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Abstract. First-order temporal logic is a concise and powerful notation, with
many potential applications in both Computer Science and Artificial Intelligence.
While the full logic is highly complex, recent work onmonodicfirst-order tem-
poral logics have identified important enumerable and even decidable fragments.
In this paper we present the first resolution-based calculusfor monodic first-
order temporal logic. Although the main focus of the paper ison establishing
completeness results, we also consider implementation issues and define a basic
loop-search algorithm that may be used to guide the temporalresolution system.

1 Introduction

Temporal Logic has achieved a significant role in Computer Science, in particular,
within the formal specification and verification of concurrent and distributed sys-
tems [13, 11, 9]. However, even thoughfirst-order temporal logics have been studied
over a number of years and have been recognised as a concise and powerful formal-
ism, most of the temporal logics used remain essentially propositional. The reason for
this is that it is easy to show that first-order temporal logicis, in general, incomplete
(i.e. not recursively-enumerable [14]). In fact, until recently, it has been difficult to find
any non-trivial fragment of first-order temporal logic that hasreasonable properties.
A breakthrough by Hodkinsonet. al. [8] showed thatmonodicfragments of first-order
temporal logic could be complete, even decidable. (In spiteof this, the addition of equal-
ity or function symbols leads to the loss of recursive enumerability [15].)

The definition of the monodic fragment holds great promise for increasing the power
of logic-based formal methods. However, there were, until now, no practical proof tech-
niques for monodic fragments of first-order temporal logics. A general framework,
which provides conditions to yield a tableau-based procedure for decidable monodic
fragments, and a number of its instantiations, has been presented in [10]. In this paper,
we provide a complete resolution calculus for monodic first-order temporal logic, based
on our work on clausal temporal resolution over a number of years [5, 7, 1, 2].

Some technical proofs are omitted due to lack of space and canbe found in the full
version of the paper available as a technical report [3].

2 First-Order Temporal Logic

First-Order (linear time) Temporal Logic,FOTL, is an extension of classical first-order
logic with operators that deal with a linear and discrete model of time (isomorphic to
⋆ On leave from Steklov Institute of Mathematics at St.Petersburg



N, and the most commonly used model of time). The first-order temporal language is
constructed in a standard way [6, 8] from:predicate symbols P0,P1, . . . each of which
is of some fixed arity (null-ary predicate symbols are calledpropositions); individual
variables x0,x1, . . . ; individual constants c0,c1, . . . ; Boolean operators∧, ¬, ∨, ⇒, ≡
true (‘true’), false (‘false’); quantifiers∀ and∃; together withunary temporal opera-
tors, such as3 (‘always in the future’),♦ (‘sometime in the future’), and❣(‘at the
next moment’). There are no function symbols and equality inourFOTL language. For
a given formula,φ, const(φ) denotes the set of constants occurring inφ.

Formulae inFOTL are interpreted infirst-order temporal structuresof the form
M = 〈D, I〉, whereD is a non-empty set, thedomainof M, andI is a function asso-
ciating with every moment of time,n∈N, an interpretation of predicate and constant
symbols overD. We require that the interpretation of constants isrigid. Thus, for every
constantc and all moments of timei, j ≥ 0, we haveIi(c) = I j(c).

A (variable) assignmenta overD is a function from the set of individual variables
to D. For every moment of time,n, there is a correspondingfirst-orderstructureMn =
〈D, In〉, whereIn = I(n). Intuitively, FOTL formulae are interpreted in sequences of
worlds, M0,M1, . . . with truth values in different worlds being connected by means of
temporal operators.

Thetruth relationMn |=
a φ in a structureM, for an assignmenta, is defined induc-

tively in the usual way under the following understanding oftemporal operators:

Mn |=
a ❣φ iff Mn+1 |=

a φ;
Mn |=

a ♦φ iff there existsm≥ n such thatMm |=a φ;
Mn |=

a φ iff for all m≥ n, Mm |=a φ.

M is amodelfor a formulaφ (or φ is true in M) if there exists an assignmenta such
thatM0 |=

a φ. A formula issatisfiableif it has a model. A formula isvalid if it is true
in any temporal structure under any assignment.

This logic is complex. It is known that even “small” fragments of FOTL, such as
the two-variable monadicfragment (all predicates are unary), are not recursively enu-
merable [12, 8]. However, the set of validmonodicformulae is known to be finitely
axiomatisable [15].

Definition 1. An FOTL-formula φ is called monodicif any subformulae of the form
T ψ, whereT is one of ❣, , ✸, contains at most one free variable.

3 Divided Separated Normal Form

Definition 2 (Temporal Step Clauses).A temporal step clauseis a formula either in
the form p⇒ ❣l, where p is a proposition and l is a propositional literal, or ∀x(P(x)⇒
❣M(x)), where P is a unary predicate and M is a unary literal. We call aclause of

the first type an (original)groundstep clause, and of the second type an (original)
non-groundstep clause.

3 W.r.t. satisfiability, binary temporal operatorsU (‘until’) and W (‘week until’) can be repre-
sented using these operators [6, 1].



Definition 3 (Monodic Temporal Problem).A monodic temporal problem in Divided
Separated Normal Form (DSNF)is a quadruple〈U,I ,S ,E〉, where

1. the universal part,U, is given by a set of arbitrary closed first-order formulae;
2. the initial part,I , is, again, given by a set of arbitrary closed first-order formulae;
3. the step part,S , is given by a set of original (ground and non-ground) temporal

step clauses; and
4. the eventuality part,E , is given by a set of eventuality clauses of the form♦L(x) (a

non-groundeventuality clause) and♦l (a ground eventualityclause), where l is a
propositional literal and L(x) is a unary non-ground literal.

The setsU, I , S , andS are finite.

Note that, in a monodic temporal problem, we do not allow two different temporal
step clauses with the same left-hand sides. A problem with the same left-hand sides
can be easily transformed by renaming into one without. To each monodic temporal
problem, we associate the formulaI ∧ U ∧ ∀xS ∧ ∀xE . Now, when we talk
about particular properties of temporal problems (e.g., satisfiability, validity, logical
consequences etc) we mean properties of the associated formula.

Following [6, 7], it was noted in [1] that any monodicFOTL formula can be reduced
to a normal form where, in addition to the parts above,conditionaleventuality clauses
of the form P(x)⇒ ♦L(x) andp⇒ ♦l are allowed. The translation can be described
as a number of steps.

1. Translate a given monodic formula to negation normal form.
2. Recursively rename innermost temporal subformulae,❣φ(x), ♦φ(x), φ(x), by

new unary predicatesPi(x). Renaming introduces formulae definingPi(x) as fol-
lows:

(a) ∀x(Pi1(x)⇒
❣φ(x)); (b) ∀x(Pi2(x)⇒ ♦φ(x));

(c) ∀x(Pi3(x)⇒ φ(x)).

Formulae of the form(a) and(b) are in the normal form4, formulae of the form(c)
require extra reduction by removing the temporal operatorsusing their fixed point
definitions.

3. Use fixed point definitions.
∀x(P(x)⇒ φ(x)) is satisfiability equivalent to

∀x(P(x)⇒ R(x))∧ ∀x(R(x)⇒ ❣R(x))∧ ∀x(R(x)⇒ φ(x)),

whereR(x) is a new unary predicate.

In [2], a reduction from conditional problems to unconditional ones for the propositional
case is given. For the first-order case, satisfiability ofΦ∪ { ∀x(P(x) ⇒ ♦L(x))} is
equivalent to satisfiability of

Φ∪







∀x((P(x)∧¬L(x))⇒ waitforL(x)),
∀x((waitforL(x)∧ ❣¬L(x))⇒ ❣waitforL(x)),
∀x♦¬waitforL(x)






,

4 Possibly, after (first-order) renaming the complex expression φ(x); the formulae introduced by
renaming are put in the universal part.



wherewaitforL(x) is a new unary predicate symbol. (The second clause is translated
into a step and a universal clauses.)

Theorem 1 (Transformation).Every monodic first-order temporal formula can be re-
duced, in a satisfiability equivalence preserving way, to a monodic temporal problem
with at most a linear increase in the size of the problem.

4 Temporal Resolution for Monodic Non-Ground Case

As in the propositional case [5, 2], our calculus works withmerged step clauses, but here
the notion of merged step clauses is much more complex. This is, of course, because
of the first-order nature of the problem and the fact that skolemisation is not allowed
under temporal operators. First, we provide some required definitions.

Definition 4 (Derived Step Clauses).Let P be a monodic temporal problem, and let
Pi1(x) ⇒

❣Mi1(x), . . . ,Pik(x) ⇒
❣Mik(x) be a subset of the set of its original non-

ground step clauses. Then

∀x(Pi1(x)∨·· ·∨Pik(x))⇒
❣∀x(Mi1(x)∨·· ·∨Mik(x)),

∃x(Pi1(x)∧·· ·∧Pik(x))⇒
❣∃x(Mi1(x)∧·· ·∧Mik(x)),

Pi j (c)⇒
❣Mi j (c)

arederived step clauses, where c is a constant occurring inP and j= 1. . .k.

Definition 5 (Merged Derived Step Clauses).Let{Φ1 ⇒ ❣Ψ1, . . . ,Φn ⇒ ❣Ψn} be

a set of derived step clauses or originalgroundstep clauses. Then
n∧

i=1
Φi ⇒ ❣

n∧
i=1

Ψi

is called amerged derived step clause. Note that the left-hand and right-hand sides of
any merged derived step clause are closed formulae.

Definition 6 (Full Merged Step Clauses).Let A ⇒ ❣B be a merged derived step

clause, P1(x) ⇒ ❣M1(x), . . . ,Pk(x) ⇒ ❣Mk(x) be original step clauses, and A(x)
def
=

k∧
i=1

Pi(x), B(x)
def
=

k∧
i=1

Mi(x). Then∀x(A ∧A(x)⇒ ❣(B ∧B(x))) is called afull merged

step clause. (In the case k= 0, the conjunctions A(x), B(x) are empty, i.e., their truth
value istrue, and the merged step clause is just a merged derived step clause.)

Definition 7 (Constant Flooding).Let P be a monodic temporal problem,Pc = P∪
{♦L(c) | ♦L(x) ∈ E ,c∈ const(P)} is theconstant flooded form5 of P. Evidently,Pc is
satisfiability equivalent toP.

Inference Rules. In what follows,A ⇒ ❣B andAi ⇒ ❣Bi denote merged derived
step clauses,∀x(A ∧A(x) ⇒ ❣(B ∧B(x))) and∀x(Ai ∧Ai(x) ⇒ ❣(Bi ∧Bi(x))) de-
note full merged step clauses, andU denotes the (current) universal part of the problem.
5 Strictly speaking,Pc is not in DSNF: we have to rename ground eventualities by propositions.

Rather than ‘flooding’, we could have introduced special inference rules to deal with constants.



– Step resolution rule w.r.t.U:
A ⇒ ❣B

¬A
( ❣U

res) , whereU ∪{B} |=⊥.

– Initial termination rule w.r.t.U: The contradiction⊥ is derived and the derivation
is (successfully) terminated ifU ∪ I |=⊥.

– Eventuality resolution rule w.r.t.U:

∀x(A1∧A1(x)⇒ ❣(B1∧B1(x)))
. . .

∀x(An∧An(x)⇒ ❣(Bn∧Bn(x)))
♦L(x)

∀x
n∧

i=1
(¬Ai ∨¬Ai(x))

(♦U
res) ,

where∀x(Ai ∧Ai(x)⇒ ❣Bi ∧Bi(x)) are full merged step clauses such that for all
i ∈ {1, . . . ,n}, the loop side conditions∀x(U ∧Bi ∧Bi(x) ⇒ ¬L(x)) and∀x(U ∧
Bi ∧Bi(x)⇒

∨n
j=1(A j ∧A j(x)) are both valid.

The set of merged step clauses, satisfying the loop side conditions, is called aloop
in ♦L(x) and the formula

∨n
j=1(A j(x)∧A j(x)) is called aloop formula.

– Eventuality termination rule w.r.t.U: The contradiction⊥ is derived and the deriva-
tion is (successfully) terminated ifU |= ∀x¬L(x), where♦L(x) ∈ E .

– Ground eventuality resolution w.r.t.U andGround eventuality termination w.r.t.U:
These rules repeat the eventuality resolution and eventuality termination rules with
the only difference thatground eventualitiesand mergedderived step clausesare
used instead of non-ground eventualities and full merged step clauses.

A derivationis a sequence of universal parts,U = U0 ⊆ U1 ⊆ U2 ⊆ . . . , extended little
by little by the conclusions of the inference rules. Successful termination means that the
given problem is unsatisfiable. TheI , S andE parts of the temporal problem are not
changed in a derivation.

Example 1.Let us consider an unsatisfiable temporal problem given by

I =
{

i1. ∃xQ(x)
}
, U =

{
u1. ∃x(P1(x)∧P2(x))
u2. ∀x(Q(x)∧∃y(¬P1(y)∧¬P2(y))⇒ L(x))

}

,

E =
{

e1. ∀x♦¬L(x)
}
, S =







s1. ∀x(P1(x)⇒ ❣¬P1(x))
s2. ∀x(P2(x)⇒ ❣¬P2(x))
s3. ∀x(Q(x)⇒ ❣Q(x))







and apply temporal resolution to this. First, we produce thefollowing derived step
clause froms1 ands2: g1. ∃y(P1(y)∧P2(y))⇒ ❣∃y(¬P1(y)∧¬P2(y)).
Then mergeg1 ands3 to give

m1. ∀x(∃y(P1(y)∧P2(y))∧Q(x)⇒ ❣(∃y(¬P1(y)∧¬P2(y))∧Q(x))).

It can be immediately checked that the loop side conditions are valid form1, i.e.,

∃y(¬P1(y)∧¬P2(y))∧Q(x)⇒ L(x) (seeu2),
∃y(¬P1(y)∧¬P2(y))∧Q(x)⇒∃y(P1(y)∧P2(y))∧Q(x) (seeu1).

We apply the eventuality resolution rule toe1 andm1 and derive a new universal clause

nu1. ∀x(¬(∃y(P1(y)∧P2(y)))∨¬Q(x))

which contradicts clausesu1 andi1 (the initial termination rule is applied).



Theorem 2 (Soundness and Completeness of Temporal Resolution). The rules of
temporal resolution preserve satisfiability. If a monodic constant flooded temporal prob-
lemP is unsatisfiable, then there exists a successfully terminating derivation from it.

Proof From consideration of the models, it straightforwardly follows that the temporal
resolution rules preserve satisfiability. Consider, for example, the step resolution rule.
Let A ⇒ ❣B be a merged derived rule and assume thatM0 |=

a (A ⇒ ❣B), but for
somei ≥ 0,Mi 6|=

a ¬A . ThenMi+1 |=
a B in contradiction with the rule side condition.

The proof of completeness is difficult, and Section 5 is entirely devoted to this issue.
✷

5 Completeness of Temporal Resolution

In order to prove completeness of the temporal resolution method, we introduce
additional concepts (some of which were already defined in [1]). Let P = 〈U,I ,S ,E〉
be a monodic temporal problem. Let{P1, . . . ,PN} and{p1, . . . , pn}, N,n ≥ 0, be the
sets of all (monadic) predicate symbols and all propositional symbols, respectively,
occurring inS ∪E . Let ∆ be the set of all mappings from{1, . . . ,N} to {0,1}, and
Θ be the set of all mappings from{1, . . . ,n} to {0,1}. An elementδ ∈ ∆ (θ ∈ Θ) is
represented by the sequence[δ(1), . . . ,δ(N)] ∈ {0,1}N ([θ(1), . . . ,θ(n)] ∈ {0,1}n). Let
us call elements of∆ andΘ predicate and propositionalcolours, respectively. LetΓ be
a subset of∆, θ be an element ofΘ, andρ be a map from the set of constants ofP to
Γ. A triple (Γ,θ,ρ) is called acolour scheme, andρ is called aconstant distribution.
If a predicatePi(x) from S ∪ E “occurs” in a predicate colourγ (i.e., γ(i) = 1), we
also writePi(x) ∈ γ; and if γ(i) = 0, we also writeP(x) /∈ γ or ¬P(x) ∈ γ. The same
convention is used for propositional colours and constant distributions.

For every colour schemeC = 〈Γ,θ,ρ〉 let us construct the formulaeFC , AC , BC in
the following way. For everyγ ∈ Γ and for everyθ, introduce the conjunctions:

Fγ(x) =
∧

i≤N, γ(i)=1
Pi(x) ∧

∧

i≤N, γ(i)=0
¬Pi(x), Fθ =

∧

i≤n, θ(i)=1
pi ∧

∧

i≤n, θ(i)=0
¬pi .

Let us define two sets of indexes
Jγ = {i, 1≤ i ≤ N | γ(i) = 1 andPi(x)⇒ ❣Mi(x) belongs toS for someMi} and
Jθ = { j, 1≤ i ≤ n | θ( j) = 1 andp j ⇒ ❣mi belongs toS for somemi}.

(Recall that there are no two different step clauses with thesame left-hand side.) Let
Aγ(x) =

∧
i∈Jγ

Pi(x), Bγ(x) =
∧

i∈Jγ
Mi(x), Aθ =

∧
i∈Jθ

pi , Bθ =
∧

i∈Jθ

mi .

Now FC , AC , BC are of the following forms:

FC =
∧

γ∈Γ
∃xFγ(x)∧Fθ ∧

∧
c∈C

Fρ(c)(c)∧∀x
∨

γ∈Γ
Fγ(x),

AC =
∧

γ∈Γ
∃xAγ(x)∧Aθ ∧

∧
c∈C

Aρ(c)(c)∧∀x
∨

γ∈Γ
Aγ(x),

BC =
∧

γ∈Γ
∃xBγ(x)∧Bθ ∧

∧
c∈C

Bρ(c)(c)∧∀x
∨

γ∈Γ
Bγ(x).

We can consider the formulaFC as a “categorical” formula specification of the quotient
structure given by a colour scheme. In turn, the formulaAC represents the part of this



C1 C3

C4 C6

C5

Fig. 1.Behaviour graph for the problem from Example 2.

specification which is “responsible” just for “transferring” requirements from the cur-
rent world (quotient structure) to its immediate successors, andBC represents the result
of transfering.

Definition 8 (Canonical merged derived step clauses).Let P be a first-order tempo-
ral problem,C be a colour scheme forP. Then the clause(AC ⇒ ❣BC ), is called
a canonical merged derived step clausefor P. If all the sets Jγ, for all γ ∈ Γ, and Jθ
are empty, the clause(AC ⇒ ❣BC ) degeneratesto (true ⇒ ❣true). If a conjunction
Aγ(x), γ ∈ Γ, is empty, that is its truth value istrue, then the formula∀x

∨
γ∈Γ Aγ(x) (or

∀x
∨

γ∈Γ Bγ(x)) disappears fromAC (or fromBC respectively). In the propositional case,
the clause(AC ⇒ ❣BC ) reduces to(Aθ ⇒ ❣Bθ).

Definition 9 (Canonical merged step clause).LetC be a colour scheme,AC ⇒ ❣BC

be a canonical merged derived step clause, andγ ∈ C . ∀x(AC ∧Aγ(x) ⇒ ❣(BC ∧
Bγ(x))) is called acanonical merged step clause. If the set Jγ is empty, the truth value
of the conjunctions Aγ(x), Bγ(x) is true, and the canonical merged step clause is just a
canonical merged derived step clause.γ∈ C abbreviates hereγ∈Γ, whereC =(Γ,θ,ρ).

Now, given a temporal problemP = 〈U,I ,S ,E〉 we define a finite directed graphG as
follows. Every vertex ofG is a colour schemeC for P such thatU ∪FC is satisfiable.
For each vertexC = (Γ,θ,ρ), there is an edge inG to C ′ = (Γ′,θ′,ρ′), if U ∧FC ′ ∧BC

is satisfiable. They are the only edges originating fromC . A vertexC is designated as
an initial vertex ofG if I ∧U ∧FC is satisfiable. Thebehaviour graph Hof P is the
subgraph ofG induced by the set of all vertices reachable from the initialvertices.

Example 2.Consider a monodic temporal problem,P, given by
I = /0, U = {l ⇒∃xP(x)}, S = {P(x)⇒ ❣P(x)}, E = {♦¬P(x),♦l}.

For this problem, there exist two predicate colours,γ1 = [1] andγ2 = [0]; two propo-
sitional coloursθ1 = [1] andθ2 = [0]; and six colour schemes,C1 = ({γ1},θ1), C2 =
({γ2},θ1), C3 = ({γ1,γ2},θ1). C4 = ({γ1},θ2), C5 = ({γ2},θ2), C6 = ({γ1,γ2},θ2).

FC1 = ∃xP(x)∧∀xP(x)∧ l AC1 = ∃xP(x)∧∀xP(x) BC1 = ∃xP(x)∧∀xP(x)
FC2 = ∃x¬P(x)∧∀x¬P(x)∧ l AC2 = true BC2 = true
FC3 = ∃xP(x)∧∃x¬P(x)∧ l AC3 = ∃xP(x) BC3 = ∃xP(x)
FC4 = ∃xP(x)∧∀xP(x)∧¬l AC4 = ∃xP(x)∧∀xP(x) BC4 = ∃xP(x)∧∀xP(x)



FC5 = ∃x¬P(x)∧∀x¬P(x)∧¬l AC5 = true BC5 = true
FC6 = ∃xP(x)∧∃x¬P(x)∧¬l AC6 = ∃xP(x) BC6 = ∃xP(x)

Note thatFC2 ∧U |=⊥. The behaviour graph forP, given in Fig. 1, consists of five
vertices; all of them are initial.

Definition 10 (Path; Path Segment).A path, π, through a behaviour graph, H, is a
function fromN to the vertices of the graph such that for any i≥ 0 there is an edge
〈π(i),π(i +1)〉 in H. In the similar way, we define apath segmentas a function from
[m,n], m< n, to the vertices of H with the same property.

Lemma 1. Let P1 = 〈U1,I ,S ,E〉 andP2 = 〈U2,I ,S ,E〉 be two problems such that
U1 ⊆ U2. Then the behaviour graph ofP2 is a subgraph of the behaviour graph ofP1.

Definition 11 (Suitability). For C = (Γ,θ,ρ) and C ′ = (Γ′,θ′,ρ′), let (C ,C ′) be an
ordered pair of colour schemes for a temporal problemP. An ordered pair of predicate
colours (γ,γ ′) whereγ ∈ Γ, γ ′ ∈ Γ′ is called suitableif the formulaU ∧∃x(Fγ ′(x)∧
Bγ(x)) is satisfiable. Similarly, an ordered pair of propositionalcolours(θ,θ′) is suit-
able if U ∧Fθ′ ∧Bθ is satisfiable, and an ordered pair of constant distributions (ρ,ρ′)
is suitable if, for every c∈C, the pair(ρ(c),ρ′(c)) is suitable.

Note that the satisfiability of∃x(Fγ ′(x)∧Bγ(x)) implies |= ∀x(Fγ ′(x) ⇒ Bγ(x)) as the
conjunctionFγ ′(x) contains a valuation atx of all predicates occurring inBγ(x).

Lemma 2. Let H be the behaviour graph for the problemP = 〈U,I ,S ,E〉 with an
edge from a vertexC = (Γ,θ,ρ) to a vertexC ′ = (Γ′,θ′,ρ′). Then for everyγ ∈ Γ there
exists aγ ′ ∈ Γ′ such that the pair(γ,γ ′) is suitable; for everyγ ′ ∈ Γ′ there exists aγ ∈ Γ
such that the pair(γ,γ ′) is suitable; the pair of propositional colours(θ,θ′) is suitable;
the pair of constant distributions(ρ,ρ′) is suitable.

Definition 12 (Run/E-Run).Letπ be a path through a behaviour graph H of a tempo-
ral problemP, andπ(i) = (Γi ,θi ,ρi). By arun in π we mean a function r(n) fromN to⋃

i∈NΓi such that for every n∈N, r(n) ∈ Γn and the pair(r(n), r(n+1)) is suitable. In
the similar way, we define arun segmentas a function from[m,n], m<n, to

⋃
i∈NΓi with

the same property. A run r is called ane-runif ∀i ≥ 0∀♦L(x) ∈ E∃ j > i(L(x) ∈ r( j))6.
Letπ be a path, the set of all runs inπ is denoted byR (π), and the set of all e-runs

in π is denoted byRe(π). If π is clear, we may omit it.

Example 3.π = C3,C6,C3,C6, . . . is a path through the behaviour graph given in Fig. 1.
r1 = γ1,γ1, . . . andr2 = γ1,γ2,γ1,γ2, . . . are both runs inπ. r2 is an e-run, butr1 is not.

Theorem 3 (Existence of a model).Let P = 〈U,I ,S ,E〉 be a temporal problem. Let
H be the behaviour graph ofP, let C andC ′ be vertices of H such thatC = (Γ,θ,ρ) and
C ′ = (Γ′,θ′,ρ′). If both the set of initial vertices of H is non-empty and the following
conditions hold7

∀γ ∈ Γ ∀C∀♦L(x) ∈ E∃γ ′ ∈ Γ′∃C ′
(
(C ,γ)→+

(
C ′,γ ′

)
∧L(x) ∈ γ ′

)
, (1)

6 To make the presentation compact, we abuse the notation by allowing the use of logical sym-
bols at meta-level.

7 Here(C ,γ)→+ (C ′,γ ′) denotes that there exists a path segmentπ from C to C ′ such thatγ and
γ ′ belong to a run segmentr in π, i.e.,π(m) = C , π(n) = C ′, r(m) = γ ∈ Γ, andr(n) = γ′ ∈ Γ′

for somem< n; C →+ C ′ denotes that there exists a path segment fromC to C ′.



∀c∈ const(P) ∀C∀♦L(x) ∈ E ∃C ′
(
C →+ C ′∧L(x) ∈ ρ′ (c)

)
, (2)

∀C∀♦l ∈ E ∃C ′
(
C →+ C ′∧ l ∈ θ′

)
, (3)

thenP has a model.

Note 1. Forconstant floodedproblems condition 3 of Theorem 3 implies condition 2.

This theorem generalises its ground eventuality counterpart in [1] (Lemma 5) and its
proof, therefore, is omitted and given in full in [3]. This generalisation is made possible
by the following intricate, but essential, lemma.

Lemma 3. Under the conditions of Theorem 3, there exists a pathπ through H where:

(a) π(0) is an initial vertex of H;
(b) for every colour schemeC = π(i), i ≥0, and every ground eventuality literal♦l ∈E

there exists a colour schemeC ′ = π( j), j > i, such that l∈ θ′;
(c) for every colour schemeC = π(i), i ≥ 0 and every predicate colourγ from the

colour scheme there exists an e-run r∈ Re(π) such that r(i) = γ; and
(d) for every constant c∈ L, the function rc(n) defined by rc(n) = ρn(c), whereρn is

the constant distribution fromπ(n), is an e-run inπ.

Proof [of Lemma 3] Let♦L1(x), . . . ,♦Lk(x) be all non-ground eventuality literals
from E ; ♦l1, . . . ,♦lp be all ground eventuality literals fromE ; and c1, . . . ,cq be all
constants ofP. Let C0 be an initial vertex ofH. We construct the pathπ as fol-
lows. Let {γ1, . . . ,γs0} be all predicate colours fromΓC0. By condition (1) there ex-

ists a vertexC
(γ1,L1)
0 and a predicate colourγ(1)1 ∈ Γ

C
(γ1,L1)
0

such that(C0,γ1) →
+

(C
(γ1,L1)
0 ,γ(1)1 ) andL1(x) ∈ γ(1)1 . In the same way, there exists a vertexC

(γ1,L2)
0 and a

predicate colourγ(2)1 ∈ Γ
C
(γ1,L2)
0

such that(C (γ1,L1)
0 ,γ(1)1 )→+ (C

(γ1,L2)
0 ,γ(2)1 ) andL2(x) ∈

γ(2)1 . And so on. Finally, there exists a vertexC
(γ1,Lk)
0 and a predicate colourγ(k)1 ∈

Γ
C
(γ1,Lk)
0

such that(C
(γ1,Lk−1)
0 ,γ(k−1)

1 ) →+ (C
(γ1,Lk)
0 ,γ(k)1 ) and Lk(x) ∈ γ(k)1 . Clearly, γ1,

. . . ,γ(1)1 ,. . . ,γ(2)1 ,. . . ,γ(k)1 forms a segment of a run and every non-ground eventuality is
satisfied along this segment.

Now, let γ(0)2 be any successor ofγ2 in Γ
C
(γ1,Lk)
0

. As above, there exists a sequence

of verticesC
(γ2,L1)
0 ,. . . , C

(γ2,Lk)
0 and a sequence of predicate coloursγ(1)2 ∈ Γ

C
(γ2,L1)
0

,. . . ,

γ(k)2 ∈ Γ
C
(γ2,Lk)
0

such thatγ2,. . . ,γ(0)2 , . . . ,γ(1)2 , . . . ,γ(k)2 forms a segment of a run and every

non-ground eventuality is satisfied along this segment. Andso on. At a certain point we

construct a segment of a path fromC0 to a vertexC
(γs0 ,Lk)

0 such that for everyγ ∈ C0

there existsγ ′ ∈ C
(γs0 ,Lk)

0 such that all eventualities are satisfied on the run-segmentfrom
γ to γ ′.

In a similar way we can construct a vertexC
(c1,L1)
0 such thatC

(γs0 ,Lk)

0 →+ C
(c1,L1)
0

andL1(x) ∈ ρ
C
(c1,L1)
0

(c1). And so on. Then we can construct a vertexC
(l1)
0 such that

C
(cq,Lk)
0 →+ C

(l1)
0 andl1 ∈ θ

C
(l1)
0

. And so on.



Finally, we construct a vertexC ′
0 = C

(lp)
0 such thatC0 →

+ C ′
0 and on this path seg-

ment all conditions of the theorem hold forC = C0. Let us denote this path segment as
λ0, and letC1 be any successor ofC ′

0.
By analogy, we can construct a vertexC ′

1 and a path segmentλ1 from C1 to C ′
1 such

that all conditions of the theorem hold forC = C1. An so forth. Eventually, we construct
a sequenceC0, C1,. . . ,C j such that there existsn, 0≤ n< j andCn = C j because there
are only finitely many different colour schemes. Letπ1 = λ0, . . . ,λn−1, π2 = λn, . . .λ j−1.
Now, we define our pathπ asπ1(π2)

∗. Properties (a) and (b) evidently hold onπ.
Let C = π(i) and γ ∈ ΓC . Clearly, there existγ ′ ∈ C0 and γ ′′ ∈ Cn such that

(C0,γ ′) →+ (C ,γ) and(C ,γ) →+ (Cn,γ ′′). Since for everyγ ′′ ∈ Cn there existsγ ′′′ ∈
C
(γsn ,Lk)
n such that all eventualities are satisfied on the run-segmentfrom γ ′′ to γ ′′′ and

there existsγ(4) ∈ Cn, (C
(γsn ,Lk)
n ,γ ′′′) →+ (Cn,γ(4)), then there is an e-run,r, such that

r(i) = γ, i.e., property (c) holds.
Note that, for every constantc of P the sequencerc(n) is a run inπ. By construction,

for every♦L(x) ∈ E there is a vertexC (c,L)
n in π2 such thatL(x) ∈ ρ

C
(c,L)
n

(c). Therefore,

rc(n) is an e-run inπ and property (d) holds. ✷

Proof [Theorem 2: completeness of temporal resolution] The proof proceeds by in-
duction on the number of vertices in the behaviour graphH for P = 〈U,I ,S ,E〉, which
is finite. If H is empty then the setU ∪ I is unsatisfiable. In this case the derivation is
successfully terminated by the initial termination rule.

Now supposeH is not empty. LetC be a vertex ofH which has no successors. In
this case the setU ∪BC is unsatisfiable. Indeed, supposeU ∪{BC} is true in a model
〈D′, I ′〉. Then we can define a colour schemeC ′ such that〈D′, I ′〉 |= FC ′ . (Indeed, for
everya∈ D′ let γ(a) be a map from{1, . . . ,N} to {0,1} such thatγ(a)(i) = 1 if, and only
if, M |= Pi(a) for every 1≤ i ≤ N. Similarly, letθ be a map from{1, . . . ,n} to {0,1}
such thatθ( j) = 1 if, and only if,M |= pi for every 1≤ j ≤ n. DefineΓ as{γ(a) | a∈D′},
andρ(c) asγ(cI ′ ).) As BC ∧FC ′ is satisfiable, there exists an edge from the vertexC to

the vertexC ′ in the contradiction with the choice ofC as having no successor.
The conclusion of the step resolution rule,¬AC , is added to the setU; this implies

removing the vertexC from the behaviour graph because the set{FC ,¬AC} is not
satisfiable.
Next, we check the possibility whereH is not empty and every vertexH has a successor.
Ought to Note 1, we consider two cases of violation of the conditions of Theorem 3.

First condition of Theorem 3 does not hold.The negation of (1) gives the following:

∃C ∃γ ∈ Γ ∃♦L(x) ∈ E ∀γ ′ ∈ Γ′ ∀C ′ ((C ,γ)→+ (C ′,γ ′)⇒ L(x) /∈ γ ′). (4)

Let C0, γ0, and♦L0(x) be the vertex, colour and eventuality, respectively, determined by
the existential quantifiers of (4). LetI andJi , i ∈ I be finite nonempty sets of indexes
such that{Ci | i ∈ I} is the set ofall successors ofC0 (possibly includingC0 itself) and
{γi, j ∈ Γi | i ∈ I, j ∈ Ji , γ0 →

+ γi, j} is the set ofall predicate colours such that there
exists a run going throughγ0 and the colour. (To unify notation, if 0/∈ I, we defineJ0

as{0}, andγ0,0 asγ0; and if 0∈ I, we add the index ofγ0 to J0. Therefore,J0 is always
defined and without loss of generality we may assume thatγ0,0 = γ0.)



Let Ci1, . . . ,Cik be the set of all immediate successors ofC0. To simplify the proof,
we will represent canonical merged derived step clausesACi ⇒

❣BCi (ACil
⇒ ❣BCil

)
simply asAi ⇒ ❣Bi (Ai l ⇒

❣Bi l ), and formulaeFCi (FCil
) simply asFi (Fi l ).

Consider two cases depending on whether the canonical merged derived step clause
A0 ⇒ ❣B0 (or any ofAi ⇒ ❣Bi , i ∈ J) degenerates or not.

Let A0 = B0 = true. It follows thatU |= ∀x¬L0(x). Indeed, supposeU∪{∃xL0(x)}
has a model,〈D′, I ′〉. Then we can construct a colour schemeC ′ such that〈D′, I ′〉 |=FC ′ .
SinceCi1, . . . ,Cik is the set of all immediate successors ofC0 andB0 = true, it holds
that there existsj,1≤ j ≤ k, such thatCi j = C ′. SinceBγ0(x) = true, every pair(γ0,γ ′),
whereγ ′ ∈ Γ′, is suitable; hence¬L0(x) ∈ γ ′ for everyγ ′ ∈ Γ′, andFC ′ |= ∀x¬L0(x)
leading to a contradiction. Therefore,U |= ∀x¬L0(x) and the eventuality termination
rule can be applied. The same holds if any one ofAi ⇒ ❣Bi degenerates.

Let none of theAi ⇒ ❣Bi degenerate. We are going to prove that the eventuality
resolution rule can be applied. First, we have to check the side conditions for such an
application.

1. ∀x(U ∧Bi ∧Bγi, j (x)⇒¬L0(x)) for all i ∈ I∪{0}, j ∈ Ji .
Consider the case wheni = j = 0 (for other indexes the arguments are similar).
We show that ∀x(U ∧B0 ∧Bγ0(x) ⇒

∨

l∈{1,...,k}, γ ′∈Γil
, γ→γ ′

Fγ ′(x)) is valid (it fol-

lows, in particular, that∀x(U ∧B0∧Bγ0(x) ⇒ ¬L0(x)) is valid). Suppose〈D′, I ′〉
is a model for ∃x(U ∧B0∧Bγ0(x)∧

∧

l∈{1,...,k}, γ ′∈Γil , γ→γ ′
¬Fγ ′(x)). Then there ex-

ists a colour schemeC ′ such that〈D′, I ′〉 |= FC ′ . Since〈D′, I ′〉 |= B0 ∧ FC ′ , we
conclude thatC ′ is amongCi1, . . . ,Cik. Note that〈D′, I ′〉 |= FC ′ follows. In par-
ticular 〈D′, I ′〉 |= ∀x

∨

γ ′′∈Γ′
Fγ ′′(x) and, hence,〈D′, I ′〉 |= ∀x(Bγ0(x) ⇒

∨

γ ′′∈Γ′
Fγ ′′(x)).

Together with the fact that〈D′, I ′〉 |= ∃x(Bγ0(x)∧Fγ ′′(x)) impliesγ0 → γ ′′, we have
〈D′, I ′〉 |= ∀x(Bγ0(x)⇒

∨

γ ′′∈Γ′, γ0→γ ′′
Fγ ′′(x)). This contradicts the choice of the struc-

ture〈D′, I ′〉.
2. ∀x(U ∧Bi ∧Bγi, j (x)⇒

∨

k∈I∪{0}, l∈Jk

(Ak∧Aγk,l (x))) for all i ∈ I∪{0}, j ∈ Ji .

Again, consider the casei = j = 0. Suppose U ∧ B0 ∧ ∃x(Bγ0(x) ∧∧

k∈I∪{0}, l∈Jk

(¬(Ak ∧ Aγk,l (x)))) is satisfied in a structure〈D′, I ′〉. Let C ′ be a

colour scheme such that〈D′, I ′〉 |= FC ′ . By arguments similar to the ones given
above, there is a vertexCi l , 1 ≤ l ≤ k, which is an immediate successor ofC0,
such thatCi l = C ′, and hence〈D′, I ′〉 |= A ′. It suffices to note that〈D′, I ′〉 |=
∀x(Bγ0(x)⇒

∨

γ ′′∈Γ′, γ0→γ ′′
Aγ ′′(x)). (As in the case 1 above,〈D′, I ′〉 |= ∀x(Bγ0(x)⇒

∨

γ ′′∈Γ′, γ0→γ ′′
Fγ ′′(x)), and for allγ ′′ ∈ Γ′, the formula∀x(Fγ ′′(x)⇒ Aγ ′′(x)) is valid.)

After applying the eventuality resolution rule we add toU its conclusion:
∀x

∧

i∈I∪{0}, j∈Ji

(¬Ai ∨¬Aγi, j (x)). Then, the vertexC0 will be removed from the be-

haviour graph (recall thatF0 |= A0∧∃xAγ0(x)).



Third condition of Theorem 3 does not hold.This case was already considered in [1].
We sketch here the proof. The negation of (2) gives the following:

∃C ∃♦l ∈ E ∀C ′ (C →+ C ′ ⇒ l /∈ θ′) (5)

Let C0, and l0 be the vertex and eventuality determined by the existentialquantifiers
of (5). LetI be a finite nonempty set of indexes,{Ci | i ∈ I} be the set of all successors
of C0 (possibly includingC0 itself). As in the previous case, one can show that

– If any of Ai ⇒ ❣Bi (wherei ∈ J) degenerates thenU |= ¬l , and the ground even-
tuality termination rule can be applied.

– If none of the canonical merged derived step clauses degenerate then the following
conditions hold
• for all i ∈ I∪{0} U ∪Bi |= l0
• for all i ∈ I∪{0} U ∪Bi |=

∨

j∈I∪{0}
A j

and so the ground eventuality resolution rule can be applied. ✷

Example 4 (example 2 contd.).We illustrate the proof of Theorem 2 on the temporal
problem introduced in Example 2. The behaviour graph of the problem is not empty;
every vertex has a successor. It is not hard to see that the first condition of Theorem 3
does not hold, and, following the proof, we can choose asC0, γ0, andL0, for example,
C1, γ1, and¬P(x), respectively. The set of all (and all immediate) successors of C1 is
{C1,C4}. Note that the canonical full merged step clauses corresponding toC1 andC4

are identical, and none of them degenerates. Fori ∈ {1,4}, the loop side conditions,

∀x(((l ⇒∃xP(x))
︸ ︷︷ ︸

Ui

∧(∃xP(x)∧∀xP(x))
︸ ︷︷ ︸

Bi

∧P(x)
︸︷︷︸

Bγ1(x)

)⇒ P(x))

and

∀x(((l ⇒∃xP(x))
︸ ︷︷ ︸

Ui

∧(∃xP(x)∧∀xP(x))
︸ ︷︷ ︸

Bi

∧P(x)
︸︷︷︸

Bγ1(x)

)⇒
∨

j∈{1,4}

(∃xP(x)∧∀xP(x)
︸ ︷︷ ︸

A j

∧ P(x)
︸︷︷︸

Aγ1(x)

))

hold. Therefore, we can apply the eventuality resolution rule whose conclusion can be
simplified to∃x¬P(x). After the conclusion of the rule is added toU, veticesC1 andC4

and edges leading to and from them are deleted from the behaviour graph.
For the temporal problem with the new universal part, again the first condition of

Theorem 3 does not hold, for example, forC0 = C3, γ0 = γ1, andL0(x) = ¬P(x). (Note
that γ2 is never a successor ofγ1.) The set of all (and all immediate) successors of
C3 is {C3,C6}. The canonical full merged step clauses corresponding toC3 andC6 are
identical, and none of them degenerates. In a similar way, the loop side conditions hold
and the conclusion of the eventuality resolution rule simplifies to∀x¬P(x). This time,
verticesC3 andC6 are deleted from the behaviour graph.

For the new problem, the third condition of Theorem 3 does nothold for C0 = C5,
l0 = l . As the canonical full merged step clause degenerates (andU |= ¬l ), the ground
eventuality termination rule can be applied.

Note that if, in the beginning, instead ofC1 we had selectedC3 (or C6) asC0, ver-
ticesC1, C3, C4, andC6 would be deleted after the first application of the eventuality
resolution rule.



Input A temporal problemP and an eventuality clause♦L(x) ∈ E .
Output A formulaH(x) with at most one free variable.
Method:1. LetH0(x) = true; N0 = /0; i = 0.

2. LetNi+1 = {∀x(A(i+1)
j (x)⇒ ❢B

(i+1)
j (x))}k

j=1 be the set ofall full merged step

clauses such that for everyj ∈ {1. . .k}, ∀x(U ∧ B
(i+1)
j (x) ⇒ (¬L(x)∧Hi(x)))

holds. (The setNi+1 possibly includes the degenerate clausetrue ⇒ ❢true in the
caseU |= ∀x(¬L(x)∧Hi(x)).)

3. If Ni+1 = /0, returnfalse; else letHi+1(x) =
k∨

j=1
(A

(i+1)
j (x)).

4. If ∀x(Hi(x)⇒ Hi+1(x)) returnHi+1(x).
5. i = i+1; goto 2.

Fig. 2. Breadth First Search algorithm.

6 Loop Search Algorithm

The notion of a full merged step clause is quite involved and the search for appropriate
merging of simpler clauses is computationally hard. Finding setsof such full merged
clauses needed for the temporal resolution rule is even moredifficult. In Fig. 2 we
present a search algorithm that finds aloop formula(cf. page 5)—a disjunction of the
left-hand sides of full merged step clauses that together with an eventuality literal form
the premises for the temporal resolution rule. The algorithm is based on a Dixon’s loop
search algorithm for the propositional case [4]. For the sake of space, in what follows
we consider non-ground eventualities only. The algorithm and the proof of its properties
for the ground case can be obtained by considering merged derived step clauses instead
of the general case and by deleting the parameter “x” and quantifiers. We are going
to show now that the algorithm terminates (Lemma 5), its output is a loop formula
(lemmas 6 and 7), and temporal resolution is complete if we consider only the loops
generated by the algorithm (Theorem 4).

Lemma 4. For the formulae Hi(x), i ≥ 0, constructed by the BFS algorithm, the fol-
lowing holds:∀x(Hi+1(x)⇒ Hi(x)).

Lemma 5. The BFS algorithm terminates.

Proof There are only finitely many differentHi(x). Therefore, either there existsk such
thatHk(x)≡ falseand the algorithm terminates by step 3, or there existl ,m: l < msuch
that∀x(Hl(x)≡ Hm(x)). In the latter case, by Lemma 4 we have∀x(Hm−1(x)⇒ Hl (x)),
that is∀x(Hm−1(x)⇒ Hm(x)). By step 4, the algorithm terminates. ✷

Lemma 6. Let H(x) be a formula produced by the BFS algorithm. Then∀x(U ∧
H(x)⇒ ❣ ¬L(x)).

Lemma 7. LetP be a monodic temporal problem,L be a loop in♦L(x) ∈ E , andL(x)
be its loop formula. Then for the formula H(x), produced by the BFS algorithm on
♦L(x), the following holds:∀x(L(x)⇒ H(x)).



The proof of the completeness theorem goes by showing that there exists an eventuality
♦L(x) ∈ E and a loopL = {∀x(Ai(x)⇒ ❣Bi(x))}k

i=1 such that the application of the
eventuality resolution rule to♦L(x) andL leads to the deletion of some vertices from
the eventuality graph. A vertexC is deleted if the categorical formula,FC , together
with the universal part,U, is satisfiable, butFC ∧∀x¬

∨k
j=1 A j(x)∧U is unsatisfiable.

Theorem 4. Temporal resolution is complete if we restrict ourselves toloops found by
the BFS algorithm.

Note 2. The need to includeall full merged step clauses satisfying some particular
conditions intoNi+1 might lead to quite extensive computations. Note however that due
to the trivial fact that if∀x(A(x)⇒ B(x)) then∀x((A(x)∨B(x))≡ B(x)), we can restrict
the choice to only those full merged step clauses whose left-hand sides do not imply the
left-hand side of any other clause inNi+1 yielding a formulaH ′

i+1(x) equivalent to the
original formulaHi+1(x).

Example 5.Let us consider an unsatisfiable monodic temporal problem,P, given by
I = {∃xA(x)}, U = {∀x(B(x)⇒ A(x)∧¬L(x))}, S = {A(x)⇒ ❣B(x)}, E = {♦L(x)}
and apply the BFS algorithm to♦L(x).

The set of all full merged step clauses,N1, whose right-hand sides imply¬L(x), is:

(∀yA(y)) ⇒ ❣(∀yB(y)), (6)

(A(x)∧∀yA(y)) ⇒ ❣(B(x)∧∀yB(y)), (7)

(A(x)∧∃yA(y)) ⇒ ❣(B(x)∧∃yB(y)). (8)

Note that∀x(∀yA(y)⇒A(x)∧∀yA(y)) and∀x(A(x)∧∀yA(y))⇒A(x)∧∃yA(y)); there-
fore, clauses(6) and(7) can be deleted fromN1 yielding N′

1 = {(A(x)∧∃yA(y)) ⇒
❣(B(x)∧∃yB(y))} andH ′

1(x) = (A(x)∧∃yA(y)).
The set of all full merged step clausesN2 whose right-hand sides implyL(x)∧H ′

1(x)
coincides withN1 and the output of the algorithm isH ′

2(x) ≡ H ′
1(x). The conclusion of

the eventuality resolution rule,∀x¬A(x)∨¬∃yA(y), simplified to∀x¬A(x), contradicts
the initial part of the problem.

Note that all full merged step clauses fromN1 are loops in♦L(x), but both con-
clusions of the eventuality resolution rule, applied to theloops (6) and (7), can be
simplified to∃x¬A(x) which does not contradict the initial part.

7 Conclusion and future work

In this paper, we have introduced a resolution-based calculus for the monodic fragment
of first-order temporal logic. We have shown that the calculus is sound and complete
and considered some problems of implementation. We have suggested an algorithm
that “guides” the search for loops in order to avoid unnecessary enumeration of all
possibilities. We are going to refine also the step resolution rule in a way similar to the
original temporal resolution method for the propositionalcase [5] that could serve as a
basis for a practical implementation.

An alternative tableaux-based approach [10] also utilisessimilar “separation” ideas
dividing the proof search procedure intotemporalandfirst-order parts. Note that the



method in [10] requires the first-order component to give a finite representation ofall
possiblefirst-order models; whereas our method requires from it justanyes/noanswer
(to test side conditions of the rules of temporal resolution). Our procedure is a deci-
sion procedure when the side condition checks are decidable, and is a semi-decision
procedure otherwise.
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