
Demonstrating the Distinctions Between
Persuasion and Deliberation Dialogues

Yanko Kirchev, Katie Atkinson, and Trevor Bench-Capon

Department of Computer Science,
University of Liverpool, UK
katie@liverpool.ac.uk

Abstract. A successful dialogue requires that the participants have a
shared understanding of what they are trying to achieve, individually
and collectively. This coordination can be achieved if both recognise the
type of dialogue in which they are engaged. We focus on two particu-
lar dialogue types, action persuasion and deliberation dialogues, which
are often conflated because they share similar speech acts. Previously,
a clear distinction was made between the two in terms of the different
pre- and post-conditions used for the speech acts within these dialogues.
This prior work gave formal specifications of the dialogue moves within
the dialogues but offered no evaluation through implementation. In this
paper, we present an implementation to demonstrate that the two dia-
logue types described in this way can be realised in software to support
focussed communication between autonomous agents. We provide the
design and implementation details of our new tool along with an evalua-
tion of the software. The tool we have produced captures the distinctive
features of each of the two dialogue types, to make plain their differences
and to validate the speech acts for use in practical scenarios.

Keywords: Argumentation, Dialogue, Deliberation, Persuasion

1 Introduction

Dialogues with computers are becoming an increasingly popular way of interact-
ing with members of the public (e.g. [5], [7] and [11]) for giving advice, soliciting
opinions, and e-participation generally. When modelling dialogues, it is impor-
tant to be aware of the type of dialogue that one is dealing with. Dialogues are
essentially cooperative acts between the participants, and it is therefore impor-
tant that they are both playing by the same rules. These rules derive from the
particular type of dialogue they are engaged in. Without a mutual understand-
ing of the type of dialogue, participants will be at cross purposes, leading to
misunderstandings and breakdown of the dialogue.

The notion of dialogue types can be found in [10], where five types were in-
troduced. We will be concerned with two of these: persuasion and deliberation1.

1 Further in this paper, we will focus on persuasion and deliberation about actions.
Although [10] might seem to suggest that persuasion concerns only propositions and



These two dialogues types are especially important in e-participation [2]. Per-
suasion is required to explain and defend policies, and deliberation is required
in order to undertake public consultations. In [10], Walton and Krabbe charac-
terise their dialogue types according to three aspects: the initial situation, the
collective goal, and the individual goals of the participants.

– Initial Situation: For persuasion, the initial situation is a disagreement: the
agents do not agree as to the best option. In deliberation, it is one of uncer-
tainty: while the individuals may (or may not) have their own opinions about
the best option, they do not know which option is collectively acceptable.

– Collective Goal : For both dialogue types, the collective goal is to come to
an agreement as to what should be done, but there is a difference in what
can be agreed. In persuasion, this is limited to the option proposed by the
persuader being accepted by the persuadee; in deliberation, agreement can
be to any option that is acceptable to the group as a whole. This is done
by producing a rule expressing their collective preference, which can then be
used to identify the most acceptable option for the group.

– Individual Goals: In persuasion, the individual goals are different: the per-
suader wishes to convince the other, whereas the persuadee, if cooperative,
wishes to explore the possibility that its currently preferred option is not in
fact best for it in the light of information known to the persuader. If unco-
operative, the persuadee may wish to defend its own option or even convert
the persuader. In a deliberation, the individual goals are the same for all
participants: all participants wish to determine which option is the best for
them collectively.

This characterisation does highlight some important differences between the
dialogues. To an observer who has no access to the inner states of the partici-
pants, however, it may be difficult to tell which sort of dialogue is taking place.
This is because the speech acts used are the same in both dialogue types. Al-
though this is so, the force of the speech acts differs: the dialogue types determine
how the acts are to be interpreted. The pragmatic effects of the various utter-
ances differ: the conversational implicatures [6] of the utterances differ according
to the dialogue type.

This aspect was explored in [1], where the various speech acts were described
in terms of pre- and post-conditions. Each speech act has some of these common
to both dialogue types, representing the semantic aspects of the act, but also ad-
ditional different conditions for deliberation and persuasion which represent the
pragmatic aspects of the act in the specific context. These pre-conditions show
what should hold for the utterance to be legally made in the given dialogue type
and what should be understood from the utterance in the different dialogues.

Although [1] gave full definitions of the pre- and post-conditions for the
speech acts of persuasion and deliberation dialogues, there was no implementa-
tion, and hence no practical evaluation. Therefore, our aims were:

not actions, persuading people to do something is such an everyday occurrence that
we may regard persuasion about action as a bona fide dialogue type.



– To implement and so evaluate the sets of speech acts proposed in [1] to
demonstrate their adequacy or, if necessary, to refine them to provide an
adequate set of speech acts;

– To provide a tool which will explicitly show the differences between the
dialogue classes, allowing users to compare them and explore the different
effects of the various speech acts.

The rest of the paper is structured as follows. In section 2, we discuss the
various speech acts. The evaluation in fact showed that two speech acts addi-
tional to those given in [1] are required. Section 3 describes the design of the
tool, and section 4 the realisation of this design. Section 5 describes how the tool
can be used to input a situation and generate persuasion and deliberation dia-
logues, illustrated with the example from [1]. This example involves a scenario,
expressed as a logic program, in which three agents are choosing a restaurant
to dine out in and each agent has its own individual preferences. Our example
dialogues show the differences in the commitment stores that result from the
speech acts being deployed within the two different dialogue contexts. Section 6
shows the methods used to evaluate the tool, and section 7 offers some discussion
and concluding remarks.

2 Speech Acts

The protocols for the two dialogue types are distinguished by specifying different
pre- and post-conditions for the speech acts depending upon which of the two
dialogues they are used within. Each agent is defined to have a ‘commitment
store’ [10]: a set of statements to which they become publicly committed during
the course of a dialogue. The pre-conditions determine the pre-requisites that
need to be satisfied in terms of available knowledge and prior commitments
of dialogue participants in order for the speech acts to be used legally. The
post-conditions determine the updates on the agents’ commitment stores that
occur immediately after the enactment of the move. Our implementation initially
follows [1] by using the speech acts set out in Prakken’s dialogue system [9]. These
speech acts are:

– Claim: used to assert a fact;
– Why : used to ask for a justification of a claim;
– Since: used to provide a justification for a claim;
– Concede: used to accept a claim;
– Retract : used to withdraw a claim;
– Question: used to seek a piece of information.

Prakken also sets out a protocol in the form of a set of rules by which a
dialogue proceeds. The protocol specifies the speech acts permitted at any given
point during the dialogue, the effects of utterances on the participants’ commit-
ments, the outcome of the dialogue, the turn-taking function, and the termina-
tion criteria. Our tool demonstrates the changes in the commitment stores of the
agents as the dialogues proceed towards termination. The above set of speech
acts is set out formally in [1].



2.1 Refinement of Speech Acts

Designing and implementing software to execute the persuasion and deliberation
dialogues required the speech acts to be operationalised. Through designing the
software, it became apparent that refinements were needed to two of the original
speech acts from [1]. The claim speech act, used by opponents in the persua-
sion dialogue and all agents in the deliberation dialogue, turned out to be too
restrictive; one of its pre-conditions allows for assertions to be made only about
options that the agents find acceptable, thus rendering the agents incapable of
making objections towards options that they do not find acceptable or of making
claims about options they do not find acceptable.

A similar observation can be made about the since move in deliberation: some
of its pre- and post-conditions are implied by, or clash with, other conditions.
Moreover, deliberation changes the speech act’s purpose to move previously pro-
posed criteria into the body of the rule expressing the agreed preference, mak-
ing agents in deliberation incapable of simply justifying previously made claims
without changing the preference rule, which is the role of the since move in the
other types of dialogues.

Given the above observations revealed through the implementation exercise,
both the claim and since speech acts require modifications in order for the
aforementioned difficulties to be overcome. The claim speech act has thus been
modified by replacing its problematic pre-condition with a preferable function,
which consequently allows opponents in persuasion and all agents in delibera-
tion to make assertions about their initial preferences, even in the cases where
they do not find them completely acceptable. Furthermore, a new speech act
is introduced, counterclaim, which allows all types of agents to make objections
against options that they do not find acceptable. Finally, the since speech act for
deliberation has been split into two distinct acts: the general since move remains
unchanged and is used to justify a previously made claim, but a new concede-
since speech act is introduced that is only used to move previously proposed
criteria into the body of the agreed preference rule.

The refinements made to the speech acts, as described in this section, were
found to be required to enable the sample dialogues given in [1] to be automated
in an implementation. In the next section, we provide the design for the programs
to realise the dialogues in software.

3 Design

The tool allows for the simultaneous generation of customisable persuasion and
deliberation dialogues, which are set in the same restaurant selection scenario
that was introduced in [1], where three agents try to decide on a place in which
to dine. Consequently, the tool is called Diners’ Discourse, and this section
describes the object-oriented components used in the protocols.

The class diagram in Figure 1 illustrates the entities that the tool encapsu-
lates and also provides insight on the relationships between the various objects
that are created during a single lifecycle.



Fig. 1. Class diagram



3.1 Agent Class

The Agent class represents a participant in a dialogue, and every agent has the
following attributes: a name; an initialPreference, which is a restaurant that the
agent introduces to the dialogue as their preferred option regardless of whether
they find it acceptable; a knowledgeBase, which is a static collection of Prolog
facts and rules that specify the available knowledge of the agent about the world;
and a commitmentStore, which is an initially empty set of statements that is
populated with the statements to which the agent becomes committed in the
course of a dialogue.

Alongside that, each Agent instance also includes a doesPrefer method, which
corresponds to the preferable function discussed in the previous section, and
which takes a restaurant name as an argument and returns true only if it matches
the agent’s initial preference or if the agent finds it acceptable.

3.2 Dialogue Class

The Dialogue class is abstract and represents a generic dialogue. Every dialogue
has three participants stored in the agents attribute, and its conversational script
is continuously expanded in the text attribute as the participants perform various
moves.

The class also implements methods that correspond to the general specifica-
tions of the speech acts that are common to both persuasion and deliberation. In
addition to that, it records the evolution of the commitment stores of the partic-
ipating agents throughout the course of the dialogue by utilising the saveCom-
mitmentStores method and the commitmentStoreHistory attribute. Moreover,
the abstract isOver method returns a Boolean value that determines whether
the dialogue is in an end state.

3.3 PersuasionDialogue Class

The PersuasionDialogue class extends the abstract Dialogue class and represents
a persuasion dialogue. As such, it features an additional proponent attribute,
which points to one of the objects in agents and which indicates the designated
persuader of the dialogue.

The isOver method of the parent class receives a dialogue instance and re-
turns true only if every agent is committed to the statement that the initial
preference of the proponent is acceptable. Moreover, the claim, counterclaim,
concede, and question methods are overridden to feature the additional pre- and
post-conditions required by persuasion.

3.4 DeliberationDialogue Class

The DeliberationDialogue class extends the abstract Dialogue class and repre-
sents a deliberation dialogue. As such, it features an additional agreedPrefer-
enceRule attribute, which represents the collective preference rule of what con-
stitutes an acceptable restaurant that the agents construct during the course of



the dialogue, and its evolution is recorded in the agreedPreferenceRuleHistory
attribute.

The class also overrides the claim, counterclaim, and concede methods to
feature the additional pre- and post-conditions required by deliberation and
also implements a concedeSince method, which corresponds to the deliberation-
exclusive concede-since speech act. Moreover, a method addTermToAgreedPref-
erenceRule is utilised by the concede and concedeSince methods to add the
locution used with them to the body of the agreed preference rule.

DeliberationDialogue also implements the isOver method of its parent class,
and, in this case, it returns true only if all agents agree on the same option being
acceptable and if the acceptability of the agreed option can be demonstrated from
the collective commitment store of the participating agents in conjunction with
the agreed preference rule, minus any private preference commitments.

3.5 Simulation Class

Simulation is a concept class that represents the lifecycle of one persuasion and
one deliberation dialogue from their initialisation, through their execution, until
they reach their final states. It contains a generalKnowledgeBase attribute, which
is a refined template of the collective facts and rules of the participating agents
from the model dialogues in [1]. The placeholder values in it are populated with
the data from the restaurantNames, restaurantCuisine, and beverage attributes,
and the populated general knowledge base along with the agentNames attribute
is then used by the createPersuasionDialogue and createDeliberationDialogue
methods to create three Agent objects each and to distribute the facts and rules
amongst them.

Thereafter, PersuasionDialogue and DeliberationDialogue instances are cre-
ated and predefined sequences of speech acts are performed on them. They
are assigned to the appropriate persuasionDialogue and deliberationDialogue at-
tributes after the isOver methods check that they have reached an end state.

In the next section, we cover the implementation details of the protocols and
also present a web application that is provided as a user interface for the tool.

4 Realisation

The protocols are written in JavaScript and run on the Node.js environment
with the help of the Tau Prolog module, which provides native knowledge rep-
resentation without requiring Prolog itself. A graphical web interface allows for
a user-friendly interaction with the tool and is constructed using the React.js
framework together with Carbon Design’s React components and supporting
technologies such as HTML5 and CSS3.



4.1 Project Architecture

The project’s software architecture is shown in Figure 2 and can also be further
examined on its GitHub repository2. As can be seen, the front-end is written as
modular components, each of which has a distinct purpose within the system
and is contained within the src folder, whereas the protocols subfolder contains
the back-end files, each of which corresponds to a class in Figure 1. Moreover,
the protocols are supported by unit tests under test, which verify the soundness
of the implementation, and additional helper files under utils.

Fig. 2. Project architecture

2 See: github.com/yankirchev/diners-discourse



4.2 Interface

The web interface of Diners’ Discourse features a single, dynamic page, the
view of which changes based on the selected tab of the content switcher in
its top centre. The three available views are Home, which contains a welcome
message and a demo dialogue; Background, which contains the purpose of, and
the technologies used by, the application along with a glossary; and Generate,
where the persuasion and deliberation dialogues are customised, generated, and
presented to the users.

While this subsection focuses on the Generate tab, as it contains the main
functionality of the application, the tool is available to be further examined in
the public domain at the URL given in footnote 2.

Fig. 3. First part of the input form



The Generate tab presents the users with an input form, as can be seen in
Figures 3 and 4, which collects the required data for the customisation of the
dialogues. The users are allowed to choose the names of the participating agents,
the names and the cuisines of the restaurants, and the beverage that is preferred
by the agents. The choices in regard to the names are entirely up to the users.
However, for the cuisines of the restaurants and the beverage preferred by the
agents, the choices are restricted. This restriction is so that the categories make
sense in terms of the agent preferences, which are taken from [1].

The form also features a Generate button at the very bottom, which, when
clicked, prompts Diners’ Discourse to create a Simulation instance by populating
the agentNames, restaurantNames, restaurantCuisines, and beverage attributes
using the user input.

The next section showcases a persuasion dialogue and a deliberation dia-
logue generated by inputting Jane, Harry, and George as the agents’ names; La
Zingara, Thai Palace, and Nosh as the restaurants’ names; Italian, Thai, and
American as the restaurants’ cuisines; and wine as the beverage preferred by
the agents, as in the main example of [1].

5 Description of the Tool

The users are presented with the custom persuasion and deliberation dialogues
side by side, as can be seen in Figure 5, which facilitates the comparison between
the two types and therefore assists the users in identifying the distinctive features
of persuasion and deliberation.

The dialogues are revealed speech act by speech act with the use of the
Next buttons, which allow the users to gradually step through the dialogues
without getting overwhelmed with too much information at once. Nonetheless,
the full extent of the dialogues can be shown at any point by clicking the Reveal
all buttons. Naturally, the Back buttons hide the last shown speech acts and
the Reset button erases the current Simulation instance and starts over the
customisation process again.

By clicking on any of the revealed speech acts, the users can view the state of
the participating agents’ commitment stores at that point in the dialogue. More-
over, they can have multiple speech acts of the same dialogue open, which assists
them in understanding how the commitments evolve throughout the dialogues
and how the use of specific speech acts affects commitments. Furthermore, by
having speech acts of the two types expanded side by side, the users can gain
insight into how moves such as claim and question have different effects on the
commitment stores for persuasion and deliberation.

When a speech act of the deliberation dialogue is expanded, the body of the
agreed preference rule is also shown alongside the state of the agents’ commit-
ments. This lets the users observe how the rule is constructed throughout the
dialogue and how speech acts such as concede and concede-since determine the
joint rule’s final structure.



Fig. 4. Second part of the input form

6 Testing and Evaluation

The dialogues in Figure 5 closely adhere to those in [1] from which the protocols’
formal definitions have been derived, indicating that the tool implements the
dialogues as conceived in [1].

In order to demonstrate the close resemblance, we compare the structure of
the two dialogues and the use of particular speech acts instead of their scripts,
as the protocols do not use a natural language engine to produce the text of
the dialogues. Ultimately, it is not essential that the dialogues match word for
word, but rather that the same arguments by the same agents appear in both
dialogues in the same context and that they reach the same conclusions.

While the resulting implemented dialogues feature some additional speech
acts, these additions complement the general conduct of the dialogues and sup-
port the agents in arriving at their goals, which in turn make the generated
persuasion and deliberation dialogues more complete versions of the model ones.



Fig. 5. Dialogues comparison

Aside from sounding less natural because of the computer-generated phrases,
the produced dialogues are largely analogous to the model ones: in both sets of
dialogues, the same agents have the same goals and execute the same moves
towards achieving them. Moreover, the outcomes of the generated dialogues are
the same as those of the model ones.

Ultimately, this corroborates the implemented protocols’ integrity and effec-
tive application in a practical setting, meeting our aims for the work.

6.1 Unit Testing

In order to verify the correctness of the protocols’ implementation, it is neces-
sary to demonstrate that it exhibits the behaviour that the specifications of the
speech acts describe for persuasion and deliberation. More precisely, we need
to demonstrate that the pre-conditions of each speech act are adhered to when
used in any situation and that the post-conditions occur thereafter as well.

Consequently, every pre-condition is implemented so that it throws an error
with an identifying description when it is not satisfied, and a positive and a
negative test is written for each. The positive test ensures that the pre-condition



does not throw an error when the speech act is used legally, whereas the negative
test ensures that the pre-condition throws an error when the speech act is used
illegally. The tests fail only if the speech acts exhibit behaviour that deviates
from the expected results.

The post-conditions only have a positive test each: although they are called
conditions, their function is to update the commitment stores of the agents.
Therefore, their tests ensure that the commitments are amended as required
given that the pre-conditions are satisfied. The tests fail only if the state of the
commitment stores deviates from the expected results.

Thereafter, custom simulations of persuasion and deliberation dialogues are
carried out separately for each pre- and post-condition, which are similar in
function to the Simulation class described in subsection 3.5. A total of 125 unit
tests were written using the Jest framework for JavaScript and all were passed
successfully. The unit tests take just over a second to execute, with each of them
averaging ∼11.13 milliseconds to run. This indicates the efficiency of the imple-
mented protocols, which is an important factor in multi-agent communications
where parties are expected to react quickly to an evolving situation.

The exhaustive number of unit tests along with their affirmative results cor-
roborate the notion that any dialogues produced by the protocols are valid with
respect to our expectations about persuasion and deliberation. Since each pre-
and post-condition of every speech act is tested individually, the tests also ensure
that the results of the conditions are independent of each other. Furthermore,
the positive tests demonstrate that the legal use of the speech acts has the in-
tended effect on the dialogue, while the negative tests show that no deviation
from what is required of the speech acts is allowed.

7 Discussion and Concluding Remarks

We have described a tool that has been implemented to realise automated com-
munication between several agents within action persuasion and deliberation
dialogues. Our tool explicitly shows to users the differences between the dia-
logue types and enables exploration of the different effects of the various speech
acts available. Whilst the software relied on the formal specification given in
[1], the implementation exercise revealed refinements required to the underlying
speech act specifications to enable accurate, realistic dialogues to be produced.
The evaluation has demonstrated that the implementation exercise has been
successful and we are encouraged that the distinctive features manifest in the
two types of dialogue can be captured in tools for automated communication.

In implementing the two dialogue types, we have extended the speech acts
based on [9] that were used in [1] to include two additional acts tailored for
these dialogue types. We have shown that these speech acts enable dialogues of
both types to be conducted. They can therefore form the basis of further im-
plementations designed to address particular e-participation tasks. These tasks
include the presentation and justification of policies, which require the user to
be persuaded, and deliberations such as consultation about the suitability of a



range of options, intended to gauge which options have public support, and to
enable progress towards a consensus about the preferred option. Thus, although
the particular tool described here is intended primarily to teach the differences
between to two types of dialogue, the implementation can form the basis for the
realisation of a range of e-participation applications.

Future work will focus on two aspects. On a practical level, we will adapt
the tool so that the speech acts can be used to implement some specific tasks,
such as the e-participation tasks mentioned above. Of course, any fielded appli-
cation of such dialogue agents would need careful consideration of the ethical
issues, particularly as “fake news” and campaigns of disinformation become more
prevalent. Consideration of ethical issues associated with conversational agents
are discussed in [8]. At a more theoretical level, we will investigate how the
speech acts of the dialogue types discussed here relate to other dialogue types,
such as inquiry [4] and examination [3].

References

1. Atkinson, K., Bench-Capon, T., Walton, D.: Distinctive features of persuasion and
deliberation dialogues. Argument & Computation 4(2), 105–127 (2013)

2. Bench-Capon, T., Atkinson, K., Wyner, A.: Using argumentation to struc-
ture e-participation in policy making. In: Transactions on Large-Scale Data-and
Knowledge-Centered Systems XVIII, pp. 1–29. Springer (2015)

3. Bench-Capon, T., Doutre, S., Dunne, P.E.: Asking the right question: forcing com-
mitment in examination dialogues. In: Besnard, P., Doutre, S., Hunter, A. (eds.)
Proceedings of COMMA 2008. vol. 172, pp. 49–60. IOS Press (2008)

4. Black, E., Hunter, A.: An inquiry dialogue system. Autonomous Agents and Multi-
Agent Systems 19(2), 173–209 (2009). https://doi.org/10.1007/s10458-008-9074-5

5. Chalaguine, L.A., Hamilton, F.L., Hunter, A., Potts, H.W.: Argument harvesting
using chatbots. In: Proceedings of COMMA 2018. pp. 149–160. IOS Press (2018)

6. Grice, H.P.: Logic and conversation. In: Cole, P., Morgan, J.L. (eds.) Syntax and
Semantics, Vol. 3, pp. 41–58. Academic Press: New York (1975)

7. Morgan, J., Paiement, A., Seisenberger, M., Williams, J., Wyner, A.: A chatbot
framework for the children’s legal centre. In: Proceedings of JURIX 2018. pp. 205–
209 (2018)

8. Olszewska, J.I., Houghtaling, M., Gonçalves, P., Haidegger, T., Fabiano, N., Car-
bonera, J.L., Fiorini, S.R., Prestes, E.: Robotic ontological standard development
life cycle. In: IEEE International Conference on Robotics and Automation 2018:
workshop on Elderly Care Robotics: Technology and Ethics (2018)

9. Prakken, H.: Formal systems for persuasion dialogue. The Knowledge Engineering
Review 21(2), 163–188 (2006)

10. Walton, D., Krabbe, E.: Commitment in dialogue: Basic concepts of interpersonal
reasoning. SUNY Press (1995)

11. Wardeh, M., Wyner, A., Atkinson, K., Bench-Capon, T.: Argumentation based
tools for policy-making. In: Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Law. pp. 249–250. ACM (2013)


