Foundations of Computer Science Comp 109

University of Liverpool

Boris Konev

konev@liverpool.ac.uk

http://www.csc.liv.ac.uk/~konev/COMP109

Part 3. Relations

Comp109 Foundations of Computer Science

Reading

Discrete Mathematics and Its Applications K. Rosen, Chapter 9.

Contents

- The Cartesian product
- Definition and examples
- Representation of binary relations by directed graphs
- Representation of binary relations by matrices
- Properties of binary relations
- Transitive closure
- Equivalence relations and partitions
- Partial orders and total orders.
- Unary relations

Motivation

- Intuitively, there is a "relation" between two things if there is some connection between them.
 E.g.
 - 'friend of'
 - *a* < *b*
 - \blacksquare m divides n
- Relations are used in crucial ways in many branches of mathematics
 - Equivalence
 - Ordering
- Computer Science

Databases and relations

A database table \approx relation

TABLE 1 Students.			
Student_name	ID_number	Major	GPA
Ackermann	231455	Computer Science	3.88
Adams	888323	Physics	3.45
Chou	102147	Computer Science	3.49
Goodfriend	453876	Mathematics	3.45
Rao	678543	Mathematics	3.90
Stevens	786576	Psychology	2.99

Ordered pairs

Definition The Cartesian product $A \times B$ of sets A and B is the set consisting of all pairs (a,b) with $a \in A$ and $b \in B$, i.e.,

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}.$$

Note that (a, b) = (c, d) if and only if a = c and b = d.

Note

 \blacksquare Let $A=\{1,2\}$ and $B=\{a,b,c\}$. Then

$$A\times B=\{(1,a),(2,a),(1,b),(2,b),(1,c),(2,c)\}.$$

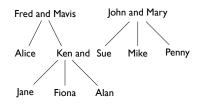
 $\blacksquare B \times A =$

Relations

Definition A binary relation between two sets A and B is a subset R of the Cartesian product $A \times B$.

If A = B, then R is called a binary relation on A.

Example: Family tree



Write down

 \blacksquare $R = \{(x,y) \mid x \text{ is a grandfather of } y \};$

lacksquare $S = \{(x,y) \mid x \text{ is a sister of } y \}.$

Write down the ordered pairs belonging to the following binary relations between $A=\{1,3,5,7\}$ and $B=\{2,4,6\}$:

$$U = \{(x, y) \in A \times B \mid x + y = 9\};$$

$$V = \{(x, y) \in A \times B \mid x < y\}.$$

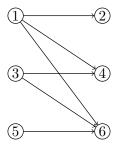
Let $A=\{1,2,3,4,5,6\}$. Write down the ordered pairs belonging to

$$R = \{(x, y) \in A \times A \mid x \text{ is a divisor of } y \}.$$

Representation of binary relations: directed graphs

- Let A and B be two finite sets and R a binary relation between these two sets (i.e., $R \subseteq A \times B$).
- We represent the elements of these two sets as vertices of a graph.
- For each $(a,b) \in R$, we draw an arrow linking the related elements.
- This is called the directed graph (or digraph) of R.

Consider the relation V between $A = \{1, 3, 5, 7\}$ and $B = \{2, 4, 6\}$ such that $V = \{(x, y) \in A \times B \mid x < y\}$.



7

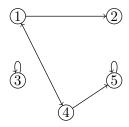
Figure: digraph of V

Digraphs of binary relations on a single set

A binary relation between a set A and itself is called "a binary relation on A".

To represent such a relation, we use a directed graph in which a single set of vertices represents the elements of $\cal A$ and arrows link the related elements.

Consider the relation $V\subseteq A\times A$ where $A=\{1,2,3,4,5\}$ and $V=\{(1,2),(3,3),(5,5),(1,4),(4,1),(4,5)\}.$



Functions as relations

- lacksquare Recall that a function f from a set A to a set B assigns exactly one element of B to each element of A.
 - Gives rise to the relation $R_f = \{(a,b) \in A \times B \mid b = f(a)\}$
- If a relation $S \subseteq A \times B$ is such that for every $a \in A$ there exists at most one $b \in B$ with $(a, b) \in S$, relation S is functional.
- (Sometimes in the literature, functions are introduced through functional relations.)

Inverse Relation

Definition Given a relation $R \subseteq A \times B$, we define the *inverse relation* $R^{-1} \subseteq B \times A$ by

$$R^{-1} = \{ (b, a) \mid (a, b) \in R \}.$$

Example: The inverse of the relation is a parent of on the set of people is the relation is a child of.

Composition of Relations

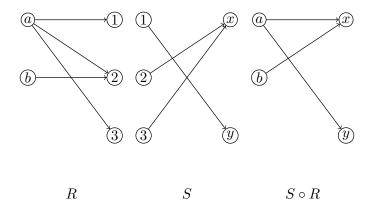
Definition Let $R \subseteq A \times B$ and $S \subseteq B \times C$. The (functional) composition of R and S, denoted by $S \circ R$, is the binary relation between A and C given by

$$S \circ R = \{(a,c) \mid \text{ exists } b \in B \text{ such that } aRb \text{ and } bSc\}.$$

Example: If R is the relation is a sister of and S is the relation is a parent of, then

- $S \circ R$ is the relation is an aunt of;
- $S \circ S$ is the relation is a grandparent of.

Digraph representation of compositions



Computer friendly representation of binary relations: matrices

- Another way of representing a binary relation between finite sets uses an array.
- Let $A = \{a_1, \dots, a_n\}$, $B = \{b_1, \dots, b_m\}$ and $R \subseteq A \times B$.
- We represent R by an array M of n rows and m columns. Such an array is called a n by m matrix.
- The entry in row i and column j of this matrix is given by M(i,j) where

$$M(i,j) = \begin{cases} T & \text{if} \quad (a_i,b_j) \in R \\ F & \text{if} \quad (a_i,b_j) \notin R \end{cases}$$

Example I

Let
$$A = \{1, 3, 5, 7\}$$
, $B = \{2, 4, 6\}$, and

$$U = \{(x,y) \in A \times B \mid x+y = 9\}$$

Assume an enumeration $a_1=1$, $a_2=3$, $a_3=5$, $a_4=7$ and $b_1=2$, $b_2=4$, $b_3=6$. Then M represents U, where

$$M = \left[\begin{array}{ccc} F & F & F \\ F & F & T \\ F & T & F \\ T & F & F \end{array} \right]$$

Let $A=\{a,b,c,d\}$ and suppose that $R\subseteq A\times A$ has the following matrix representation:

$$M = \left[\begin{array}{cccc} F & T & T & F \\ F & F & T & T \\ F & T & F & F \\ T & T & F & T \end{array} \right]$$

List the ordered pairs belonging to R.

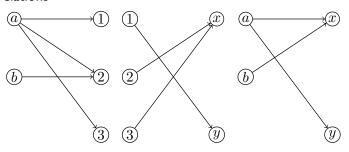
The binary relation R on $A=\{1,2,3,4\}$ has the following digraph representation.

- \blacksquare The ordered pairs R=
- The matrix

In words:

Matrices and composition

Now let's go back and see how this works for matrices representing relations



$$R: \left[egin{array}{ccc} T & T & T \ F & T & F \end{array}
ight] \quad S: \left[egin{array}{ccc} F & T \ T & F \ T & F \end{array}
ight]$$

$$S \circ R : \left| egin{array}{cc} T & T \ T & F \end{array} \right|$$

The formal description

Given two matrices with entries "T" and "F" representing the relations we can form the matrix representing the composition. This is called the *logical* (*Boolean*) *matrix product*.

Let
$$A = \{a_1, \dots, a_n\}$$
, $B = \{b_1, \dots, b_m\}$ and $C = \{c_1, \dots, c_p\}$.

The logical matrix M representing R is given by:

$$M(i,j) = \begin{cases} T & \text{if} \quad (a_i, b_j) \in R \\ F & \text{if} \quad (a_i, b_j) \notin R \end{cases}$$

The logical matrix N representing S is given by

$$N(i,j) = \begin{cases} T & \text{if} \quad (b_i, c_j) \in S \\ F & \text{if} \quad (b_i, c_j) \notin S \end{cases}$$

Matrix representation of compositions

Then the entries P(i,j) of the logical matrix P representing $S\circ R$ are given by

- $P(i,j) = T \text{ if there exists } l \text{ with } 1 \leq l \leq m \text{ such that } \\ M(i,l) = T \text{ and } N(l,j) = T.$
- ightharpoonup P(i,j) = F, otherwise.

We write P = MN.

The example from before

Let R be the relation between $A=\{a,b\}$ and $B=\{1,2,3\}$ represented by the matrix

$$M = \left[\begin{array}{ccc} T & T & T \\ F & T & F \end{array} \right]$$

Similarly, let S be the relation between B and $C=\{x,y\}$ represented by the matrix

$$N = \left[\begin{array}{cc} F & T \\ T & F \\ T & F \end{array} \right]$$

Then the matrix P=MN representing $S\circ R$ is

$$P = \left[\begin{array}{cc} T & T \\ T & F \end{array} \right]$$

Infix notation for binary relations

If R is a binary relation then we write xRy whenever $(x,y) \in R$. The predicate xRy is read as x is R-related to y.

Properties of binary relations (I)

A binary relation R on a set A is

• reflexive when xRx for all $x \in A$.

$$\forall x \ A(x) \Longrightarrow xRx$$

symmetric when xRy implies yRx for all $x, y \in A$;

$$\forall x, y \ xRy \Longrightarrow yRx$$

Properties of binary relations (2)

A binary relation R on a set A is

lacksquare antisymmetric when xRy and yRx imply x=y for all $x,y\in A$;

$$\forall x, y \ xRy \ \text{and} \ yRx \Longrightarrow y = x$$

• transitive when xRy and yRz imply xRz for all $x,y,z\in A$.

$$\forall x, y, z \ xRy \ \text{and} \ yRz \Longrightarrow xRz$$

- \blacksquare reflexive xRx
- lacktriangleq symmetric $xRy \implies yRx$
- **a** antisymmetric xRy, $yRx \implies x = y$
- transitive xRy, $yRz \implies xRz$

Let
$$A = \{1, 2, 3\}$$
.
 $R_1 = \{(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)\}$
 $R_2 = \{(2, 2), (2, 3), (3, 2), (3, 3)\}$
 $R_3 = \{(1, 1), (2, 2), (3, 3), (1, 3)\}$
 $R_4 = \{(1, 3), (3, 2), (2, 3)\}$

In the directed graph representation, R is

- reflexive if there is always an arrow from every vertex to itself;
- symmetric if whenever there is an arrow from x to y there is also an arrow from y to x;
- **a** antisymmetric if whenever there is an arrow from x to y and $x \neq y$, then there is no arrow from y to x;
- transitive if whenever there is an arrow from x to y and from y to z there is also an arrow from x to z.

Which of the following define a relation that is reflexive, symmetric, antisymmetric or transitive?

- x divides y on the set \mathbb{Z}^+ of positive integers;
- $x \neq y$ on the set \mathbb{Z} of integers;
- x has the same age as y on the set of people.

Transitive Closure

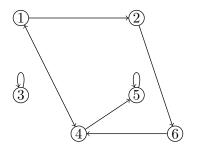
Given a binary relation R on a set A, the *transitive closure* R^* of R is the (uniquely determined) relation on A with the following properties:

- R* is transitive;
- $R \subseteq R^*$;
- If S is a transitive relation on A and $R \subseteq S$, then $R^* \subseteq S$.

Let $A = \{1, 2, 3\}$. Find the transitive closure of

$$R = \{(1,1), (1,2), (1,3), (2,3), (3,1)\}.$$

Finding the transitive closure is easier with the digraph representation



Reachability relation

Transitivity and Composition

A relation S is transitive if and only if $S \circ S \subseteq S$.

This is because

$$S \circ S = \{(a, c) \mid \text{ exists } b \text{ such that } aSb \text{ and } bSc\}.$$

Let S be a relation. Set $S^1=S$, $S^2=S\circ S$, $S^3=S\circ S\circ S$, and so on.

Theorem Denote by S^* the transitive closure of S. Then xS^*y if and only if there exists n>0 such that xS^ny .

Transitive Closure in Matrix Form

The relation R on the set $A=\{1,2,3,4,5\}$ is represented by the matrix

Determine the matrix $R \circ R$ and hence explain why R is not transitive.

$$\begin{bmatrix} T & F & F & T & F \\ F & T & F & F & T \\ F & F & T & F & F \\ T & F & T & F & F \\ F & T & F & T & F \end{bmatrix} \begin{bmatrix} T & F & F & T & F \\ F & T & F & F & T \\ F & F & T & F & F \\ T & F & T & F & F \end{bmatrix} = \begin{bmatrix} T & F & T & T & F \\ F & T & F & T & T \\ F & F & T & F & F \\ T & F & T & F & T \end{bmatrix}$$

$$R \circ R = \{(a,c) \mid \text{ exists } b \in A \text{ such that } aRb \text{ and } bRc\}.$$

Note (in red) that there are pairs (a,c) that are in $R \circ R$ but not in R. Hence, R is not transitive.

Detour: Warshall's Algorithm

```
def warshall(a):
    assert (len(row) == len(a) for row in a)
    n = len(a)
    for k in range(n):
        for i in range(n):
            for j in range(n):
                a[i][j] = a[i][j] or
                     (a[i][k] and a[k][j])
    return a
print warshall ([[1,0,0,1,0],
                 [0,1,0,0,1],
                 [0,0,1,0,0],
                 [1,0,1,0,0]
                 [0,1,0,1,0]]
```

Important relations: Equivalence Relations

Definition A binary relation R on a set A is called an equivalence relation if it is reflexive, transitive, and symmetric.

Examples:

- the relation R on the non-zero integers given by xRy if xy > 0;
- the relation has the same age on the set of people.

Definition The equivalence class E_x of any $x \in A$ is defined by

$$E_x = \{ y \mid yRx \}.$$

Example

Define a relation R on the set $\mathbb R$ of real numbers by setting xRy if and only if x-y is an integer. Prove that R is an equivalence relation. Moreover,

- $E_0 = \mathbb{Z}$ is the equivalence class of 0;
- $E_{\frac{1}{2}}=\{\dots,-2\tfrac{1}{2}-1\tfrac{1}{2},-\tfrac{1}{2},\tfrac{1}{2},1\tfrac{1}{2},2\tfrac{1}{2},\dots\} \text{ is the equivalence class of } \tfrac{1}{2}.$

Functions and equivalence relations

Let $f: A \to B$ be a function. Define a relation R on A by

$$a_1Ra_2 \Leftrightarrow f(a_1) = f(a_2).$$

Then R is an equivalence relation on A. The equivalence class E_a of $a \in A$ is given by

$$E_a = \{ a' \in A \mid f(a') = f(a) \}.$$

Example: A is a set of cars, B is the set of real numbers, and f assigns to any car in A its length. Then a_1Ra_2 if and only if a_1 and a_2 are of the same length.

Partition of a set

A partition of a set A is a collection of non-empty subsets A_1, \ldots, A_n of A satisfying:

- $A = A_1 \cup A_2 \cup \cdots \cup A_n;$
- $\blacksquare A_i \cap A_j = \emptyset \text{ for } i \neq j.$

The A_i are called the blocks of the partition.

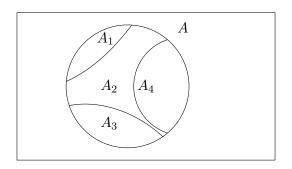


Figure: Partition of A

Connecting partitions and equivalence relations

Theorem Let R be an equivalence relation on a non-empty set A. Then the equivalence classes $\{E_x \mid x \in A\}$ form a partition of A.

Proof (Optional)

The proof is in four parts:

- (I) We show that the equivalence classes $E_x = \{y \mid yRx\}, x \in A$, are non-empty subsets of A: by definition, each E_x is a subset of A. Since R is reflexive, xRx. Therefore $x \in E_x$ and so E_x is non-empty.
- (2) We show that A is the union of the equivalence classes $E_x, x \in A$: We know that $E_x \subseteq A$, for all $E_x, x \in A$. Therefore the union of the equivalence classes is a subset of A. Conversely, suppose $x \in A$. Then $x \in E_x$. So, A is a subset of the union of the equivalence classes.

(Optional) Proof (continued)

The purpose of the last two parts is to show that distinct equivalence classes are disjoint, satisfying (ii) in the definition of partition.

- (3) We show that if xRy then $E_x=E_y$: Suppose that xRy and let $z\in E_x$. Then, zRx and xRy. Since R is a transitive relation, zRy. Therefore, $z\in E_y$. We have shown that $E_x\subseteq E_y$. An analogous argument shows that $E_y\subseteq E_x$. So, $E_x=E_y$.
- (4) We show that any two distinct equivalence classes are disjoint: To this end we show that if two equivalence classes are not disjoint then they are identical. Suppose $E_x \cap E_y \neq \emptyset$. Take a $z \in E_x \cap E_y$. Then, zRx and zRy. Since R is symmetric, xRz and zRy. But then, by transitivity of R, xRy. Therefore, by (3), $E_x = E_y$.

Connecting partitions and equivalence relations

Theorem Suppose that A_1, \ldots, A_n is a partition of A. Define a relation R on A by setting: xRy if and only if there exists i such that $1 \le i \le n$ and $x, y \in A_i$. Then R is an equivalence relation.

Proof (Optional)

- Reflexivity: if $x \in A$, then $x \in A_i$ for some i. Therefore xRx.
- Transitivity: if xRy and yRz, then there exists A_i and A_j such that $x,y\in A_i$ and $y,z\in A_j$. $y\in A_i\cap A_j$ implies i=j. Therefore $x,z\in A_i$ which implies xRz.
- Symmetry: if xRy, then there exists A_i such that $x, y \in A_i$. Therefore yRx.

Important relations: Partial orders

Definition A binary relation R on a set A which is reflexive, transitive and antisymmetric is called a partial order.

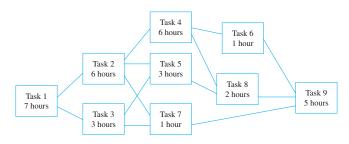
Partial orders are important in situations where we wish to characterise precedence.

Examples:

- the relation < on the the set \mathbb{R} of real numbers;
- the relation \subseteq on Pow(A);
- "is a divisor of" on the set \mathbb{Z}^+ of positive integers.

Example: job scheduling

Task	Immediately Preceding Tasks		
1			
2	1		
3	1		
4	2		
5	2, 3		
6	4		
7	2, 3		
8	4, 5 6, 7, 8		
9	6, 7, 8		



Predecessors in partial orders

If R is a partial order on a set A and xRy, $x \neq y$ we call x a predecessor of y.

If x is a predecessor of y and there is no $z \notin \{x, y\}$ for which xRz and zRy, we call x an immediate predecessor of y.

Important relations: Total orders

Definition A binary relation R on a set A is a total order if it is a partial order such that for any $x, y \in A$, xRy or yRx.

The Hasse diagram of a total order is a chain.

Examples

- the relation \leq on the set \mathbb{R} of real numbers;
- the usual lexicographical ordering on the words in a dictionary;
- the relation "is a divisor of" is not a total order.

n-ary relations

The Cartesian product $A_1 \times A_2 \times \cdots \times A_n$ of sets A_1, A_2, \ldots, A_n is defined by

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, \dots, a_n) \mid a_1 \in A_1, \dots, a_n \in A_n\}.$$

Here $(a_1, \ldots, a_n) = (b_1, \ldots, b_n)$ if and only if $a_i = b_i$ for all $1 \le i \le n$.

An *n*-ary relation is a subset of $A_1 \times \ldots A_n$

Databases and relations

A database table \approx relation

TABLE 1 Students.				
Student_name	ID_number	Major	GPA	
Ackermann	231455	Computer Science	3.88	
Adams	888323	Physics	3.45	
Chou	102147	Computer Science	3.49	
Goodfriend	453876	Mathematics	3.45	
Rao	678543	Mathematics	3.90	
Stevens	786576	Psychology	2.99	

 $Students = \{$

Unary Relations

Unary relations are just subsets of a set.

Example: The unary relation EvenPositiveIntegers on the set \mathbb{Z}^+ of positive integers is

$$\{x \in \mathbb{Z}^+ \mid x \text{ is even}\}.$$