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Abstract. Often when modelling systems, physical constraints on the resources
available are needed. For example, we might say that at most N processes can
access a particular resource at any moment or exactly M participants are needed
for an agreement. Such situations are concisely modelled where propositions are
constrained such that at most N , or exactly M , can hold at any moment in time.
This paper describes both the logical basis and a verification method for propo-
sitional linear time temporal logics which allow such constraints as input. The
method incorporates ideas developed earlier for a resolution method for the tem-
poral logic TLX and a tableaux-like procedure for PTL. The complexity of this
procedure is discussed and case studies are examined. The logic itself represents
a combination of standard temporal logic with classical constraints restricting the
numbers of propositions that can be satisfied at any moment in time.

1 Introduction

Although temporal logic is widely used in the specification and verification of con-
current and reactive systems [21, 20] , there are cases where full temporal logic is too
expressive. In particular, if we wish to describe the temporal properties of a restricted
number of components, not all of which can occur at every moment in time, then the full
temporal language forces us to describe the behaviour of all these components explic-
itly. In [8], it was shown that, simply by incorporating “exactly one” constraints into a
propositional temporal logic, much better computational complexity could be achieved.
Essentially, the basic set of propositions within the temporal logic was partitioned into
“exactly one” sets. So

Props = X1 ∪ X2 ∪ . . . ∪ Xn

where each Xi is disjoint. Then the propositions within each “exactly one” set, for
example

X1 = {p1, p2, p3, p4}

were implicitly constrained so that, at any moment in time, exactly one of p1, p2, p3,
or p4 is satisfied. Not only did this allow the concise specification of examples such
as the representation of automata, planning problems, and agent negotiation protocols,
but also greatly reduced the complexity of the associated decision procedure [7, 8].
Essentially, this is because (as the name suggests) exactly one element of each “exactly
one” set must be satisfied at every temporal state. So, in the above example, we can
only have exactly one of p1, p2, p3, or p4 in any state; we can never have combinations
of these propositions holding at the same moment or none of them holding.



Although being able to constrain the logic so that exactly one of a particular set
of propositions is satisfied is useful, especially for representing finite automata, we
have found this to be quite restrictive at times. So, in this paper, we will generalise
the approach from [8] beyond simply “exactly one” sets. We will allow the specifier to
constrain the logic so that up to k propositions, or exactly k propositions from some
subset of propositions, are true at any moment in time. Thus, in this paper, rather than
working with a temporal logic extended with “exactly one” sets, we instead use more
flexible constrained sets, which provide more sophisticated restrictions on the capacity
within the logic. Note that this approach involves reasoning in the presence of con-
straints rather than reasoning about them. That is, the resulting logic represents a com-
bination of standard temporal logic with (fixed) constraints that restrict the numbers of
propositions that can be satisfied at any moment in time.

This new approach is particularly useful for:

– ensuring that a fixed bound is kept on the number of propositions satisfied at any
moment to prevent overload;

– in finite collections of communicating automata, ensuring that no more than k au-
tomata are in a particular state;

– modelling restrictions on resources, for example at most k vehicles are available or
there are at most k seats available;

– modelling the necessity to elect exactly k from n participants.

Motivating Example. Consider a fixed number, n, of robots that can each work, rest or
recharge. We assume that that there are only k < n recharging points and only j < n

workstations. Let:

– worki represent the fact that robot i is working;
– resti represent the fact that robot i is resting; and
– rechargei represent the fact that robot i is recharging.

Now, we typically want to specify that exactly j of the n robots are working at any one
time. In the syntax given later, such a logic might be defined as TLC(W=j ,R<k+1),
where

W=j = {work1, . . . , workn}
R<k+1 = {recharge1, . . . , rechargen}

This represents the logic with the constraints that exactly j robots must work at any
moment and at most k can recharge at any moment.

The above represents exactly the kind of logical base and case studies we consider in
this paper.

The paper is organised as follows. Section 2 gives the syntax and semantics of the con-
strained temporal logic, together with a normal form for this logic. Section 3 addresses
its complexity. In Section 4 we show how to construct a structure representing the un-
derlying models of formulae and relate satisfiability of the formula with a property of
the structure. In Section 5 we provide examples and, in Section 6 we provide concluding
remarks, incorporating both related and future work.



2 A Constrained Temporal Logic

The logic we consider is called “TLC”, and its syntax and semantics essentially fol-
low that of PTL [12], with models being isomorphic to the Natural Numbers, N.
The main novelty in TLC is that it is parameterised by (not necessarily disjoint)
sets Pr1,d1

1 , Pr2,d2

2 ,. . . , where ri ∈ {=, <} and di ∈ N and the formulae of
TLC(Pr1,d1

1 ,Pr2,d2

2 , . . .) are constructed under the restriction that, dependent on ri ex-
actly or less than di propositions from every set Pri,di

i are true in every state.

For example, consider TLC(P<4, Q=2), where P<4 = {a, b, c, d, e, f}, and Q=2 =
{x, y, z}. Then, at any moment in time, less than four of a, b, c, d, e, or f are true, and
exactly two of x, y, or z are true.

Furthermore, we assume that there exists a set of propositions, A, in addition to
those defined by the parameters, and that these propositions are unconstrained as normal
in PTL. The set A is disjoint with

⋃

i

Pri,di

i .

Thus, TLC with no parameters, i.e. TLC( ) is essentially a standard propositional, linear
temporal logic, while TLC(P=1,Q=1,R=1) is a temporal logic containing the sets of
propositions P ,Q, andR, where these sets are constrained by a standard “exactly one”
operator as in [7].

2.1 TLC Syntax

The future-time temporal connectives that we use include ♦ (sometime in the future),
(always in the future), g(in the next moment in time), U (until), and W (unless,

or weak until). Formally, TLC(Pr1,d1

1 , . . .Prn,dn

n ) formulae are constructed from the
following elements:

– a set, Props = Pr1,d1

1 ∪ . . .Prn,dn

n ∪ A of propositional symbols;
– propositional connectives, true , false , ¬, ∨, ∧, and⇒; and
– temporal connectives, g,♦, , U , andW .

The set of well-formed formulae of TLC, denoted by WFF, is inductively defined as the
smallest set satisfying the following.

– Any element of Props and true and false are in WFF.
– If A and B are in WFF then so are

¬A A ∨B A ∧B A⇒ B ♦A A AUB AWB gA .

A literal is defined as either a proposition symbol or the negation of a proposition
symbol.



2.2 TLC Semantics

A model for TLC formulae can be characterised as a sequence of states of the form:

σ = t0, t1, t2, t3, . . .

where each state, ti, is a set of proposition symbols, representing those propositions
which are satisfied in the ith moment in time. Note that every ti should satisfy the
constraints on propositions. For example, for TLC(Q=2), every state ti must contain
exactly two propositions from the constraint set Q=2.

The notation (σ, i) |= A denotes the truth of formulaA in the model σ at state index
i ∈ N defined as follows.

(σ, i) |= true

(σ, i) 6|= false

(σ, i) |= p iff p ∈ ti where p ∈ Props

(σ, i) |= A ∧B iff (σ, i) |= A and (σ, i) |= B

(σ, i) |= A ∨B iff (σ, i) |= A or (σ, i) |= B

(σ, i) |= A⇒ B iff (σ, i) |= ¬A or (σ, i) |= B

(σ, i) |= ¬A iff (σ, i) 6|= A

(σ, i) |= gA iff (σ, i+ 1) |= A

(σ, i) |=♦A iff ∃k ∈ N. (k > i) and (σ, k) |= A

(σ, i) |= A iff ∀j ∈ N. if (j > i) then (σ, j) |= A

(σ, i) |= AUB iff ∃k ∈ N. k > i and (σ, k) |= B

and ∀j ∈ N, if i 6 j < k then (σ, j) |= A

(σ, i) |= AWB iff (σ, i) |= AUB or (σ, i) |= A

For any formula A, model σ, and state index i ∈ N, then either (σ, i) |= A holds
or (σ, i) |= A does not hold, denoted by (σ, i) 6|= A. If there is some σ such that
(σ, 0) |= A, then A is said to be satisfiable. If (σ, 0) |= A for all models, σ, then A is
said to be valid and is written |= A. Note that formulae here are interpreted at t0; this is
an anchored definition of satisfiability and validity [9].

2.3 Normal Form

To assist in the definition of the normal form we introduce a further (nullary) connective
‘start ’ that holds only at the beginning of time, i.e.,

(σ, i) |= start iff i = 0.

This allows the general form of the (clauses of the) normal form to be implications.

Assume we have n sets of constrained propositions Pr1,d1

1 = {p11, . . . p1N1
}, . . .,

Prn,dn

n = {pn1, . . . pnNn
} and a set of additional propositions A = {a1, . . . aNa

}.
In the following, small Latin letters, ki, lj , m represent literals in the language Props.
A normal form for TLC is of the form

∧

i Ci where each Ci is an initial, step, or



sometime clause (respectively) as follows:

start ⇒
∨

i

li (initial)
∧

i

k ⇒ g
∨

j

lj (step)

true ⇒ ♦m (sometime)

Theorem 1. [11] Any TLC formula can be transformed into an equi-satisfiable TLC
formula in the normal form with at most a linear increase in the size of the problem.

Transformation into the normal form may introduce new (unconstrained) propositions;
note, however, that many temporal formulae stemming from realistic specifications are
already in the normal form, or very close to the normal form and require few extra
variables for the translation [13].

3 Complexity of TLC

We now prove the upper complexity bound on satisfiability of TLC by an explicit con-
struction of a directed graph known as a behaviour graph. The notion of a behaviour
graph for a set of clauses was introduced in [11]. It is a directed graph for a set of tem-
poral clauses such that (after reductions) any infinite path through the graph is a model
for the set of clauses. Satisfiability of TLC formulae is equivalent to a property of the
graph; in what follows, we estimate the size of the graph and time needed both for its
construction and for checking the property.

Given a formula ϕ in the normal form over a set of (both constrained and uncon-
strained) propositional symbols Props, we construct a finite directed graphG as follows.
The nodes of G are interpretations of Props, satisfying the required constraints.

For each node, I , we construct an edge inG to a node I ′ if, and only if, the following
condition is satisfied:

– For every step rule ,
∧

i

k ⇒ g
∨

j

lj , if I |=
∧

i

k then I ′ |=
∨

j

lj .

A node, I , is designated an initial node of G if I |=
∨

i

li for every initial clause

start ⇒
∨

i

li of the given temporal formula.

The behaviour graph, H , of ϕ is the maximal subgraph of G given by the set of all
nodes reachable from initial nodes. The reduced behaviour graph, HR, of ϕ is a graph
obtained from the behaviour graph of ϕ by repeated deletion of nodes I such that

a) I does not have a successor; or
b) for some eventuality clause true ⇒ ♦m within ϕ, there is no path from I to a

node J where m is true, that is, J |= m.

The following theorem can be obtained by an adaptation of results in [11, 5] to the
terminology of this paper.



Theorem 2. [11, 5] A TLC formula in the normal form ϕ is satisfied if, and only if, its
reduced behaviour graph is non-empty.

The link between the satisfiability of TLC formulae and properties of the behaviour
graph allows us to prove the complexity bound for our logic.

Theorem 3. Satisfiability of a TLC(Pr1,d1

1 , . . .Prn,dn

n ) formula ϕ can be decided in
time

O

(

|ϕ| ×
(

|Pr1,d1

1 |d1 × . . .× |Prn,dn

n |dn × 2|A|
)2

)

where |ϕ| is the length of ϕ, |Pri,di

i | is the size of the set Pri,di

i of constrained proposi-
tions, and |A| is the size of the set A of non-constrained propositions.

Proof. There exist O(|Pr1,d1 |d1 × . . .× |Prn,dn

n |dn × 2|A|) different interpretations of
propositions from Props; moreover, they can all be enumerated in time O(|P r1,d1 |d1 ×
. . . × |Prn,dn

n |dn × 2|A|). Therefore, one can explicitly build the reduced behaviour
graph HR in time O(|ϕ| × (|Pr1,d1 |d1 × . . .× |Prn,dn

n |dn × 2|A|)2).

Corollary 1 If the number n of sets of constrained propositions, the number di of
propositions from the set Pri,di that can be true at any time, and the size |A| of the
set of non-constrained propositions is fixed, satisfiability of TLC(Pr1,d1

1 , . . .Prn,dn

n )
formulae can be decided in polynomial time.

4 Checking Satisfiability

Based on the proof of complexity of TLC given in Section 3, one can provide an algo-
rithm checking the satisfiability of TLC formulae as follows.

4.1 Incremental Algorithm

A straightforward approach is to construct the graph G representing all possible inter-
pretations of Props, and then ‘carve’ the behaviour graph H from G. However, such
a procedure might consider some nodes that are actually unreachable from the initial
nodes and, thus, do excess work. In this section we present an incremental, tableaux-like
algorithm, which avoids building these unnecessary nodes.

Let Assignments(ϕ, cons) be a procedure, which, when given a formula, ϕ, and
a set of constraints on variables, cons, returns the set of all interpretations within
the language Props that both satisfy the conditions cons and make ϕ true. Clearly,
Assignments(ϕ, {Pr1,d1

1 , . . . ,Prn,dn

n }) can be computed deterministically in time
O(int) where int = (|Pr1,d1 |d1 × . . . × |Prn,dn

n |dn × 2|A|) returning at most O(int)
interpretations for any ϕ.



Example. If Props = {p, q, r, s} then Assignments(p ∨ q, {{p, q, r, s}=1})
will return two interpretations: {p,¬q,¬r,¬s} and {¬p, q,¬r,¬s}; whereas
Assignments(p ∨ q, {{p, q}=1, {q, r, s}=2}) will return three: {p,¬q, r, s},
{¬p, q, r,¬s}, and {¬p, q,¬r, s} .

Now, we use Assignments(ϕ, cons) to construct nodes of the behaviour graph H for a
formula ϕ incrementally. Nodes of H can be marked or unmarked. A node is marked
if all its successors are already represented in H , otherwise, it is unmarked. The incre-
mental algorithm is given in detail in Fig. 1. Note that if the set of clauses contains no
initial clauses, then the formula ψ in line 1 of the algorithm is true , and if the con-
junction in line 7 is empty then χ is true . After the behaviour graph is constructed,
we compute the reduced behaviour graph in time quadratic in the size of the behaviour
graph.

1: Let ψ =
V

{Cj | start ⇒ Cj is an initial clause}
2: for all I in Assignments(ψ, cons) do
3: Add an unmarked node I to H
4: end for
5: while Not all nodes in H are marked do
6: Pick an unmarked node I and mark I
7: Let χ =

V

{Dk | Ck ⇒ fDk is a step clause, I |= Ck}
8: for all J in Assignments(χ, cons) do
9: if J is not already in H then

10: Add an unmarked node J to H
11: end if
12: Add an edge (I, J) to H
13: end for
14: end while

Fig. 1. Incremental behaviour graph construction algorithm.

The following theorem follows from the Incremental Algorithm given in Figure 1.

Theorem 4. Given a TLC formula φ, the incremental procedure terminates and builds
the behaviour graph H of φ.

5 Case Studies

In this section we will consider case studies and show how they can be specified and
verified in TLC.

5.1 Multiprocessor Job-shop Scheduling

The first problem we consider is a generalisation of the classic job-shop scheduling
problem, called the Multiprocessor Job-shop Scheduling (MJS) problem [4, 2]. Here,



a set of jobs (j1, j2, . . ., jn) have to be processed on a set of machines running in
parallel. In general, each job might require several processor steps to complete but, to
begin with we will assume each job is completed after only one step; see Fig. 2. While
in these settings deciding if a schedule exists at all is comparatively easy, once we add
constraints such that one job must be run before another, deciding the existence of a
schedule becomes exponentially hard [2].

Processors

Jobs

j1 j2 jn

p1 pk

Fig. 2. Basic Multiprocessor Job Scheduling.

In what follows, we will begin with a basic specification (in TLC) corresponding to
the easy form of the problem, but will then add formulae constraining particular jobs,
thus giving a harder form of problem.

Basic Specification We will now model this in TLC. Assume that we have just one
constrained set

{run1, run2, . . . , runn}
=k .

Since this constrained set is of dimensionality k, then we know that at any moment
in time, exactly k propositions from run1, run2, . . ., runn are satisfied. (N.B., later
we will relax this constraint and allow < (k + 1) propositions to be satisfied at any
moment.)

Now, we define other propositions using the following clauses in the normal form
(for every 1 ≤ i ≤ n):

start ⇒ ¬hasruni

(¬hasruni ∧ ¬runi)⇒ g¬hasruni

runi ⇒ ghasruni

hasruni ⇒ ghasruni

N.B., the last two clauses effectively define runi ⇒ g hasruni.

So, we have defined hasruni to be true if ji has been run in the past.



Now, to allow us to establish some simple properties, we will also constrain each job
to only run once. So, we add (though we must translate to the normal form), for each
1 ≤ i ≤ n

runi ⇒ g ¬runi .

Synthesising a Schedule Let us term the basic system, comprising the above clauses,
as ‘ϕ’. Now, we can simply ask whether

start ⇒ (ϕ⇒♦
n
∧

i=1

hasruni)

is satisfiable or not. In other words, is there a point in the future by which time all jobs
j1, . . ., jn have run?

If this is satisfiable, then there is a way to run the jobs such that exactly k run at
every moment in time. If the above is not satisfiable, then it is not possible to find such
a moment.

However, the strict k bound on the constrained set is a little restrictive, especially
when n is not a multiple of k. So, we can reformulate the problem with a constrained
set {run1, run2, . . . , runn}

<(k+1), allowing at most k jobs to be run at any moment
in time. Thus, checking that

start ⇒ (ϕ⇒♦
n
∧

i=1

hasruni)

is satisfiable tells us whether there is a way to schedule the jobs successfully on k

processors. Note that, since we build a behaviour graph for this, then if the above is
satisfiable we can extract a satisfying linear path from the graph. This path corresponds
to the schedule for achieving the required job runs.

Now, once we know that♦
n
∧

i=1

hasruni is satisfied, we can go further. We can check

start ⇒ (ϕ⇒ gm

n
∧

i=1

hasruni) .

If this is satisfiable, then decrease m and try again; if it is unsatisfiable, increase m and
try again. In this way, we find the minimum value of m such that

gm

n
∧

i=1

hasruni

is satisfied. Thus, there is no way to schedule the jobs any faster than in m steps —
in this sense, we generate an optimal schedule through carrying out such satisfiability
checks. Note that finding an optimal schedule for the MJS problem is typically an NP-
hard problem [4].



Refined Specification Now let us constrain this scenario still further. It is only to be
expected that there will be dependencies between some of the jobs. We can also specify
these simply in TLC. In order to show this, below are some examples.

– job y must run immediately after job x: runx ⇒ gruny

– job b must not run before job a has run: runa ⇒ g♦runb

– jobs p and q must only run at exactly the same time: (runp ⇔ runq)
– jobs f and g must never run simultaneously (¬runf ∨ ¬rung)
– and so on ...

In this way we can specify job interdependencies and, via satisfiability checking, can
extract the (optimal) schedule (if there is one)1.

Note. It is obviously possible to generate a set of job interdependencies such that the
specification is unsatisfiable, for example

(run1 ⇔ run2) ∧ (run2 ⇔ run3) ∧ . . . ∧ (runh−1 ⇔ runh)

where h > k. Thus, it is natural to check satisfiability of the basic specification, ϕ,

before checking♦
n
∧

i=1

¬runi, etc.

5.2 Robots

Consider the robots example outlined earlier. Let us assume there are 5 robots and at
any moment 3 must work and up to 2 may recharge. Further, each robot must do exactly
one of work, rest or recharge at any moment. In the terminology we have provided, the
problem is defined as TLC(W=3,R<3,S=1

1 ,S=1
2 ,S=1

3 ,S=1
4 ,S=1

5 ), where

W=j = {work1, . . . , work5}
R<3 = {recharge1, . . . , recharge5}
S=1

i = {worki, resti, rechargei}

We assume that each robot has a specification relating to when it works, rests and
recharges. For example, we could assume that each robot has the same specification
and that after working for one time unit it must recharge for one time unit.

(worki ⇒ grechargei)

We assume initially that robots 1,2 and 3 are working, i.e.

start ⇒ work1

start ⇒ work2

start ⇒ work3

1 We could also have specified jobs of varying durations (rather than just one step) in TLC.
However, this would have taken more space than was available.



Informally we can see that this specification plus the constraints are unsatisfiable. This
is because at any moment there must be exactly three robots working. The specification
will then require that at the following moment all the three robots that were working in
the previous moment are now recharging which will contradict the constraint relating
to recharging.

Applying the Incremental Algorithm where ψ = work1 ∧ work2 ∧ work3 and

Assignments(ψ, cons) =















{work1, work2, work3, recharge4, recharge5},
{work1, work2, work3, rest4, rest5},
{work1, work2, work3, recharge4, rest5},
{work1, work2, work3, rest4, recharge5}















we add an unmarked node for each assignment to the behaviour graph. Consider the first
of these assignments and call its related node I . Extending the structure we construct χ
from the robot specification. Here χ = recharge1∧recharge2∧recharge3. Now when
we try construct Assignments(χ, cons) we obtain an empty set as χ and the constraints
cannot be satisfied together. Reasoning is similar from the other unmarked nodes, hence
the reduced behaviour graph is empty and the specification plus constraints must be
unsatisfiable.

Next we loosen the robot specifications to say that if a robot has worked for two
moments in time it must recharge in the next moment. To specify this we need an
additional proposition for each robot, xi which holds at the moment after worki holds.
Informally, if xi is true then either we are at the start of time, or the i-th robot has
worked in the previous moment.

(worki ⇒ gxi)
(worki ∧ xi ⇒ grechargei)

Again we assume that robots 1, 2 and 3 must work initially. Now our behaviour graph
construction has an extra five propositions. The specification is now satisfiable, a sample
model being the following.

work1, work2, work3,

recharge4,

rest5, x1, x4, x5

State 0

−→

work2, work3, work4,

recharge1,

rest5, x1, x2, x3

State 1

↖ ↙

work1, work4, work5,

recharge2, recharge3,

x2, x3, x4

State 2

Further, we may want to strengthen the specification to ensure that each robot gets a
chance to work infinitely often.

true ⇒♦worki



We can observe that this is satisfied in the above model.
Finally observing the model suggested above we can see that robot 5 never recharges

as it just works intermittently. To avoid such a situation we may want to specify that the
robot needs to recharge after working for two moments in time since last recharging
even if these moments are not immediately one after the other. Again informally, if yi

is true then either we are at start of time or the i-th robot has worked one time unit since
the last recharge.

(worki ⇒ gyi)
(worki ∧ yi ⇒ grechargei)
(resti ∧ yi ⇒ gyi)
(rechargei ⇒ g¬yi)

Now extending the above model with suitable yi propositions and removing the xi

propositions won’t satisfy the new specification and constraints as robot 5 works in-
finitely often but never gets to recharge. However we can easily specify a model which
does satisfy the new specification and constraints.

work1, work2, work3,

recharge4,

rest5, y1, y5
State 0

−→

work2, work3, work4,

recharge1, recharge5,

y1, y2, y3, y5
State 1

↗ ↓

work1, work2, work5,

recharge4,

rest3, y1, y4, y5
State 3

←−

work1, work4, work5,

recharge2, recharge3,

y2, y3, y4
State 2

5.3 Petri Nets

Consider now 1-safe Petri nets (see for example [10]), which are used to model sys-
tems with limited resources. In 1-safe nets, every place may contain at most one token.
This restriction allows us to represent 1-safe Petri nets in propositional temporal logic.
Encoding places with propositions (proposition pi is true if, and only if, a token is at
place Pi), given a 1-safe Petri net N , one can construct a PTL formula φN of the size
polynomial in the size of N , such that models of φN correspond to infinite trajectories
of N .

For example, the following transition

P1

P2

Q



can be represented as

(p1 ∧ p2 ⇒ g(q ∧ ¬p1 ∧ ¬p2))

i.e. the transition fires if both P1 and P2 contain a token, plus suitable frame axioms
to prevent tokens from arbitrarily appearing or disappearing. Similarly, reachability in
these nets, for example the reachability of the state PF corresponds to the satisfiability
of ♦pF from an initial state. Since the reachability problem (as well as many other
interesting problems) for 1-safe nets is PSPACE-complete [10], such translation is op-
timal.

We can then use capacity constraints to impose place invariants: for a subset of
places in a Petri net, the total number of tokens in places from this subset remains con-
stant. Such invariants are used, for example, in the verification of distributed protocols
with Petri nets [18, 19]. Note that imposing such extra restrictions actually makes the
complexity of reasoning lower.

6 Concluding Remarks

In this paper we have introduced TLC, a propositional temporal logic that allows the
specifier to put powerful additional constraints on how many propositions can be sat-
isfied at any one time. This logic represents a combination of standard propositional
linear-time temporal logic with constraints relating to restrictions on the number of
propositions, for particular subsets of propositions, at each moment in time. This is
not only an interesting extension of PTL, but can potentially be decided in polynomial,
rather than exponential time. This improved complexity makes TLC a strong candidate
for practical verification based upon temporal satisfiability.

We provide a graph construction algorithm to check satisfiability by enumerating
only the reachable nodes that satisfy the required constraints. The definition of resolu-
tion rules incorporating these constraints appear complex and non-trivial. Similarly, the
adaption of tableau algorithms for PTL [24] to this constrained situation lead, in some
cases, to the generation of exponentially many successors to nodes in the tableau.

There is little related work in this area. Refinements of PTL have been considered,
particularly in relation to model checking, by Demri and Schnoebelen [6]. Mutually
exclusive conditions (stemming e.g. from automata representation) and numbers from a
fixed range can often be handled through efficient translation — consider, for example,
logarithmic encoding or property-driven partitioning used in model checking [23] and
SAT [1] — however, we are not aware of others who have explicitly studied constraints
directly in the logic itself, such as those described in this paper, apart from ourselves in
earlier work just on XOR extensions of PTL [7, 8].

Our explicit graph construction has a similar flavour to that of tableau algorithms
developed for PTL [24, 15] which attempt to explicitly construct a model for formulae.
Here the expansion rules focus on formulae in the normal form rather than any well-
formed formula. Implementations of the tableau procedures [22, 17] are available within
the logics workbench [16], and powerful tools for constructing automata from PTL
formulae now exist [3, 14].



Future Work. Work on TLC has uncovered a new, and potentially very sophisticated,
approach to temporal specification. Rather than concentrating solely on the behaviour
of components, the use of TLC encourages specifiers to partition the propositions, and
also to consider what constraints need to be put upon these partitioned sets. Thus, this
leads us towards the approach of engineering the sets and constraints first, before even
addressing the temporal specification of the component behaviours.

Furthermore, the incremental algorithm in Fig. 1 can potentially be modified to
allow for dynamic changes of the set of constraints. This allows us to accommodate
constraints into the language as a logical connective. Let ⊕=s denote a logical operator
of flexible arity, which states that exactly s of its arguments is true, while ⊕<d states
that fewer than d of its arguments can be true. Expressions of the form

∧

i

k ⇒ g⊕=d
j lj

are called⊕=d-step clauses (⊕<d-step clauses are defined similarly). If in the algorithm
in Fig. 1, lines 6–12, I |=

∧

i k, we look for interpretations, which make χ true and
satisfy both constraints, cons, and the right-hand side of the of⊕=d step clause. A more
elaborate language even allows us to dynamically disallow existing constraints as well
as introduce new ones.

The development of an implementation of the algorithms discussed in this paper
together with practical verification case studies, form the basis for our future work. Fur-
ther, the extension to dynamic constraints and a deeper comparison to related methods
are future work.
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