
Taming the Complexity of Temporal Epistemic
Reasoning

Clare Dixon, Michael Fisher, and Boris Konev

Department of Computer Science, University of Liverpool, Liverpool, U.K.

{CLDixon, MFisher, Konev}@liverpool.ac.uk

Abstract. Temporal logic of knowledge is a combination of temporal
and epistemic logic that has been shown to be very useful in areas such
as distributed systems, security, and multi-agent systems. However, the
complexity of the logic can be prohibitive. We here develop a refined
version of such a logic and associated tableau procedure with improved
complexity but where important classes of specification can still be de-
scribed. This new logic represents a combination of an “exactly one”
temporal logic with an S5 multi-modal logic again restricted to the “ex-
actly one” form.

1 Introduction

While temporal logic has been shown to be very useful, particularly in the areas
of formal specification and verification [16, 14], there are two problems with its
use:

1. there are cases where full temporal logic is too expressive
— in particular, if we wish to describe the temporal properties of a restricted
number of components, only one of which can occur at any moment in time,
then the full temporal language forces us to describe the behaviour of all
these components and their interactions explicitly;

2. many applications require the extension of temporal logic with different
modalities
— in particular, extensions with various modal logics (such as those describ-
ing knowledge or belief) are very useful.

Taking (2) first, there has been considerable work on defining, mechanising and
applying combined temporal and modal logics.

A very popular modal approach is to use a logic of knowledge, i.e. an epistemic
logic (typically S5 modal logic), in order to represent the knowledge that any
player/agent/process has [7]. Involving multiple players/agents/processes leads
us to multi-dimensional logics of knowledge [9] where multiple agents each have
an associated notion of knowledge. We can then reason not only about the agent’s
knowledge of the situation, but also about the agent’s knowledge of other agents,
the agent’s knowledge of other agents’ situation, the agent’s knowledge of other
agents’ knowledge about the situation, and so on.

This naturally leads on to temporal logic of knowledge [7], which is the com-
bination of propositional discrete, linear temporal logic (LTL) with (S5) modal
logic, which has been shown to be very useful in areas such as distributed sys-
tems [11, 8], security [4], and multi-agent systems [20, 17]. However, the com-
plexity of such a combined logic is quite high, in particular even with a simple
combination such as the fusion of LTL and multi-modal S5 the complexity of
satisfiability is PSPACE [7].

In the meantime we have been working on (1). In [6], it was shown that,
simply by incorporating “exactly one” constraints into a propositional temporal
logic, much better computational complexity could be achieved. Essentially sets
of propositions were allowed as part of the input (termed “exactly one” or “con-
strained” sets) where exactly one proposition from each set must hold at every
moment in time. Normal unconstrained propositions were also allowed. Not only
did this allow the concise specification of examples such as the representation
of automata, basic planning problems, and agent negotiation protocols, but also
greatly reduced the complexity of the associated decision procedure [5, 6]. Essen-
tially, this is because (as the name suggests) exactly one element of each “exactly
one” set must be satisfied at every temporal state. This allowed polynomial com-
plexity concerning the constrained sets within the decision procedure.

In this paper we will now make the obvious connection between (1) and (2)
above. Specifically, we here:

– define an “exactly-one” temporal logic of knowledge;
– define a complete tableau system for this new logic;
– explore the computational complexity of the tableau system; and
– explore potential applications of the approach.

Thus, the paper builds on our previous work on “exactly one” temporal logics [6]
and tableaux for temporal logics of knowledge [26], but provides a new logic,
new tableau system, and significant complexity improvements with potential
applications. The tableau algorithm replaces traditional alpha and beta rules
with a DPLL-like construction [2] which ensures the exactly one sets hold. The
complexity results show how careful organisation of the problem can, in many
cases, greatly reduce exponential bounds.

The paper is organised as follows. In Section 2 we introduce XL5, a con-
strained temporal logic of knowledge. The complexity of satisfiability for this
logic is considered in Section 3. In Section 4 we present a tableau algorithm
for XL5 and prove its completeness and refined complexity. In Sections 5 and
Section 6, we demonstrate the tableau algorithm in practice and identify areas
where we believe XL5 may be useful. Finally, in Section 7, we provide concluding
remarks and discuss related and future work.

2 A Constrained Temporal Logic of Knowledge

The logic we consider is called “XL5”, and its syntax and semantics are essen-
tially that of a propositional temporal logic of knowledge [7], which is in turn

a fusion of propositional (linear, discrete) temporal logic [10] and an S5 modal
logic of knowledge [12]. The models of such a logic are essentially a set of time-
lines, isomorphic to the Natural Numbers, at which modal relations (of the S5
variety) can link to points (a state occurring at a particular time in a timeline)
in other timelines.

The main novelty in XL5 is that formulae of XL5(P1,P2, . . .) are constructed
under the restrictions that exactly one proposition from every set Pi is true in
every state. Note that propositions may appear in more than one set Pi, i.e.
Pi ∩ Pj may be non-empty for i 6= j. Furthermore, we assume that there exists
a set of propositions, A, in addition to those defined by the parameters Pi,
where for all i, A ∩ Pi = ∅, and that these propositions are unconstrained as
normal. Thus, XL5() is essentially a standard propositional, linear temporal logic
of knowledge, while XL5(P,Q,R) is a temporal logic of knowledge containing at
least the propositions P∪Q∪R, where P = {p1, p2, . . . , pl},Q = {q1, q2, . . . , qm},
and R = {r1, r2, . . . , rn} and any state in a XL5(P,Q,R) model must satisfy
exactly one of p1, p2, . . . , pl; exactly one of q1, q2, . . . , qm; and exactly one of
r1, r2, . . . , rn.

2.1 Syntax

The alphabet of XL5(P1,P2, . . . ,Pm) contains the following symbols:

1. the “exactly one” sets Pi = {pi1, pi2, . . .} of atomic propositions and a set of
unconstrained propositions A such that P1 ∪ P2 ∪ . . . ∪ Pm ∪ A = Prop;

2. basic classical connectives, ∧, ∨, ⇒, ¬, F and T ;
3. a set Ag = {1, . . . , n} of agents;
4. the unary modal connectives Ki, where i ∈ Ag; and
5. the temporal connectives, g (next), (always), ♦ (sometime), and U

(until).

2.2 Semantics

The semantics of XL5 is based upon timelines which are themselves composed
of points. These are defined as follows. A timeline, l, is an infinitely long, linear,
discrete sequence of states, indexed by the Natural Numbers. We assume that
TL is the set of all timelines. A point, p, is a pair p = (l, u), where l ∈ TL is a
timeline and u ∈ N is a temporal index into l.

Any point (l, u) will uniquely identify a state l(u). Let the set of all points
be Points. We then let an agent’s knowledge accessibility relation Ri hold over
Points, i.e., Ri ⊆ Points × Points, for all i ∈ Ag. This captures the idea of
an agent being uncertain both about which timeline it is in, and how far along
that timeline it is. A valuation for XL5 is a function that takes a point and a
proposition, and says whether that proposition is true (T) or false (F) at that
point.

We can now define model structures for XL5. A model structure, M , for XL5
is a structure M = 〈TL,R1, . . . , Rn, π〉, where:

〈M, (l, u)〉 |= T

〈M, (l, u)〉 |= p iff π((l, u), p) = T (where p ∈ Prop)

〈M, (l, u)〉 |= ¬ϕ iff 〈M, (l, u)〉 6|= ϕ

〈M, (l, u)〉 |= ϕ ∨ ψ iff 〈M, (l, u)〉 |= ϕ or 〈M, (l, u)〉 |= ψ

〈M, (l, u)〉 |= Kiϕ iff ∀l′ ∈ TL, ∀v ∈ N, if ((l, u), (l′, v)) ∈ Ri then 〈M, (l′, v)〉 |= ϕ

〈M, (l, u)〉 |= fϕ iff 〈M, (l, u+ 1)〉 |= ϕ

〈M, (l, u)〉 |= ϕU ψ iff ∃v ∈ N such that (v ≥ u) and 〈M, (l, v)〉 |= ψ,
and ∀w ∈ N, if (u ≤ w < v) then 〈M, (l, w)〉 |= ϕ

Fig. 1. Semantics of XL5

– TL ⊆ TL is a set of timelines;
– Ri, for all i ∈ Ag, is an agent accessibility relation over Points, i.e., Ri ⊆
Points× Points such that Ri is an equivalence relation; and

– π : Points×Prop→ {T, F} is a valuation which satisfies the “exactly one”
sets, i.e. makes exactly one element of each set Pi true.

As usual, we define the semantics of the language via the satisfaction relation
‘|=’. For XL5, this relation holds between pairs of the form 〈M, (l, u)〉 (where M
is a model structure and (l, u) ∈ Points), and XL5 formulae. The rules defining
the satisfaction relation for selected operators (others can be defined from these)
are given in Fig. 1. Other Boolean and temporal operators can be obtained with
the usual equivalences. For the operators ‘♦’ and ‘ ’ these are ♦ψ ≡ T U ψ
and ψ ≡ ¬♦¬ψ.

We assume that for each (l, u) ∈ Points the valuation π satisfies the “exactly
one” sets, i.e. makes exactly one element of each set Pi true. Notice that the
logical symbols of XL5 do not allow us to express such global requirements (eg
everywhere exactly one of p, q, and r hold), and to represent such constraints
within the logic, the set of logical operators would have to be extended with
universal modalities. In other words, global restrictions on models give more
expressivity to the logic.

A formula ϕ is satisfied in a model M if there exist a timeline l such that
〈M, (l, 0)〉 |= ϕ. A formula is satisfiable if there exists a model in which it is
satisfied. A formula is valid if its negation is unsatisfiable.

3 Complexity of XL5

When it comes to the complexity of reasoning, if only the length of a given
formula is taken into account, XL5 does not have any advantages over an unre-
stricted fusion of S5n and LTL.

Theorem 1. The satisfiability problem for XL5(P), even if all variables belong
to the single constrained set P, is PSPACE-complete.

Proof. The PSPACE upper bound can be obtained from the complexity
of temporal epistemic logic [7]. To prove the lower bound, we reduce the
PSPACE-complete satisfiability of multi-modal S5n to satisfiability of XL5.
Let ϕ be a multi-modal S5n-formula constructed over {p0, . . . , pm}. Consider
a XL5({s, p′0, . . . , p′m})-formula ϕ′ obtained from ϕ by replacing every occur-
rence of a proposition pi with ♦p′i for all pi, 0 ≤ i ≤ m, where s and p′0, . . . , p

′
m

are new propositions, which do not occur to ϕ. Notice that the size of ϕ′ is linear
in the size of ϕ. We show that ϕ is satisfiable if, and only if, ϕ′ is satisfiable.

Clearly, if ϕ′ is satisfiable then ϕ is satisfiable. Suppose now that ϕ
has a model. Since ϕ does not contain temporal operators, its model M =
〈TL,R1, . . . , Rn, π〉 is such that, for any j, we have ((l1, u1), (l2, u2)) ∈ Rj implies
u1 = u2 = 0. A model for ϕ′ is M ′ = 〈TL,R1, . . . , Rn, π

′〉, where π′((l, u), p′i) = T
if, and only if, u = i and π((l, 0), pi) = T ; and π′((l, u), s) = T if, and only if,
u > n or π((l, 0), pu) = F (that is, we set in M ′ the i-th proposition p′i true in the
i-th moment of time whenever in M the proposition pi is true in the beginning
of time; if p′i is set to be false in M ′ in the i-th moment of time, s is true in the
same moment). Clearly, M ′ satisfies the exactly one restriction {s, p0, . . . , pm}
and 〈M, (l, 0)〉 |= pi if, and only if, 〈M ′, (l, 0)〉 |=♦p′i. Thus, M ′ |= ϕ′. ut

Theorem 2. The satisfiability problem for two fragments of XL5(P)

– all variables belong to the single constrained set P, there is one agent and
temporal operators are not used; and

– all variables belong to the single constrained set P and modal operators are
not used

is NP-hard.

Proof. To prove the lower NP bound for the class of single-agent formulae
without temporal operators, we reduce the Boolean satisfiability problem to
satisfiability of XL5 formulae. Let ϕ be a Boolean formula over variables p1,. . . ,
pn. Let ψ = s ∧ ϕ′, where s is a new proposition and ϕ′ is obtained from ϕ by
replacing every occurrence of a proposition pi with the expression K¬p′i, where
p′i is a new proposition not used in ϕ, and let X = {s, p′1, . . . , p′n} be the ‘exactly
one’ constraint.

Suppose that an assignment I satisfies ϕ. We show how to construct a model
M = 〈TL,R, π〉. The set of timelines TL = {l0, l1, . . . , ln} (recall that n is the
number of variables in ϕ), the relation R is the full relation of the set of points,
and the valuation π is defined as follows

– for all u ∈ N, π((l0, u), s) = T and for all i, 1 ≤ i ≤ n, π((l0, u), p′i) = F .
– for every i, 1 ≤ i ≤ n and every u ∈ N we have
• π((li, u), p′j) = F for all j 6= i
• π((li, u), p′i) = T if, and only if, I(pi) = F
• π((li, u), s) = T if, and only if, I(pi) = T .

Notice that 〈M, (l0, 0)〉 |= K¬p′i if, and only if, I(pi) = T . Since ϕ′ is obtained
from ϕ by renaming every occurrence of xi with K¬x′i we have 〈M, (l0, 0)〉 |= ψ.

The NP lower bound for the subclass of XL5 formulae, in which modal op-
erators are not used, can be obtained from the PSPACE lower bound above by
considering propositional formulae instead of S5n formulae. ut

Theorem 3 later demonstrates, however, that XL5 reasoning is tractable if the
number of occurrences of temporal and modal operators is bounded.

4 Tableau for XL5

Consider an XL5 formula ϕ that is to be shown to be satisfiable. The tableau
algorithm constructs sets of extended assignments of propositions and modal
subformulae i.e. a mapping to true or false, that satisfy both the “exactly one”
sets and ϕ. However, rather than using the standard alpha and beta rules (see
for example the modal tableau in [12, 26]) these are constructed using a DPLL-
based expansion [2]. Next the algorithm attempts to satisfy modal formulae, of
the form ¬Kiψ, and temporal formulae, of the form gψ and ψ1 U ψ2 (or their
negations), made true in such an extended assignment by constructing Ri and
“next time” successors which are themselves extended assignments which must
satisfy particular subformulae (and the exactly one sets). We begin with some
definitions.

Definition 1. If ϕ is an XL5 formula, then sub(ϕ) is the set of all subformulae
of ϕ:

sub(ϕ) =

{ϕ} if ϕ ∈ Prop or ϕ = T or ϕ = F
{¬ψ} ∪ sub(ψ) if ϕ = ¬ψ
{ψ ∗ χ} ∪ sub(ψ) ∪ sub(χ) if ϕ = ψ ∗ χ where ∗ is ∨,∧ or ⇒
{Kiψ} ∪ sub(ψ) if ϕ = Kiψ
{ gψ} ∪ sub(ψ) if ϕ = gψ
{ψ1 U ψ2} ∪ sub(ψ1) ∪ sub(ψ2) if ϕ = ψ1 U ψ2

A formula ψ ∈ sub(ϕ) is a modal subformula of ϕ if, and only if, ψ is of the
form Kiψ

′ for some ψ′. A formula ψ ∈ sub(ϕ) is a temporal subformula of ϕ
if, and only if, ψ is of the form gψ′ or ψ′1 U ψ′2 for some ψ′, ψ′1, ψ′2.

Definition 2. Let ϕ be an XL5 formula, Prop(ϕ) be the set of all propositions
occurring in ϕ, Mod(ϕ) be the set of all modal subformulae of ϕ, and Temp(ϕ)
be the set of all temporal subformulae of ϕ. We assume, without loss of generality,
that Pi ⊆ Prop(ϕ) for i : 1 ≤ i ≤ n. An extended assignment ν for ϕ is a
mapping from Σ(ϕ) = Prop(ϕ) ∪Mod(ϕ) ∪Temp(ϕ) to {T, F}.

Every extended assignment ν can be represented by a set of formulae

∆ν =
⋃

ψ ∈ Σ(ϕ)
ν(ψ) = T

{ψ} ∪
⋃

ψ ∈ Σ(ϕ)
ν(ψ) = F

{¬ψ}

Let ψ be a XL5 formula such that Prop(ψ) ⊆ Prop(ϕ), Mod(ψ) ⊆ Mod(ϕ)
and Temp(ψ) ⊆ Temp(ϕ). An extended assignment ν for ϕ is compatible with
ψ if, and only if, the following conditions hold.

– For every set Pi, there exists exactly one proposition p ∈ Pi such that ν(p) =
T (and so ν(q) = F for all q ∈ Pi, q 6= p).

– The result of replacing every occurrence of a proposition p ∈ Prop(ψ) in
ψ with ν(p), every occurrence of a modal subformula ψ′ ∈ Mod(ψ), such
that ψ′ is not in the scope of another modal or temporal operator in ψ, with
ν(ψ′), and every occurrence of a temporal subformula χ ∈ Temp(ψ), such
that χ is not in the scope of another modal or temporal operator in ψ, with
ν(χ), evaluates to T .

– If ν(Kjχ) = T , for some modal subformula Kjχ of ψ, then ν is compatible
with χ.

– If ν(χ1 U χ2) = T , for some temporal subformula χ1 U χ2 of ψ, then ν is
compatible with χ1 or χ2.

– If ν(χ1 U χ2) = F , for some temporal subformula χ1 U χ2 of ψ, then ν is
compatible with ¬χ2.

We denote by N (ϕ) the set of all extended assignments of ϕ.

Example 1. Within XL5({p, q}), let ϕ = ¬K1(p ∧ gK2¬p). Suppose ψ is ϕ
itself. Consider the extended assignment ν1 represented by the set ∆ν1 =
{p,¬q,¬K1(p ∧ K2¬p), gK2¬p,K2¬p}. Then the first two conditions of com-
patibility with ψ hold true. Notice, however, that ν1 is not compatible with ψ
since ν1(K2¬p) = T but ¬p evaluates to F under ν1. The extended assignment
ν2 represented by the set ∆ν2 = {p,¬q,¬K1(p ∧ K2¬p), gK2¬p,¬K2¬p} is
compatible with ψ.

Lemma 1. Let ϕ be an XL5 formula and ψ be its subformula. Then the
set of all extended assignments for ϕ compatible with ψ can be computed in
O
(
|P1| × . . .× |Pn| × 2|A| × 2k × 2t

)
time, where |Pi| is the size of the set Pi

of constrained propositions, |A| is the size of the set A of non-constrained propo-
sitions, k is the number of modal operators in ϕ, and t is the number of temporal
operators in ϕ.

Proof. The set of all extended assignments compatible with ψ can be constructed
by the DPLL algorithm, where we first split on elements of Pi (that requires
O(|P1| × . . .× |Pn|) time) and then on elements of A, Mod(ϕ), and Temp(ϕ).

ut

Note 1. The complexity of TLX (linear time logic parametrised by exactly one
sets) given in [6] is polynomial in the size of the number of constrained proposi-
tions (that is, propositions belonging to an exactly one set) and does not depend
on the number of temporal operators occurring to the formula. This is because [6]
only considers formulae in a normal form where temporal operators only occur
in the form (ϕ1 ⇒ gϕ2), and ♦ϕ2, where ϕ1 is a conjunction of literals

and ϕ2 is a disjunction of literals. Reduction to the normal form introduces un-
constrained propositions, therefore, the complexity result for XL5 is not worse
than for TLX. Notice further that in many practical applications (for example,
when modelling transition systems), parts of the formula are in the normal form
and no reduction is necessary. Thus, in practice, the bound in Lemma 1 may not
be reached. Indeed, if x and y belong to the same exactly one set, gx and gy
are also mutually exclusive.

The tableau algorithm constructs a structure H = (S, η,R1, . . . , Rn, L), where:

– S is a set of states;
– η ⊆ S × S is a binary next-time relation on S;
– Ri ⊆ S × S represents an accessibility relation over S for agent i ∈ Ag;
– L : S → N (ϕ) labels each state with an extended assignment for ϕ.

We try to construct a structure from which a model may be extracted, and then
delete states in this structure that are labelled with formulae such as ¬Kip,
pU q, which are not satisfied in the structure. Expansion uses the formulae in
the labels of each state to build Ri successors and η successors.

Given the XL5 formula ϕ to be shown unsatisfiable, we now perform the following
tableau construction steps.

1. Initialisation.
First, set

S = η = R1 = · · · = Rn = L = ∅.

Construct F , the set of all extended assignments for ϕ compatible with ϕ.
For each νi ∈ F create a new state si and let L(si) = νi and S = S ∪ {si}.

2. Creating Ri successors. For any state s labelled by an extended assignment
ν, i.e. L(s) = ν for each formula of the form ¬Kiψ ∈ ∆L(s) create a formula

ψ′ = ¬ψ ∧
∧

Kiχ∈∆L(s)

χ ∧
∧

Kiχ∈∆L(s)

Kiχ ∧
∧

¬Kiχ∈∆L(s)

¬Kiχ

For each ψ′ above construct F , the set of all extended assignments for ϕ
compatible with ψ′ and for each member ν ∈ F if there exists a state s′′ ∈ S
such that ν = L(s′′) then add (s, s′′) to Ri, otherwise add a new state s′ to
S, labelled by L(s′) = ν, and add (s, s′) to Ri.

3. Creating η successors. Let ν be an extended assignment for ϕ. Then next(ν)
is the smallest subset of ∆ν such that whenever:-
– gχ ∈ ∆ν then χ ∈ next(ν);
– ¬ gχ ∈ ∆ν then ¬χ ∈ next(ν);
– χ1 U χ2 ∈ ∆ν but ν is not compatible with χ2, then χ1 U χ2 ∈ next(ν);

and
– ¬(χ1 U χ2) ∈ ∆ν but ν is not compatible with ¬χ1, then ¬(χ1 U χ2) ∈
next(ν).

For any state s labelled by an extended assignment ν, i.e. L(s) = ν create
the set of formulae ∆ = next(L(s)). Let ψ′ be the conjunction of formulae in
∆. For the formula ψ′ above construct F , the set of all extended assignments
for ϕ compatible with ψ′ and for each member ν ∈ F if there exists a state
s′′ ∈ S such that ν = L(s′′) then add (s, s′′) to η, otherwise add a new state
s′ to S, labelled by L(s′) = ν, and add (s, s′) to η.

4. Contraction.
Continue deleting any state s where
– there exists a formula ψ ∈ ∆L(s) such that ψ is of the form ¬Kiχ and

there is no state s′ ∈ S such that (s, s′) ∈ Ri and L(s′) is compatible
with ¬χ,

– next(ν) is not empty but there is no s′ ∈ S such that (s, s′) ∈ η, or
– there exists a formula ψ ∈ ∆L(s) such that ψ is of the form χ1 U χ2 and

@s′ ∈ S such that (s, s′) ∈ η∗ and L(s′) is compatible with χ2, where η∗

is the transitive reflexive closure of η.
until no further deletions are possible.

If ϕ is a formula then we say the tableau algorithm is successful if, and only if,
the structure returned contains a state s such that ϕ is compatible with L(s). We
claim that a formula ϕ is XL5 satisfiable if, and only if, the tableau algorithm
performed on ϕ is successful.

Theorem 3. Let P1,. . . , Pn be sets of constrained propositions, and ϕ be an
XL5(P1, . . . ,Pn) formula such that

⋃n
i=1 Pi ⊆ Prop(ϕ). Then

– ϕ is satisfiable if, and only if, the tableau algorithm applied to ϕ returns a
structure (S, η,R1, . . . , Rn, L) in which there exists a state s ∈ S such that
ϕ is compatible with L(s).

– The tableau algorithm runs in time polynomial in(
(k + t)× |P1| × . . .× |Pn| × 2|A|+k+t

)
, where |Pi| is the size of the

set Pi of constrained propositions, |A| is the size of the set A of non-
constrained propositions, k is the number of modal operators in ϕ, and t is
the number of temporal operators in ϕ.

Proof. The correctness and completeness of the tableau algorithm can be proved
by adapting the correctness and completeness proof given in [26]. The main dif-
ference between the two algorithms is that the algorithm in [26] applies proposi-
tional tableau expansion rules to formulae and the one given above uses DPLL-
based expansion.

For the second part of the theorem, notice that the number of nodes in
any structure does not exceed

(
|P1| × . . .× |Pn| × 2|A|+k+t

)
. When creating Ri

successors, we consider at most k formulae of the form ¬Kiψ ∈ ∆ν , and, by
Lemma 1, the set of all extended assignments for ϕ compatible with ψ′ can be
computed in O

(
|P1| × . . .× |Pn| × 2|A|+k+t

)
time. Similarly, when creating η

successors, we consider at most t formulae in next(ν). Building the structure
and applying the contraction rule can be implemented in time polynomial in the
structure size. ut

5 Example

We now consider a longer example. We base this1 on the simple card-playing
scenario from [22].

Here, an agent (called Wiebe) can hold one of three cards. Each of these cards
is in a different suit: hearts, spades, or clubs. The cards are dealt so that Wiebe
holds one, one is on the table, and the final one is in a holder (aka deck).
Following [22] we use simple propositions to represent the position of the cards.
So, if spadesw is true, then Wiebe holds a spade, if clubst is true, then the clubs
card is on the table, if heartsh is true, then the hearts card is in the holder, etc.
Similarly, Kwspadesw means that Wiebe knows he holds a spade. And so on.

Now, if we were to specify this scenario in a standard temporal logic of knowledge,
we would be forced to specify much background information. For example:

– Wiebe’s card is spades or hearts or clubs: (spadesw ∨ clubsw ∨ heartsw)
– but Wiebe cannot hold both spades and clubs, both spades and hearts, or

both clubs and spades:

¬(spadesw ∧ clubsw) ∧ ¬(spadesw ∧ heartsw) ∧ ¬(clubsw ∧ heartsw)

– And Wiebe knows both of the above, e.g: Kw(spadesw ∨ clubsw ∨ heartsw)
– Similarly for the holder and the table.
– The spades card must be either held by Wiebe or be in the holder or be on

the table: (spadesw ∨ spadesh ∨ spadest)
– but cannot be in more than one place:

¬(spadesw ∧ spadesh) ∧ ¬(spadesw ∧ spadest) ∧ ¬(spadesh ∧ spadest)

– And again Wiebe knows the above, e.g: Kw(spadesw ∨ spadesh ∨ spadest)
– Similarly for both the hearts and clubs cards.
– All the above statements hold globally.

However, we can model this scenario with six “exactly one” sets within XL5(P1,
P2, P3, P4, P5, P6) where

– P1 = {spadesw, clubsw, heartsw} — Wiebe has exactly one card.
– P2 = {spadesh, clubsh, heartsh} — exactly one card is in the holder.
– P3 = {spadest, clubst, heartst} — exactly one card is on the table.
– P4 = {spadesw, spadesh, spadest}— the spades card is in exactly one place.
– P5 = {clubsw, clubsh, clubst} — the clubs card is in exactly one place.
– P6 = {heartsw, heartsh, heartst} — the hearts card is in exactly one place.

1 A version of this example was presented as part of “WiebeFest 2009 — A Celebration
of Prof. Wiebe van der Hoek’s 50th Birthday”; hence the principle agent is called
‘Wiebe’ !

Thus, all the formulae at the beginning of this section are unnecessary.

Now let us try to establish something using the tableau construction. Given the
basic scenario, we add some temporal evolution. Specifically, we add the fact
that Wiebe comes to know more about the scenario as time passes. Thus, we
add:

– originally Wiebe has been dealt the clubs card (but has not looked at the
card so doesn’t know this yet), so clubsw;

– at the next step Wiebe looks at his card so he knows that he has the clubs
card, so gKwclubsw.

So, one statement we may try to establish from this is that given the above,
sometime Wiebe knows that either the hearts card or the spades card is in the
holder.

(clubsw ∧ gKwclubsw)⇒ ♦Kw(heartsh ∨ spadesh) .

We replace ♦Kw(heartsh ∨ spadesh) by T U Kw(heartsh ∨ spadesh) and negate
the above, giving

ϕ = ¬((clubsw ∧ gKwclubsw)⇒ T U Kw(heartsh ∨ spadesh))

and begin constructing the tableau for ϕ.
First we construct the set of extended assignments for ϕ compatible with ϕ.

To save space we assume that any propositions not mentioned are false. Let

I0 = {clubsw, gKwclubsw,¬(T U Kw(heartsh∨spadesh)),¬Kw(heartsh∨spadesh)}.

Notice that any extended assignment that does not contain I0 is not compatible
with ϕ.

∆L(s0) = I0 ∪ {Kwclubsw, heartsh, spadest}
∆L(s1) = I0 ∪ {Kwclubsw, heartst, spadesh}
∆L(s2) = I0 ∪ {¬Kwclubsw, heartsh, spadest}
∆L(s3) = I0 ∪ {¬Kwclubsw, heartst, spadesh}

Next we create Rw successors. For s0 and s1 let

ψ′ = Kwclubsw ∧ ¬Kw(heartsh ∨ spadesh) ∧ clubsw ∧ ¬(heartsh ∨ spadesh).

There are no extended assignments of ϕ which are compatible with ψ′ (essentially
¬(heartsh∨spadesh) and P2 forces clubsh to hold which contradicts with clubsw
and P5). Hence during the deletion phase s0 and s1 will be deleted as there are
no Rw successors of s0 and s1 compatible with ¬(heartsh ∨ spadesh). We can,
however, construct a number of Rw successors for s2 and s3. When we attempt
to construct η successors for s2 and s3 for i = 2, 3 we obtain

next(L(si)) = {Kwclubsw,¬(T U Kw(heartsh ∨ spadesh))}

and
ψ′′ = Kwclubsw ∧ ¬(T U Kw(heartsh ∨ spadesh))}.

Let
I1 = {¬ gKwclubsw,¬(T U Kw(heartsh ∨ spadesh))}.

We construct the extended assignments for ϕ which are compatible with ψ′′

obtaining L(s0), L(s1) and

∆L(s4) = I1 ∪ {Kwclubsw,¬(Kw(heartsh ∨ spadesh)), clubsw, heartsh, spadest}
∆L(s5) = I1 ∪ {Kwclubsw,¬(Kw(heartsh ∨ spadesh)), clubsw, heartst, spadesh}

We add (sj , s0), (sj , s1), (sj , s4), (sj , s5) to η for j = 2, 3.
If we try to construct Rw successors of s4 and s5 we construct ψ′ as previously

and obtain no extended assignments of ϕ that satisfy ψ′ from the reasons given
before. Hence during deletions s4 and s5 will be deleted as they have no state
s such that (s4, s) ∈ Rw or (s5, s) ∈ Rw such that L(s) is compatible with
¬(heartsh ∨ spadesh). Hence as s0 and s1 have already been deleted for similar
reasons then s2 and s3 have no η successors and so are deleted. As there is
no remaining state compatible with ϕ the tableau is unsuccessful and so ϕ is
unsatisfiable and (clubs ∧ gKwclubsw)⇒ ♦Kw(heartsh ∨ spadesh) is valid.

6 Potential Application Areas

Temporal logics of knowledge are important in both mainstream Computer Sci-
ence and AI. Thus, with a variety of such logics with lower complexity, we can
potentially target a number of areas.

6.1 Distributed Systems

Temporal logics of knowledge are typically used for the specification and verifi-
cation of distributed systems and are also used in knowledge-based protocols [7].
Here, the idea is that when designing a distributed system, one often makes use
of statements such as “if process a1 knows that process a2 has received message
m1, then a1 should eventually send message m2”. Temporal logics of knowl-
edge are used to formalise this kind of reasoning; knowledge is given a precise
interpretation, in terms of the states of a process.

Thus, the “exactly one” variant can come into its own when we have epis-
temic or temporal states that are constrained in this way. Most obviously,
if a process can be in only one particular mode (e.g. running, suspended, or
stopped) then a logic describing this process can utilise the “exactly one” set
{running, suspended, stopped}. Crucially, the process knows that its mode must
be one of these, and every other process also knows this. For example, a process a
in reasoning about its knowledge might construct formulae such as the following
(about process b) KaKb(runninga ∨ suspendeda ∨ stoppeda) and so on. Formulae
such as these are implicit within the XL5 parametrised by appropriate “exactly
one” sets.

6.2 Learning and Knowledge Evolution

As we saw in Section 5, temporal formulae can easily be used to describe how
an agent’s knowledge changes, for example due to learning, observation or an-
nouncements by other agents. Thus, many of the examples given in [23] in terms
of dynamic epistemic logic [22] can be described in a more concise and efficient
manner. We note that many of the examples given in [22] have quite low numbers
of modal/dynamic operators and so we might expect a reasonable complexity
within our logic. Similarly, the representation of the game Cluedo provided in [3]
is concerned with how players’ knowledge evolves over time and contains “ex-
actly one” sets relating to the representation of the cards of each player and of
the murderer.

6.3 Security

Not only do we gain similar advantages as in the area of distributed systems
described above, but can also utilise the “exactly one” sets (and knowledge about
them) to simplify security descriptions given in temporal logics of knowledge [4].
For example, reasoning about the fact that a message was sent by exactly one
of “expected sender”, “intruder”, or “error process” can be simplified.

6.4 Robotics

Robot swarms are collections of, often simple, robots usually with some task
to perform. Although the algorithm controlling each robot is fairly simple it is
often challenging to prove desirable properties of the swarm, for example that
the group of robots does stay in a connected group and some robot doesn’t go
off on its own and get lost, or that the task is completed successfully etc.

In [24] a swarm algorithm is specified using temporal logic. Underlying this
algorithm we can see a number of “exactly one” sets relating to the robot di-
rection (North, South, East, West); the location of the robot; and related to the
robot’s internal state. In [15] a swarm of foraging robots is defined. Underlying
this description is a transition system that describes the different states a robot
can pass through whilst foraging for food, for example leaving the nest, random
walk, scanning for food, returning home, depositing food, resting etc. It is clear
that, for each robot each of these will form an “exactly one” set. Knowledge may
be used here to model the robot’s awareness of nearby robots etc. Thus a logic
such as XL5 may well help specify and prove properties of more complex robot
swarms.

6.5 Planning and Knowledge Representation

The planning problem is given a set of initial conditions, a set of actions and a
goal to find a suitable sequence of actions that can take us from the initial con-
ditions to the goal. The planning problem can be represented as a temporal logic
satisfiability problem, see for example [1]. Initial conditions can be represented

as formulae holding in the initial state, actions can be modelled by making a next
step and recording that the action that has been taken, goals can be represented
using eventualities (♦-formulae) and invariants can be modelled using the
operator. Given a representation of the initial conditions and consequences of
actions in temporal logic (SPEC) and the representation of the goal in temporal
logic (GOAL) if we can show that SPEC ⇒ GOAL is satisfiable in a model
then the model can be inspected to see what sequence of actions was used to
reach the goal producing the required plan.

“Exactly one” sets seem to occur often in this domain, for example recording
that exactly one action may occur at any moment. Further in the domains of
interest, for example blocksworld, transportation and scheduling, exactly one
sets also occur widely (for example that the location of transportation vehicles
may be at one place at any moment, etc).

7 Concluding Remarks

We have taken recent ideas relating to temporal logics which allow the input of
sets of proposition where exactly one from each set must hold and have adapted
them to the framework of multi-modal temporal logics of knowledge. We have
motivated the need for such constraints by considering a number of applica-
tion areas. We have provided a tableau based algorithm to prove XL5 formulae
which replaces the usual alpha and beta rules with a DPLL-based expansion and
analysed its complexity. This shows that the tableau is useful when applied to
problems with a large number of constrained propositions and a comparatively
low number of unconstrained propositions, modal and temporal operators in the
formula to be proved.

7.1 Related and Further Work

This paper defines a logic combining linear-time temporal logic and epistemic
modal logic but allowing a number of constrained sets as input. In [21] the
authors try and specify implicit facts and knowledge for (non-temporal) games
of the form given in Section 5 for the modal logic S5n. This is given in terms of
a minimal (in some sense) set of formulae that are satisfied in every world for
any model for the problem. However that work focuses on the specification of
these facts and knowledge rather than looking at the complexity and decision
procedure for a logic with constraints as input.

Here we define a tableau for a temporal logic of knowledge allowing the input
of constraints. Tableau for modal logics have been given in [12] for example and
tableau for propositional linear-time temporal logics have been given in [25, 19,
13]. The tableau we present here uses a DPLL-like construction to construct
tableau states rather than the usual alpha and beta rules. The construction
of modal and temporal successors follows what is usually done for modal and
temporal tableau.

The authors of this paper have considered decision procedures for proposi-
tional linear-time temporal logics allowing the input of constrained sets in [5, 6].
Both assume the temporal formulae are in a normal form with clauses relating
to the initial moment, conditions on the next moment given the current state,
and eventualities. This is different than the approach here where, as usual, the
tableau algorithm can be applied to any XL5 formula and does not require trans-
lation into normal form. In [5] a tableau-like structure (known as an Incremental
Behaviour Graph) is constructed and allows more expressive constraints than we
do here (eg exactly n from a set holding or less than n from a set holding). The
paper [6] defines a resolution calculus. We note that with constrained logics just
involving temporal logic we can express the constraints within the logic itself us-
ing the -operator. However for XL5 we cannot express the constraints without
adding a universal modality to the syntax, so we extend the expressivity of the
logic.

Regarding further work, primarily we are interested in implementing the
tableau system and applying the logical framework to applications outlined in
Section 6. In addition, we would explore different combinations of logics. For
example, tableau-based methods have been used for the Belief, Desire, Inten-
tion (BDI) logics of Rao and Georgeff in [18]. Whilst here we have consid-
ered propositional-linear time temporal logics combined with the modal logic
of knowledge it would be fairly easy to amend this to combine with belief logics
(KD45) or the logics KD for desire or intention.

Acknowledgements

The work of Fisher was partially supported by EPSRC grant EP/F033567 (“Ver-
ifying Interoperability Requirements in Pervasive Systems”) and the work of
Dixon was partially supported by EPSRC grant EP/D060451 (“Practical Rea-
soning Approaches for Web Ontologies and Multi-Agent Systems”).

References

1. S. Cerrito and M. C. Mayer. Using linear temporal logic to model and solve
planning problems. In Proceedings of Artificial Intelligence : Methodology, Systems,
and Applications (AIMSA), volume 1480 of LNCS, pages 141–152. Springer, 1998.

2. M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem-
Proving. Commun. ACM, 5(7):394–397, 1962.

3. C. Dixon. Using Temporal Logics of Knowledge for Specification and Verification–a
Case Study. Journal of Applied Logic, 4(1):50–78, 2006.

4. C. Dixon, M. C. Fernández Gago, M. Fisher, and W. van der Hoek. Temporal Log-
ics of Knowledge and their Applications in Security. Electronic Notes in Theoretical
Computer Science, 186:27–42, 2007.

5. C. Dixon, M. Fisher, and B. Konev. Temporal Logic with Capacity Constraints.
In Proc. 6th Int. Symposium on Frontiers of Combining Systems, volume 4720 of
LNCS, pages 163–177. Springer, 2007.

6. C. Dixon, M. Fisher, and B. Konev. Tractable Temporal Reasoning. In Proc. Int.
Joint Conference on Artificial Intelligence (IJCAI). AAAI Press, 2007.

7. R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning About Knowledge. MIT
Press, 1995.

8. R. Fagin, J. Y. Halpern, and M. Y. Vardi. What Can Machines Know? On the
Properties of Knowledge in Distributed Systems. Journal of the ACM, 39:328–376,
1996.

9. D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional
Modal Logics: Theory and Applications. Number 148 in Studies in Logic and the
Foundations of Mathematics. Elsevier Science, 2003.

10. D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. The Temporal Analysis of Fairness.
In Proc. Seventh ACM Symposium on the Principles of Programming Languages
(POPL), pages 163–173, January 1980.

11. J. Y. Halpern and Y. Moses. Knowledge and Common Knowledge in a Distributed
Environment. J. ACM, 37(3):549–587, 1990.

12. J. Y. Halpern and Y. Moses. A Guide to Completeness and Complexity for Modal
Logics of Knowledge and Belief. Artificial Intelligence, 54:319–379, 1992.

13. G. Janssen. Logics for Digital Circuit Verification: Theory, Algorithms, and Appli-
cations. PhD thesis, Eindhoven University of Technology, Eindhoven, The Nether-
lands, 1999.

14. L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison Wesley Professional, 2003.

15. W. Liu, A. Winfield, J. Sa, J. Chen, and L. Dou. Strategies for energy optimisation
in a swarm of foraging robots. In SAB’06 Swarm Robotics Workshop, 2006.

16. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, 1992.

17. R. C. Moore. Logic and Representation. Lecture Notes. Center for the Study of
Language and Information (CSLI), 1994.

18. A. S. Rao and M. Georgeff. BDI Agents: from theory to practice. In Proc. First
Int. Conference on Multi-Agent Systems (ICMAS), pages 312–319, San Francisco,
USA, 1995.

19. S. Schwendimann. Aspects of Computational Logic. PhD thesis, University of Bern,
Switzerland, 1998.

20. W. van der Hoek. Systems for Knowledge and Beliefs. Journal of Logic and
Computation, 3(2):173–195, 1993.

21. H. van Ditmarsch, W. van der Hoek, and B. Kooi. Descriptions of game states. In
Games, Logic, and Constructive Sets, number 161 in CSLI Lecture Notes, pages
43–58. CSLI Publications, 2003.

22. H. van Ditmarsch, W. van der Hoek, and B. Kooi. Playing Cards with Hintikka
— An Introduction to Dynamic Epistemic Logic. Australasian Journal of Logic,
3:108–134, 2005.

23. H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic,
volume 337 of Synthese Library Series. Springer, 2007.

24. A. Winfield, J. Sa, M.-C. Fernández-Gago, C.Dixon, and M. Fisher. On Formal
Specification of Emergent Behaviours in Swarm Robotic Systems. Int. Journal of
Advanced Robotic Systems, 2(4):363–370, 2005.

25. P. Wolper. The Tableau Method for Temporal Logic: An Overview. Logique et
Analyse, 110–111:119–136, June-Sept 1985.

26. M. Wooldridge, C. Dixon, and M. Fisher. A Tableau-Based Proof Method for
Temporal Logics of Knowledge and Belief. Journal of Applied Non-Classical Logics,
8(3):225–258, 1998.

