cx|. For
example, a 3-part split-partition of sizes |Cx|, b |C

y|
2
c and d |C

y|
2
e

can be made, and because |Cy| ≥ 2 ∗ |Cx| the assumption is con-
tradicted.

The following theorem shows that given a split [Cx, Cy] where
|Cy| ≥ 2 ∗ |Cx|, then this split only needs to be assessed by SCG-
DP to find W , if Cx is in the SCG:

THEOREM 3.6. Consider a coalition C and a split [Cx, Cy] ∈
AllSplits(C) where |Cy| ≥ 2 ∗ |Cx|. Then the SCG-DP algorithm
needs to compare v(C) to f2[Cx] + f2[Cy] as part of the checks
to see if (C, v(C)) ∈W , only if (Cx, v(Cx)) ∈W .

PROOF. According to the previous lemma, a split-partition SP ∈
AllSParts([Cx, Cy]) may not have been covered by a split [Dx, Dy]
when: (a) SP only includes partitions of sizes greater than or equal
to |Cx|; (b) |Dx| < |Cx|; and (c) |Cy| ≥ 2 ∗ |Cx|. All split-
partitions that include partitions of sizes greater or equal to |Cx|,

Algorithm 1: The SCG-DP algorithm to find an optimal coali-
tion structure and a stable payoff vector.

1: function SCG-DP(N,v)
2: Input: 〈N, v〉; where N is the global set of agent IDs and v

is the characteristic function.
3: Output: 〈CS∗, x〉; where CS∗ is the optimal coalition

structure and x is a stable payoff vector.
4: begin;
5: W = ∅; // holds the SCG representation
6: for i ∈ N do
7: set f1[{i}] := {i}, f2[{i}] := v({i}) and

({i}, f2[{i}]) ∈W ;
8: end for
9: for s := 2 to n do

10: for each C ⊆ N where |C| = s do
11: Ψ = EvalSplits(C, W)
12: f2[C] :=

max{v(C),max[Cx,Cy]∈Ψ(f2[Cx] + f2[Cy])};
13: if f2[C] < v(C) then
14: set f1[C] := C and (C, f2[C]) ∈W ;
15: else
16: set f1[C] := C∗ where C∗ maximises f2[C];
17: end if
18: end for
19: end for
20: set CS∗ := {N}
21: for each Ci ∈ CS∗ = {C1, ...Ck} do
22: if Ci /∈W then
23: set CS∗ := (CS∗\{C}) ∪ {f1[C]};
24: restart this for loop from Ci;
25: end if
26: end for
27: x = FindStablePayoff(W)
28: return 〈CS∗, x〉;
29: end;

must include Cx due to the definition of split-partitions. Yet if
(Cx, v(Cx)) /∈ W then this split does not need to be analysed
anyway as an optimal coalition structure can always be found us-
ing only the coalitions in W .

To conclude this section, the SCG-DP algorithm implements im-
plements Theorem 3.4 and Theorem 3.6 (to make sure that the
necessary splits are analysed) via its EvalSplits function (see
Algorithm 2) in lines 8 to 11 and lines 12 to 14 respectively. In
the EvalSplits function, Cy is generated only when needed, to
save on computation, therefore both of the following are used in the
function: (a) |Cy| is substituted with n− |Cx|; and (b) Cy is only
generated if (Cx, v(Cx)) ∈W .

4. THE SCG-DP ALGORITHM
The SCG-DP algorithm (see Algorithm 1) takes a characteristic
function game as input and follows the style of the other dynamic
programming algorithms in the literature. That is, SCG-DP breaks
the coalition structure generation problem up into finding the high-
est valued partition of each subset of the grand coalition in size
order from smallest subset to largest (line 6 and 9).

To find an optimal coalition structure (CS∗), like DP of [34],
the SCG-DP algorithm uses: (a) the f1 table where f1[C] is set
to equal the highest valued split of C if this is greater or equal to
v(C), otherwise f1[C] = C (lines 14 and 16); and (b) the f2 table

Algorithm 2: The EvalSplits function finds which splits
of the coalition C should be checked by SCG-DP to find out
whether C is in the SCG representation.

1: function EvalSplits(C,W)
2: Input: 〈C,W 〉; where C is the coalition to assess the splits

of, and W is the SCG representation.
3: Output: Ψ = {[Cx, Cy]1, ..., [C

x, Cy]k};
4: begin;
5: Ψ = ∅; p = 1;
6: for r = 1 to r > b |C|

2
c do

7: for each [Cx,−] ∈ AllSplits(C) where |Cx| = r do
8: if n− |Cx| < 2 ∗ |Cx| and (Cx, f2[Cx]) ∈W then
9: if (Cy, f2[Cy]) ∈W , where Cy = N\Cx then

10: [Cx, Cy]p ∈ Ψ; p+ +;
11: end if
12: else if n− |Cx| ≥ 2 ∗ |Cx| and (Cx, f2[Cx]) ∈W

then
13: [Cx, Cy]p ∈ Ψ, where Cy = N\Cx; p+ +;
14: end if
15: end for
16: end for
17: return Ψ;
18: end;

where f2[C] holds the value of C (if f1[C] = C) or the value
of C’s highest-valued split (line 12). But crucially the difference
between SCG-DP and DP is that SCG-DP’s search for the CS∗

does not involve considering every possible split of every coalition
C ⊆ N . Only the splits returned by the EvalSplits function
are considered (line 11). The ODP algorithm of [14] also does
not consider every possible split when searching for an CS∗. The
SCG-DP and ODP algorithms are compared in Section 5.

Additionally, SCG-DP, unlike the DP and ODP algorithms, col-
lects the SCG representation in W at two points: (1) Firstly by the
definition of the SCG, the singleton coalitions should be inW (line
7); and (2) When every split-partition of C has a value less than
v(C) (line 13 and 14). In practice, if C is in W can be recorded
simply via a boolean, as the value of C is saved in f2.

After f1 and f2 are computed, the optimal coalition structure
CS∗ is found recursively in the same manner as the DP algorithm.
This is performed by first setting the CS∗ equal to the grand coali-
tion (line 20) and then performing a loop (lines 21 to 26) where
all the coalitions in the CS∗ are checked to see if they are in the
SCG (line 22). If a coalition C /∈ W , then it needs to be replaced
by its highest valued partition. This process continues until all the
coalitions in CS∗ are members of the SCG.

Finally, the coalitions that have been collected into W are used
to find a stable payoff vector (line 27). Details of this are described
in Section 4.1. Once the stable payoff vector has been found, the
characteristic function game outcome will be returned (line 28).

4.1 Solution Concept Satisfiability
As has been described, the SCG-DP algorithm locates all the

coalitions in the SCG representation (i.e. it finds W). Given W ,
various guarantees can be made on the payoff vector x that is re-
turned from the FindStablePayoff function (which follows
Corollary 3.2.1 in Section 3.1). These guarantees are provided via
Theorem 3.2 and Corollary 3.2.1 and depend on the characteristic
function game given as input to the SCG-DP algorithm:

• A core solution will be found when the characteristic func-
tion game has a superadditive v.

• A weak-least core solution will be found when the grand
coalition is the optimal coalition structure but not core-stable.

• A weak-least core+ solution will be found when the grand
coalition is not the optimal coalition structure. In this case,
cross-coalition side payments may occur.

The superadditive cover characteristic function v∗, referred to in
Corollary 3.2.1, has been found in the SCG-DP via the f2 table.

If cross coalition side payments are undesirable, SCG-DP could
be modified to find the most stable CS∗. The section of the SCG-
DP that finds an CS∗ can instead find all the CS∗s. Then each
CS∗ can be compared via stability. This procedure is known as the
optimality gap [28] and significantly cuts down on the number of
coalition structures to compare via their stability, as the number of
CS∗s is usually significantly less than all the coalition structures.

4.2 An Example of the Algorithm
To show how SCG-DP works, due to space considerations, we fo-
cus on the evaluation of two coalitions of size s = 4 in a n =
5 agent characteristic function game. The following evaluation
is also presented in Table 1. As the coalitions are evaluated in
size order (see line 6 and 9 of SCG-DP), then coalitions of size
1, 2 and 3 have already been analysed by SCG-DP. Within those
sizes, the following were found to be in the SCG (in this example):
({1}, 1), ({2}, 1.2), ({3}, 0.8), ({4}, 1.2), ({5}, 0.9), ({1, 3}, 2),
({2, 5}, 2.3), ({3, 5}, 2), ({2, 3, 5}, 3.7) ∈W .

Now for a coalition of size 4, there are 7 different splits, which
are shown in the first 7 lines of the second column of Table 1 for
each coalition. To find out if a split should be compared to the
coalition’s value (displayed in the 8th line of column 2 for each
coalition), the EvalSplit function generates the first coalition
Cx of the split and generates the second coalition Cy if Cx ∈ W .
Then if the split [Cx, Cy]’s value is compared to the value of the
coalition depends on the size of Cx, as shall be explained.

Take the first split of coalition {1, 2, 3, 4}, i.e. [{1}, {2, 3, 4}].
This split satisfies the following: n − |Cx| = 5 − 1 ≥ 2 ∗ |Cx|
(where Cx = {1}). Therefore lines 12 to 14 of the EvalSplit
function is run. As singletons are always in the SCG, then line
13 states that Cy should be generated (hence coalition {2, 3, 4} is
shown in the table) and that this split should be analysed (hence
a numeric result is shown in the table). The value 4.2 is found as
v({1}) = 1 and the highest valued disjoint partition of {2, 3, 4} in
the SCG has a value of 3.2, because v({2}) + v({3}) + v({4}) =
1.2 + 0.8 + 1.2 = 3.2. Alternatively, in the second line, the
best valued partition of {1, 3, 4} is also 3.2 but this time because
v({1, 3}) + v({4}) = 2 + 1.2 = 3.2.

Now consider splits of the form [Cx, Cy] where |Cx| = |Cy| =
2 for the same coalition {1, 2, 3, 4}. The first split of this kind
is [{1, 2}, {3, 4}]. This split satisfies the following: n − |Cx| =
5 − 2 < 2 ∗ |Cx| (where Cx = {1, 2}). So lines 8 to 11 of the
EvalSplit function are run. As {1, 2} /∈ W , the if statement of
line 8 evaluates to false, therefore the Cy coalition of the split is
not generated (hence − is shown in the table) and the split is not
evaluated (hence N/A is shown in the table). Alternatively, for the
split [{1, 3}, {2, 4}], Cy = {2, 4} is generated because {1, 3} ∈
W but the split is not evaluated as {2, 4} /∈W .

5. EXPERIMENTAL EVALUATION
This section will provide an evaluation through the discussion of:
(a) the number of split operations to be performed for different
agent numbers; and (b) the number of coalition lookup operations
to be performed for different agent numbers.

Coalition The evaluations performed before
setting f1 and f2

f1 f2 In
W ?

{1, 2, 3, 4} f2[{1}] + f2[{2, 3, 4}] = 4.2
f2[{2}] + f2[{1, 3, 4}] = 4.4
f2[{3}] + f2[{1, 2, 4}] = 4.2
f2[{4}] + f2[{1, 2, 3}] = 4.4
f2[{1, 2}] + f2[−] = N/A
f2[{1, 3}] + f2[{2, 4}] = N/A
f2[{1, 4}] + f2[−] = N/A
v[{1, 2, 3, 4}] = 4.6

{1, 2, 3, 4} 4.6 Yes

{1, 2, 3, 5} f2[{1}] + f2[{2, 3, 5}] = 4.7
f2[{2}] + f2[{1, 3, 5}] = 4.1
f2[{3}] + f2[{1, 2, 5}] = 4.1
f2[{5}] + f2[{1, 2, 3}] = 4.1
f2[{1, 2}] + f2[−] = N/A
f2[{1, 3}] + f2[{2, 5}] = 4.3
f2[{1, 5}] + f2[−] = N/A
v[{1, 2, 3, 5}] = 4.3

{1}{2, 3, 5} 4.7 No

Table 1: This table details the splits and coalitions generated,
for coalitions {1, 2, 3, 4} and {1, 2, 3, 5} in the characteristic
function game described in Section 4.2.

An experimental analysis was used as both (a) and (b) are de-
pendent on the coalition-value distribution, which the SCG-DP al-
gorithm has no a priori knowledge on. The experiments were run
using: (i) different agent numbers from 5 to 20, where 30 runs for
each agent number were used; and (ii) differing coalition-value dis-
tributions, which include normal, uniform and NDCS, as is usual
in the coalition structure generation literature (see [12, 15, 23, 25]).
These coalition-value distributions are defined as:

• Uniform:- Each coalition’s value is determined by multiply-
ing the number of agents in the coalition by a variable q
picked from a uniform distribution between 0 and 1.0. For-
mally, v(C) = max(0, |C|×q), where: q ∈ U(a, b); a = 0;
and b = 1.0.

• Normal:- Each coalition’s value is determined by multiplying
the number of agents in the coalition by a variable q picked
from a normal distribution with mean 1 and variance 0.1.
Formally, v(C) = max(0, |C| × q), where: q ∈ N (µ, σ2);
µ = 1; and σ2 = 0.1.

• NDCS:- Each coalition’s value is determined by a variable
q picked from a normal distribution with mean of the coali-
tion’s size and variance also according to the coalition’s size.
Formally, v(C) = max(0, q), where: q ∈ N (µ, σ2); µ =
|C|; and σ2 = |C|.
• Subadditive:- A characteristic function game is subadditive

if for any two disjoint coalitions D and E, where D,E ⊂ N
and D ∩ E = ∅, then v(D ∪ E) ≤ v(D) + v(E).

• Strictly superadditive:- A characteristic function game is
strictly superadditive if for any two disjoint coalitions D and
E, where D,E ⊂ N and D ∩ E = ∅, then v(D ∪ E) >
v(D) + v(E).

In this section the SCG-DP algorithm is compared to the Optimal
Dynamic Programming (ODP) algorithm described in [14] for the
above coalition-value distributions. SCG-DP seeks to minimise the
number of split operations to find an optimal and stable coalition
structure (whatever the coalition-value distribution), while ODP
minimises the number of split operations to find the optimal coali-
tion structure (whatever the coalition-value distribution).

5.1 Number of Analysed Splits
The number of analysed splits for a coalition C is defined as the
splits of C that are considered for f2[C]. In SCG-DP, this equals

5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Number of Agents

Pe
rc

en
ta

ge
of

sp
lit

op
er

at
io

ns
pe

rf
or

m
ed

SCG-DP uniform
SCG-DP normal
SCG-DP NDCS

SCG-DP subadditive
SCG-DP strictly superadditive

ODP

Figure 1: This figure displays the percentage of split opera-
tions performed in SCG-DP (for different coalition-value dis-
tributions) and in ODP (for any coalition-value distribution),
compared to the total possible split operations of the DP algo-
rithm, which is equivalent to the Stirling number of the second
kind: S(n+ 1, 3). (95% confidence interval displayed).

the number of splits returned by the EvalSplits function. The
total number of analysed splits is the number of analysed splits for
every coalition C ⊆ N .

The total number of analysed splits results for SCG-DP for five
different coalition-value distributions are displayed in Figure 1. The
SCG-DP results are taken from the experiments discussed earlier in
this section. Additionally in Figure 1 the ODP algorithm results are
detailed, which are found in [14].

As can be seen in Figure 1, as n increases SCG-DP analyses
fewer splits than ODP for all non-strictly superadditive coalition-
value distributions. This is due to the additional pre-processing
EvalSplits function of SCG-DP. As ODP does not have a sim-
ilar pre-processing stage, a fairer comparison method would be to
compare via the number of coalition lookups, as discussed next.

5.2 Number of Coalition Lookups
A coalition lookup is defined as the generation of a coalition within
a split (and therefore the lookup of the coalition’s information).
In ODP, as the number of analysed splits does not depend on the
coalition-value distribution, then the number of coalition lookups
also does not depend on the coalition-value distribution.

For SCG-DP, coalition lookups occur in the EvalSplits func-
tion. Coalition Cx is generated at line 7 for every split. Then coali-
tion Cy is generated if Cx is in the SCG, at line 9 or line 13. It is
then assumed that the information of the looked up coalitions stays
in memory until the next time the EvalSplits function is run
(so that the coalitions do not have to be looked up again). As the
generation ofCy is dependant onCx being in the SCG, the number
of coalition lookups is variable in SCG-DP.

The total number of coalition look ups for SCG-DP for the five
different coalition-value distributions are displayed in Figure 2. Ad-
ditionally in Figure 2, the ODP results are detailed.

For SCG-DP, the subadditive experiments have the minimal num-
ber of lookups and act as a lower bound. This lower bound oc-
curs because subadditive games have the minimal number of coali-
tions in the SCG; the n singleton coalitions. As can be seen, the
number of lookups in the subadditive experiments are converging
onto 50%. This is because Cx always has to be generated in the
EvalSplits function, and Cy only has to be generated when

5 10 15 20
30

40

50

60

70

80

90

100

Number of Agents

Pe
rc

en
ta

ge
of

co
al

iti
on

lo
ok

up
s

pe
rf

or
m

ed

SCG-DP uniform
SCG-DP normal
SCG-DP NDCS

SCG-DP subadditive
SCG-DP strictly superadditive

ODP

Figure 2: This figure displays the percentage of coalition look
up operations performed in SCG-DP (for different coalition-
value distributions) and ODP (for any coalition-value distribu-
tion) compared to the total possible lookup operations of the DP
algorithm, which is equivalent to two times the Stirling number
of the second kind: 2 × S(n + 1, 3). (95% confidence interval
displayed).

|Cx| = 1 (i.e. when Cx is a singleton coalition). The number of
times Cy gets generated as n increases becomes more and more
insignificant as a percentage of the total coalition lookups.

Conversely, the strictly superadditive coalition-value distribution
acts as an upper bound for SCG-DP. This upper bound occurs be-
cause strictly superadditive games have the maximum number of
coalitions in the SCG; all the coalitions. In this case SCG-DP per-
forms the same number of lookups as the original DP algorithm
[34] (i.e. 100%). That said, for the other three more common
coalition-value distributions for coalition structure generation algo-
rithms (uniform, normal and NDCS) [12, 23], the number of coali-
tion lookups is tending towards the lower bound as n is increasing.

6. CONCLUSION AND FUTURE WORK
In this paper, the Synergy Coalition Group-based Dynamic Pro-
gramming (SCG-DP) algorithm was presented, which takes any
characteristic function game as input and finds an optimal coali-
tion structure as well as a stable payoff vector by identifying all
the coalitions in the Synergy Coalition Group (SCG). SCG-DP lo-
cates the SCG without checking the entire search space identified
by the Dynamic Programming (DP) algorithm of [34]. The optimal
dynamic programming algorithm of [14] showed that only approx-
imately 33% of the search operations of DP are required to guar-
antee that an optimal coalition structure is found. In this paper, our
experimental results show that the lower bound, to guarantee that an
optimal coalition structure and a weak least core stable payoff vec-
tor is found, converges onto 50% as the number of agents increases.
The upper bound remains at 100%, but for standard coalition-value
distributions in the literature, the results are trending towards the
lower bound as the number of agents increases.

Two possible strands of future work are as follows: (1) SCG-DP
only gives a solution upon completion, so exploring an any-time
version of SCG-DP could be beneficial; and (2) SCG-DP is a cen-
tralised algorithm, yet decentralised methods for the first stage of
coalition formation - performing the coalition value calculations
(CVC) - exist (e.g. [20, 26, 31, 32]). Building on one of the decen-
tralised CVC algorithms to create a decentralised version of SCG-
DP (in a similar manner to how [15] built on [20]), can help spread
the computational burden while also making SCG-DP more robust.

REFERENCES
[1] S. Airiau and S. Sen. On the stability of an optimal coalition

structure. In Proceedings of the 19th European Conference
on Artificial Intelligence (ECAI), pages 203–308, 2010.

[2] S. Brânzei and K. Larson. Coalitional affinity games and the
stability gap. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence (IJCAI), pages 79–84,
2009.

[3] J. C. Cesco. A convergent transfer scheme to the core of a
TU-game. Revista de Matematicas Aplicadas, 19:23–35,
1998.

[4] A. Chapman, R. A. Micillo, R. Kota, and N. R. Jennings.
Decentralised dynamic task allocation using overlapping
potential games. The Computer Journal, 53:1462–1477,
2010.

[5] K. Chatterjee, B. Dutta, and K. Sengupta. A noncooperative
theory of coalitional bargaining. Review of Economic
Studies, 60:463–477, 1993.

[6] V. Conitzer and T. W. Sandholm. Complexity of constructing
solutions in the core based on synergies among coalitions.
Artificial Intelligence, 170:607–619, 2006.

[7] V. D. Dang and N. R. Jennings. Generating coalition
structures with finite bound from the optimal guarantees. In
Proceedings of the 3th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS),
pages 564–571, 2004.

[8] S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani.
Algorithms. McGraw-Hill Higher Education, 2006.

[9] R. Evans. Coalitional bargaining with competition to make
offers. Games and Economic Behaviour, 19:211–220, 1997.

[10] D. Gillies. Some theorems on n-person games. PhD thesis,
Princeton University, 1953.

[11] A. Iwasaki, S. Ueda, and M. Yokoo. Finding the core for
coalition structure utilizing dual solution. In Proceedings of
the IEEE/WIC/ACM International Conference on Intelligent
Agent Technology (IAT), pages 114–121, 2013.

[12] K. S. Larson and T. W. Sandholm. Anytime coalition
structure generation: An average case study. Journal of
Experimental and Theoretical AI, 12:23–42, 2000.

[13] E. Lehrer. Allocation processes in cooperative games.
International Journal of Game Theory, 31:341–351, 2003.

[14] T. Michalak, T. Rahwan, E. Elkind, M. Wooldridge, and
N. R. Jennings. A hybrid exact algorithm for complete set
partitioning. Artificial Intelligence, 230:14 – 50, 2016.

[15] T. Michalak, J. Sroka, T. Rahwan, M. Wooldridge,
P. McBurney, and N. R. Jennings. A distributed algorithm for
anytime coalition structure generation. In Proceedings of the
9th International Conference on Autonomous Agents and
Multiagent System (AAMAS), pages 1007–1014, 2010.

[16] N. Ohta, V. Conitzer, R. Ichimura, Y. Sakurai, A. Iwasaki,
and M. Yokoo. Coalition structure generation utilizing
compact characteristic function representations. In
Proceedings of the 15th International Conference on
Principles and Practice of Constraint Programming (CP),
pages 623–638, 2009.

[17] A. Okada. A noncooperative coalitional bargaining game
with random proposers. Games and Economic Behaviour,
16:97–108, 1996.

[18] M. J. Osbourne and A. Rubinstein. A Course in Game
Theory. MIT Press, 1994.

[19] K. Pawlowski, K. Kurach, K. Svensson, S. D. Ramchurn,

T. Michalak, and T. Rahwan. Coalition structure generation
with the graphics processing unit. In Proceedings of the 13th
International conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 293–300, 2014.

[20] T. Rahwan and N. R. Jennings. An algorithm for distributing
coalition value calculations among cooperating agents.
Artificial Intelligence, 171:535–567, 2007.

[21] T. Rahwan and N. R. Jennings. Coalition structure
generation: Dynamic programming meets anytime
optimization. In Proceedings of the 23rd Conference on
Artificial Intelligence (AAAI), pages 156–161, 2008.

[22] T. Rahwan and N. R. Jennings. An improved dynamic
programming algorithm for coalition structure generation. In
Proceedings of the 7th International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 1417–1420, 2008.

[23] T. Rahwan, T. Michalak, and N. R. Jennings. A hybrid
algorithm for coalition structure generation. In Proceedings
of the 26th Conference on Artificial Intelligence (AAAI),
pages 1443–1449, 2012.

[24] T. Rahwan, T. Michalak, M. Wooldridge, and N. R. Jennings.
Coalition structure generation: A survey. Artificial
Intelligence, 229:139 – 174, 2015.

[25] T. Rahwan, S. D. Ramchurn, A. Giovannucci, and N. R.
Jenning. An anytime algorithm for optimal coalition
structure generation. Journal of Artificial Intelligence
Research, 34:521–567, 2009.

[26] L. Riley, K. Atkinson, P. Dunne, and T. R. Payne.
Distributing coalition value calculations to coalition
members. In Proceedings of the 29th Conference on
Artificial Intelligence (AAAI), pages 2117–2123, 2015.

[27] T. W. Sandholm, K. S. Larson, M. Andersson, O. Shehory,
and F. Tohme. Coalition structure generation with worst case
guarantees. Artificial Intelligence, 111:209–238, 1999.

[28] T. C. Service. Coalition Structure Generation In
Characteristic Function Games. PhD thesis, Vanderbilt
University, 2012.

[29] T. C. Service and J. A. Adams. Constant factor
approximation algorithms for coalition structure generation.
Autonomous Agents and Multi-Agent Systems, 23(1):1–17,
2011.

[30] L. S. Shapley and M. Shubik. Quasi-cores in a monetary
economy with non-convex preferences. Econometrica,
34:805–827, 1966.

[31] O. Shehory and S. Kraus. Methods for task allocation via
agent coalition formation. Artificial Intelligence,
101:165–200, 1998.

[32] M. Vinyals, F. Bistaffa, A. Farinelli, and A. Rogers.
Coalitional energy purchasing in the smart grid. In
Proceedings of the IEEE International Energy Conference &
Exhibition (ENERGYCON), pages 848–853, 2012.

[33] L. S.-Y. Wu. A dynamic theory for the class of games with
nonempty cores. SIAM Journal on Applied Mathematics,
32:328–338, 1977.

[34] D. Y. Yeh. A dynamic programming approach to the
complete set partitioning problem. BIT Numerical
Mathematics, 26:467–474, 1986.

