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Abstract
Temporal reasoning is widely used within both
Computer Science and Artificial Intelligence. The
basic idea of proof, within propositional, discrete
temporal logics, is both intuitive and appealing.
However, the underlying complexity of such dis-
crete temporal logics has led to use of either simpli-
fied formalisms, such as temporal interval algebras,
or simplified techniques, such as model checking.
In this paper we show that tractable sub-classes of
propositional linear temporal logic can be devel-
oped, based on the use of XOR fragments of the
logic. We not only show that such fragments can be
decided, tractably, via clausal temporal resolution,
but also show the benefits of combining multiple
XOR fragments. For such combinations we estab-
lish completeness and complexity (of the resolution
method), and also describe how such a temporal
language might be used in a number of application
areas, for example the verification of multi-agent
systems. This new approach to temporal reasoning
provides a framework in which tractable temporal
logics can be engineered by intelligently combining
appropriate XOR fragments.

1 Introduction
Temporal logics have been used to describe a wide variety of
systems, from both Computer Science and Artificial Intelli-
gence. The basic idea of proof, within propositional, discrete
temporal logics, is also both intuitive and appealing. How-
ever the complexity of satisfiability for such logics is high.
For example, the complexity of satisfiability for propositional
linear time temporal logic (PTL) is PSPACE-complete[Sistla
and Clarke, 1985]. Consequently, model checking[Clarke
et al., 1999] has received much attention it also allows users
to check that a temporal property holds for some underlying
model of the system.

Often temporal problems involve an underlying structure,
such as an automaton, where a key property is that the au-
tomaton can be in exactly one state at each moment. Such
problems frequently involve several process or agents, each
with underlying automaton-like structures, and we are inter-
ested in properties relating to how the agents progress under

particular models of concurrency such as synchrony, asyn-
chrony etc., or particular coordination or cooperation actions.

In this paper we consider a new fragment of PTL that incor-
porates the use of XOR operators, denoted(q1⊕q2⊕. . .⊕qn)
meaning that exactly oneqi holds for 1 ≤ i ≤ n. Since
the complexity of unsatisfiability for XOR clauses in classi-
cal propositional logic is low[Schaefer, 1978], there is the
potential to carry much of this over to the temporal case.

Thus, in this paper we provide several results. First, we in-
troduce the PTL fragment to be considered, called TLX, and
show a complete clausal resolution system for this. The frag-
ment allows us to split the underlying set of propositions into
distinct subsets such that each subset (except one) represents
a set of propositions where exactly one proposition can hold
(termedXOR sets); the remaining set has no such constraints.
Then we show that deciding unsatisfiability of specifications
in such a logic is, indeed, tractable.

2 XOR Temporal Logic
The logic we consider is called “TLX”, and its syntax and se-
mantics essentially follow that of PTL[Gabbayet al., 1980],
with models (isomorphic to the Natural Numbers,N) of the
form: σ = t0, t1, t2, t3, . . . where each state,ti, is a set of
proposition symbols, representing those proposition symbols
which are satisfied in theith moment in time. The notation
(σ, i) |= A denotes the truth (or otherwise) of formulaA in
the modelσ at state indexi ∈ N. This leads to semantic rules:
(σ, i) |= gA iff (σ, i + 1) |= A
(σ, i) |= ♦A iff ∃k ∈ N. (k > i) and(σ, k) |= A
(σ, i) |= A iff ∀j ∈ N. if (j > i) then(σ, j) |= A

For any formulaA, modelσ, and state indexi ∈ N, then
either(σ, i) |= A holds or(σ, i) |= A does not hold, denoted
by (σ, i) 6|= A. If there is someσ such that(σ, 0) |= A, then
A is said to besatisfiable. If (σ, 0) |= A for all models,σ,
thenA is said to bevalid and is written|= A.

The main novelty in TLX is that it is parameterised by
XOR-setsP1, P2,. . . , and the formulae of TLX(P1,P2, . . .)
are constructed under the restrictions thatexactlyone propo-
sition from every setPi is true in every state. For example, if
we consider just one set of propositionsP, we have

(p1 ⊕ p2 ⊕ . . . ⊕ pn) .

Furthermore, we assume that there exists a set of proposi-
tions in addition to those defined by the parameters, and that



these propositions are unconstrained as normal. Thus, TLX()
is essentially a standard propositional, linear temporal logic,
while TLX(P,Q,R) is a temporal logic containing atleast
the propositionsP ∪ Q ∪ R, whereP = {p1, p2, . . . , pl},
Q = {q1, q2, . . . , qm}, andR = {r1, r2, . . . , rn}, but also
satisfying

[(p1⊕p2⊕. . .⊕pl)∧(q1⊕q2⊕. . .⊕qm)∧(r1⊕r2⊕. . .⊕rn)]

2.1 Normal Form
Assume we haven sets of XOR propositionsP1 =
{p11, . . . p1N1

}, . . ., Pn = {pn1, . . . pnNn
} and a set of ad-

ditional propositionsA = {a1, . . . aNa
}. In the following:

•
∧

P−
ij denotes a conjunction of negated XOR propositions

from the setPi;

•
∨

P+

ij denotes a disjunction of (positive) XOR proposi-
tions from the setPi;

•
∧

Ai denotes a conjunction of non-XOR literals;

•
∨

Ai denotes a disjunction of non-XOR literals.

A normal form for TLX is of the form
∧

i Ci where each
Ci is aninitial , stepor sometimeclause (respectively) as fol-
lows:
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∨

P+

1i ∨ . . . ∨
∨
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Ai
∧

P−
1j ∧ . . .

∧

P−
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∧
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∨
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Aj)

true ⇒ ♦(
∨
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1k ∨ . . . ∨
∨

P+

nk ∨
∨

Ak).

Note that due to the semantics of the XOR clauses, ifi 6= k

pji ∧ pjk ≡ false ¬pji ∨ ¬pjk ≡ true

and
Nj∧

i=1

¬pji ≡ false
Nj∨

i=1

pji ≡ true.

Also pji ≡
∧

pjk∈Pj ,k 6=i

¬pjk ¬pji ≡
∨

pjk∈Pj ,k 6=i

¬pjk

allow us to maintain positive XOR propositions on the right
hand sides of clauses and negated XOR propositions on the
left hand side of clauses.

2.2 Resolution Rules
We decide the validity of formulae in TLX using a form of
clausal temporal resolution[Fisheret al., 2001]. The reso-
lution rules are split into three types:initial resolution, step
resolutionand temporal resolution. These are presented in
Fig. 1. Initial resolution resolves constraints holding inthe
initial moment in time. Step resolution involves resolvingtwo
step clauses or deriving additional constraints when a contra-
diction in the next moment is derived. Temporal resolution
resolves a sometime clause with a constraint that ensures that
the right hand side of this clause cannot occur.

In the conclusion of the following resolution rules
com(

∨

P+

ij ,
∨

P+

ik) denotes the disjunction of the propositions in

both
∨

P+

ij and
∨

P+

ik or falseif there are no propositions common
to both. For example,com(p1 ∨ p2, p2 ∨ p3) = p2.

Observe that IRESA and SRESA apply classical resolution
to the right hand side of the parent clauses whereas IRESPk

and SRESPk
involve XOR resolution. Note we can only ap-

ply IRESA and SRESA between clauses with complementary
(non-XOR) literals on the right hand side. We can also apply
the IRESPk

and SRESPk
rules to these clauses but the dis-

junct
∨

A1∨
∨

A2 on the right hand side of the conclusion will be
equivalent totrue.

3 Soundness and Completeness
Similarly to [Fisheret al., 2001; Degtyarevet al., 2006], one
can show that whenever the parent clauses are satisfiable then
so is the resolvent. Since all the rules ofinitial , andstepres-
olution follow the same pattern, we first prove the classical
propositional counterpart of the completeness theorem, and
then use it to prove the completeness of temporal resolution.
Consider the followingclassicalset of resolution rules con-
sisting of the ruleRESA:
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and, for everyk ∈ {1, . . . , n}, the ruleRESPk
:
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∨
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∨
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∨
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Lemma 1 If a set of classical propositional clauses is unsat-
isfiable than its unsatisfiability can be established by the rules
RESA andRESPk

in O(N1 ×N2 × · · · ×Nn × 2Na) time.

Proof: First we show that if an unsatisfiable set of clauses
C does not contain non-XOR literals, then its unsatisfiability
can be established by rulesRESPk

. Note that any such set of
clausesC is unsatisfiable if, and only if, for everyl, 0 < l ≤
n, and every set of propositionsp1, p2, . . . , pl, wherepi ∈
Pi, the setCp1,...,pl

of clauses fromC, which containnone of
p1,. . . ,pl, is nonempty. Indeed, otherwise every clause from
C contains at least one of the propositionsp1,. . .pl, so making
p1, . . . , pl true satisfiesC.

Assume all clauses fromC consist of propositions fromP1,
. . . , Pk only (originally, k = n) and show that with the rule
RESPk

one can obtain an unsatisfiable set of clausesC′ in
which all clauses consist of propositions fromP1,. . . , Pk−1

only.
Take arbitrary propositionsp1 ∈ P1, p2 ∈ P2, . . .pk−1 ∈

Pk−1 and take arbitrary clausesC1 ∈ Cp1,p2,...,pk−1,pk,1
,

C2 ∈ Cp1,p2,...,pk−1,pk,2
,. . . ,CNk

∈ Cp1,p2,...,pk−1,pk,Nk
. Ap-

plying rule RESPk
to C1,. . . , CNk

one can obtain a clause
C ′ consisting of propositions fromP1,. . . , Pk−1 only such
that C ′ does not contain any ofp1, . . . , pk−1. The setC′ is
formed from such clausesC ′ for all possible combinations
of p1 ∈ P1, p2 ∈ P2, . . .pk−1 ∈ Pk−1. Clearly, for everyl,
0 < l ≤ n, and every set of propositionsp1, p2, . . . , pl, where
pi ∈ Pi, the setC′

p1,...,pl
is nonempty, hence,C′ is unsatisfi-

able. Applying this reasoning at mostn times, one can obtain
an empty clause.

Consider now a set of clausesC, which may contain non-
XOR literals. For arbitraryp1 ∈ P1,. . .pn ∈ Pn con-
sider Cp1,...,pn

. Similarly to the previous case, every such



Initial Resolution:

IRESA
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For everyk ∈ {1, . . . , n} we have the rule.
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Step Resolution:
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For everyk ∈ {1, . . . , n} we have the rule
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Temporal Resolution:

TRES
L ⇒ (¬

∨

P+
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∧ . . . ∧ ¬

∨
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n1
∧ ¬A1)

true ⇒ ♦(
∨

P+
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∨ . . . ∨

∨

P+

n1
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start ⇒ ¬L true ⇒ g¬L

Figure 1: Resolution Rules for the XOR Fragment

Cp1,...,pn
should be nonempty. Consider the setC̃p1,...,pn

of clauses obtained by deleting all XOR-propositions from
clauses ofCp1,...,pn

. Every C̃p1,...,pn
must be unsatisfiable

(otherwise, extending the satisfying assignment forC̃p1,...,pn

with p1, . . . , pn we satisfy all the clauses inC). Then clas-
sical binary resolution will be able to prove unsatisfiability
of C̃p1,...,pn

. Applying RESA “in the same way”, one can
obtain a clauseC ′, which does not contain neither non-XOR
literals, norp1, . . . , pn. The setC′, formed from such clauses
C ′ for all possible combinations ofp1 ∈ P1, p2 ∈ P2,
. . .pk−1 ∈ Pk−1, is an unsatisfiable set of clauses not con-
taining non-XOR literals.

Finally, one can see that it is possible to implement the
described procedure inO(N1 ×N2 × · · · ×Nn × 2Na) time.
�

Next we sketch the proof of completeness of temporal resolu-
tion, which is obtained combining the ideas of[Fisheret al.,
2001; Degtyarevet al., 2002] and Lemma 1.

Definition 1 (Behaviour Graph) We split the set of tempo-
ral clauses into three groups. LetI denote theinitial clauses;

T be the set of allstep clauses; andE be thesometime
clauses.

Given a set of clauses over a set of propositional symbols
P, we construct a finite directed graphG as follows. The
nodes ofG are interpretations of the set of propositions, that
satisfy the XOR constraints over the XOR subsets. Notice
that, because of the XOR-constraints, exactly one proposi-
tion from each set of XOR propositionsPi and any subset of
propositions inA are true inI. This means that there at at
mostN1×N2×· · ·×Nn×2Na nodes in the behaviour graph.

For each node,I, we construct an edge in G to a nodeI ′

if, and only if, the following condition is satisfied:

• For every step clause(P ⇒ gQ) ∈ T , if I |= P then
I ′ |= Q.

A node,I, is designated an initial node ofG if I |= I. The
behaviour graphG of the set of clauses is the maximal sub-
graph ofG given by the set of all nodes reachable from initial
nodes.

If G is empty then the setI is unsatisfiable. In this case there
must exist a derivation by IRESA and IRESPk

as described in
Lemma 1 (and inO(N1 × N2 × · · · × Nn × 2Na) time).
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1. start ⇒ st

2. st ⇒ g(st ∨ sb)
3. sb ⇒ gsw

4. sa ⇒ gst

5. sw ⇒ g(sw ∨ sa)
6. true ⇒ ♦¬st

7. start ⇒ ts
8. ts ⇒ gtr
9. tr ⇒ g(tr ∨ tf )
10. tf ⇒ gts

("receiving")

r

ts

tf("finish")

("start")

t

Figure 2: Automata for agentsS andT , together with corresponding clauses in normal form.

Now supposeG is not empty. LetI be a node ofG which
has no successors. Let{(Pi ⇒ gQi)} be the set of all
step clauses such thatI |= Pi, then∧Qi is unsatisfiable.
Using Lemma 1, one can show that step resolution proves
∧Pi ⇒ gfalse. After the set of clauses is extended by the
conclusion of theCONV rule, ∨¬Pi, the nodeI is deleted
from the graph.

In the case when all nodes ofG have a successor, a
contradiction can be derived with the help of the tempo-
ral resolution ruleTRES. Note that we impose no restric-
tion on this rule (it coincides with the temporal resolution
rule for the general calculi presented in[Fisheret al., 2001;
Degtyarevet al., 2002]) and the proof of completeness is no
different from what is already published[Fisheret al., 2001;
Degtyarevet al., 2002].

4 Complexity
Again, we consider initial and step resolution first.

Lemma 2 Using the rules of initial and step resolution, it
is possible to reduce a set of temporal clauses to one whose
behaviour graph does not have nodes without successors in

O
((

N1 × N2 × · · · × Nn × 2Na
)3

)
time.

Proof: Consider the following resolution strategy. For every
set of propositionsp1 ∈ P1,. . . ,pn ∈ Pn anda ∈ A, consider
the set of all step-clauses

∧

A1 ∧
∧

P−
11 ∧ . . .

∧

P−
n1 ⇒ g(

∨

P+

11 ∨ . . .
∨

P+

n1 ∨
∨

A1)

such that
∧

A1,
∧

P−
11, . . . , . . .

∧

P−
n1 do not contain any of

a, p1, . . . , pn (there are at mostN1 × N2 × · · · × Nn × 2Na

such sets of clauses), and try establishing the unsatisfiabil-
ity of the conjunction of the right-hand sides together with
the universal clauses by step resolution (as Lemma 1 shows,
this can be done inO(N1 × N2 × · · · × Nn × 2Na) time.
Then, all nodes without successors will be deleted from the
behaviour graph (but some new such nodes may emerge). Af-
terN1 ×N2 × · · ·×Nn × 2Na repetitions, we obtain a graph
in which every node has a successor. �

Lemma 3 Given a set of temporal clauses, it is possible to
find L such thatL ⇒

∧

k

¬qk, as required for theTRES

rule, in time polynomial inN1 × N2 × · · · × Nn × 2Na .

Proof: To find suchL, it suffices to find a strongly con-
nected component in the behaviour graph of the set of clauses,
such that for every nodeI of this component,I |=

∧
k ¬qk.

The simplest brute-force algorithm would analyse all pairsof
nodes (and there are(N1×N2×· · ·×Nn×2Na)2 such pairs),
and this can be done more efficiently with step resolution as
in [Degtyarevet al., 2006]. �

Theorem 4 If a set of temporal clauses is unsatisfiable, tem-
poral resolution will deduce a contradiction in time polyno-
mial in N1 × N2 × · · · × Nn × 2Na .

5 Example
Having described the underlying approach, we will now con-
sider an example that makes use of some of these aspects.
In particular, we will have multiple XOR fragments, together
with standard propositions (unconstrained by XOR clauses).
The example we will use is a simplification and abstraction
of agent negotiation protocols; see, for example[Ballarini et
al., 2006]. Here, several (in our case, two) agents exchange
information in order to come to some agreement. Each agent
essentially has a simple control cycle, which can be repre-
sented as a finite state machine. In fact, we have simplified
these still further, and sample basic control cycles are given
in Fig. 2 (for both agentsS andT ).

Thus, we aim to use these automata as models of the
agents, then formalise these within our logic. Importantly,
we will add additional clauses (and propositions) characteris-
ing agreements or concurrency and, finally, we will show how
our resolution method can be used to carry out verification.

We begin by characterising each agent separately as a set
of clauses within our logic. To achieve this, we use a set of
propositions for each agent. Thus, the automaton describing
agentS is characterised through propositions of the formsa,
sb, etc., while the automaton describing agentT is charac-
terised using propositions such astr, ts, etc. Both these sets
are XOR sets. Thus, exactly one ofsa, sb, . . ., and exactly
one oftr, ts, . . ., must be true at any moment in time.

Now, the set of clauses characterising the two automata are
given in Fig. 2. Regarding automatonS’s description, note
that clause 6 ensures that the automaton is infinitely often in



1. start ⇒ st

2. ¬sb ∧ ¬sw ∧ ¬sa ⇒ g(st ∨ sb)
3. ¬st ∧ ¬sw ∧ ¬sa ⇒ gsw

4. ¬st ∧ ¬sb ∧ ¬sw ⇒ gst

5. ¬st ∧ ¬sb ∧ ¬sa ⇒ g(sw ∨ sa)
6. true ⇒ ♦(sb ∨ sw ∨ sa)
7. start ⇒ ts
8. ¬tr ∧ ¬tf ⇒ gtr
9. ¬ts ∧ ¬tf ⇒ g(tr ∨ tf )

10. ¬ts ∧ ¬tr ⇒ gts
11. true ⇒ ♦agree

12. (agree ∧ ¬st ∧ ¬sb ∧ ¬sa ∧ ¬ts ∧ ¬tf ) ⇒ gsa

13. (agree ∧ ¬st ∧ ¬sb ∧ ¬sa ∧ ¬ts ∧ ¬tf ) ⇒ gtf
14. (¬agree ∧ ¬st ∧ ¬sb ∧ ¬sa) ⇒ gsw

15. (¬agree ∧ ¬ts ∧ ¬tf ) ⇒ gtr
16. (agree ∧ ¬st ∧ ¬sb ∧ ¬sa ∧ ¬tr) ⇒ gsw

17. (agree ∧ ¬sw ∧ ¬ts ∧ ¬tf ) ⇒ gtr

18. true ⇒ g(sb ∨ sw ∨ sa ∨ tr ∨ tf )
19. (¬st ∧ ¬sb ∧ ¬sw ∧ ¬ts ∧ ¬tr) ⇒ gfalse [18, 10, 4 SRESPk

]
20. true ⇒ g(st ∨ sb ∨ sw ∨ ts ∨ tr) [19 CONV]
21. (agree ∧ ¬st ∧ ¬sb ∧ ¬sa ∧ ¬ts ∧ ¬tf ) ⇒ gfalse [20, 12, 13 SRESPk

]
22. true ⇒ g(¬agree ∨ st ∨ sb ∨ sa ∨ ts ∨ tf ) [21 CONV]
23. (¬agree ∧ ¬st ∧ ¬sb ∧ ¬sa ∧ ¬ts ∧ ¬tf ) ⇒ g¬agree [22, 14, 15 SRESPk

]
24. true ⇒ g(agree ∨ st ∨ sb ∨ sa ∨ ts ∨ tf ) [23, 15, 14, 11 TRES]
25. true ⇒ g(st ∨ sb ∨ sa ∨ ts ∨ tf ) [24, 22 SRESA]
26. (¬st ∧ ¬sw ∧ ¬sa) ⇒ g(ts ∨ tf ) [25, 3 SRESPk

]
27. (¬agree ∧ ¬st ∧ ¬sw ∧ ¬sa ∧ ¬ts ∧ ¬tf ) ⇒ gfalse [26, 15 SRESPk

]
28. true ⇒ g(agree ∨ st ∨ sw ∨ sa ∨ ts ∨ tf [27 CONV]
29. (agree ∧ ¬st ∧ ¬sw ∧ ¬sa ∧ ¬ts ∧ ¬tf ) ⇒ gfalse [26, 17 SRESPk

]
30. true ⇒ g(¬agree ∨ st ∨ sw ∨ sa ∨ ts ∨ tf ) [29 CONV]
31. true ⇒ g(st ∨ sw ∨ sa ∨ ts ∨ tf ) [28, 30 SRESA]
32. ¬sb ∧ ¬sw ∧ ¬sa ⇒ g(st ∨ ts ∨ tf ) [31, 2 SRESPk

]
33. (¬agree ∧ ¬sb ∧ ¬sw ∧ ¬sa ∧ ¬ts ∧ ¬tf ) ⇒ gst [32, 15 SRESPk

]
34. (agree ∧ ¬sb ∧ ¬sw ∧ ¬sa ∧ ¬ts ∧ ¬tf ) ⇒ gst [32, 17 SRESPk

]
35. true ⇒ g(sb ∨ sw ∨ sa ∨ ts ∨ tf ) [33, 15, 34, 17, 6 TRES]
36. (¬agree ∧ ¬st ∧ ¬sb ∧ ¬sw ∧ ¬ts ∧ ¬tf ) ⇒ gfalse [35, 15, 4 SRESPk

]
37. true ⇒ g(agree ∨ st ∨ sb ∨ sw ∨ ts ∨ tf ) [36 CONV]
38. (agree ∧ ¬st ∧ ¬sb ∧ ¬sw ∧ ¬ts ∧ ¬tf ) ⇒ gfalse [35, 17, 4 SRESPk

]
39. true ⇒ g(¬agree ∨ st ∨ sb ∨ sw ∨ ts ∨ tf ) [38 CONV]
40. true ⇒ g(st ∨ sb ∨ sw ∨ ts ∨ tf ) [37, 39 SRESA]
41. true ⇒ g(ts ∨ tf ) [40, 35, 31, 25 SRESPk

]
42. ¬tr ∧ ¬tf ⇒ gfalse [41, 8 SRESPk

]
43. start ⇒ tr ∨ tf [42 CONV]
44. start ⇒ false [43, 7 IRESPk

]

Figure 3: Resolution Proof for Automata Agents Example.

a state other thanst, ensuring that the automaton can not re-
main in statest forever.

We can also characterise how the computations within each
automaton relate. To begin with, we assume a simple, syn-
chronous, concurrent model where both automata make a
transition at the same time (see Section 5 for variations on
this). Next we add a key aspect in negotiation protocols,
namely a description of what happens when anagreementis
reached. In our example, this is characterised as a synchro-
nised communication act. Logically, we use the proposition
agree to denote this, and add the following clauses.

11. true ⇒ ♦agree

12. (agree ∧ sw ∧ tr) ⇒ gsa

13. (agree ∧ sw ∧ tr) ⇒ gtf
14. (¬agree ∧ sw) ⇒ gsw

15. (¬agree ∧ tr) ⇒ gtr
16. (sw ∧ agree ∧ ¬tr) ⇒ gsw

17. (¬sw ∧ agree ∧ tr) ⇒ gtr

Here, we say that agreementswill occur infinitely often in
the future (clause11). Clauses12 and13 capture the exact
synchronisation. If an agreement occurs while automatonS is
in statesw and automatonT is in tr, then the automata make
transitions forward to statessa andtf respectively. Finally,
clauses14–17 ensure that, if no synchronised agreement is
possible, then the automata remain in their relevant states.

The clauses above represent the specification of a simple sys-
tem. As an example of how resolution can be used, we also
wish to verify that the system issimultaneouslyin statesst

andts infinitely often. To verify this, we add the negation of
this property, as characterised by clause18:

18. true ⇒ g(¬st ∨ ¬ts)

Thus, if we can derive a contradiction from clauses1–18 then
we know the negated property is valid for this specification.
We first rewrite clauses 1–18 in the correct format for the
normal form. The refutation is given in Figure 3.

The example above essentially captures activity within a



synchronous, truly concurrent, system. If we wish to move to
more complex models of computation, we can do so, essen-
tially by introducing the notion of aturn. Thus, when it is au-
tomatonS’s turn to move,turns is true; when it is automaton
T ’s turn to move,turnt is true. Then, each clause describ-
ing an automaton transition, for example,3. sb ⇒ gsw is
replaced by two clauses

3a. (sb ∧ turns) ⇒ gsw

3b. (sb ∧ ¬turns) ⇒ gsb .

In the example above,turns and turnt are effectively both
true together (and forever). However, we can modify the
synchronisation clauses and model a different form of con-
currency. For example, if we were to introduceinterleaving
concurrency, we might use the following clauses1:

start ⇒ turns turns ⇒ gturnt turnt ⇒ gturns

If we go further still, and introduce an asynchronous model
of concurrency, then we might get

true ⇒ ♦turns true ⇒ ♦turnt

In both the above cases if we want to ensure that exactly
one of turns and turnt hold at each moment we implic-
itly have (turns ⊕ turnt) and so we are effectively using
TLX(S,T ,{turns , turnt}).

6 Concluding Remarks and Related Work
In this paper we have developed a tractable sub-class of tem-
poral logic, based on the central use of XOR operators. This
logic can be decided, tractably, via clausal temporal resolu-
tion. Importantly, multiple XOR fragments can be combined.
This new approach to temporal reasoning provides a frame-
work in which tractable temporal logics can be engineered by
intelligently combining appropriate XOR fragments.

The complexity result means that TLX is more amenable
to efficient implementation than other similar temporal log-
ics. Moreover, since no two propositions from the same XOR
set can occur in the right- (or left-) hand side of any temporal
clause, one can efficiently represent disjunctions of (positive)
propositions (and conjunctions of negated propositions) as bit
vectors and the rules of temporal resolution as bit-wise oper-
ations on such bit vectors. Thus, temporal reasoning in TLX
can be efficient not only in theory, but also in practice.

Demri and Schnoebelen [2002] consider sub-fragments of
PTL, particularly those restricting the number of proposi-
tions, the temporal operators allowed, and the depth of tem-
poral nesting in formulae. Demri and Schnoebelen show that,
since the formulae tackled in practical model checking often
fall within such fragments, then this provides a natural expla-
nation for the viability of model checking in PTL.

Recent results relating to a clausal resolution calculus for
propositional temporal logics can be found in[Fisheret al.,
2001; Hustadt and Konev, 2003; Hustadtet al., 2004]. Since
deciding unsatisfiability of PTL is also PSPACE-complete,
then deductive verification of PTL formulae would seem to be
an impractical way to proceed. However, just as Demri and

1Note that a different model of concurrency might also require
modification in theagreementclauses.

Schnoebelen showed how PTL model checking can be seen
as being tractable when we consider fragments of PTL, so
we have been examining fragments of PTL that allow clausal
resolution to be tractable.

Related to the fragment presented in this paper is a more
restricted case in[Dixon et al., 2006]. In that paper, a par-
ticular fragment allowing two XOR sets of propositions but
where the allowable clauses were further restricted is consid-
ered and corresponding resolution calculus given. This re-
stricted fragment is used to represent Büchi Automata so that
an the set of clauses representing a Büchi Automaton is satis-
fiable if and only if the B̈uchi Automaton is non-empty. The
complexity of applying the resolution calculus is polynomial.
Further, it is easy to show that every resolvent within the cal-
culus of[Dixon et al., 2006] can be derived by applying res-
olution rules (possibly several times) from the resolutioncal-
culus proposed in this paper restricted to two XOR sets and
no additional propositions.
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