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Abstract

We describe approximation algorithms for (unweighted) MAX SAT with performance ratios
arbitrarily close to 1 (in particular, when performance ratios exceed the limit of polynomial-
time approximation). Namely, we show how to construct an (α + ε)-approximation algorithm
A from a given polynomial-time α-approximation algorithm A0. The algorithm A runs in time
of the order φε(1−α)−1

K , where φ is the golden ratio (≈ 1.618) and K is the number of clauses
in the input formula. Thus we estimate the cost of improving a performance ratio. Similar
constructions for MAX 2SAT and MAX 3SAT are described too. We apply our constructions
to some known polynomial-time algorithms taken as A0 and give upper bounds on the running
time of the respective algorithms A.
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1 Introduction

In the MAX SAT problem we are given a Boolean formula represented by a set of clauses, and
we seek a truth assignment that maximizes the number of satisfied clauses. An α-approximation
algorithm for MAX SAT is an algorithm that finds an assignment satisfying at least a fraction α
of the maximal number of satisfied clauses. In recent years there are many achievements in the area
of MAX SAT approximation. Most of them are connected with two directions: polynomial-time
approximation algorithms for MAX SAT and limits of polynomial-time approximation. Here we
mention only several recent results relevant to this paper, see [6, 1, 5] for detailed surveys.

A sequence of recent improvements on a polynomial-time 3/4-approximation algorithm for
MAX SAT (Yannakakis [19]) led to a deterministic 0.758-approximation algorithm (Goemans and
Williamson [11], Mahajan and Ramesh [17]) and a randomized 0.770-approximation algorithm
(Asano [4]). Better performance ratios were obtained for MAX 2SAT and MAX 3SAT, version-
s of MAX SAT in which clauses contain at most two and three literals respectively. Namely,
MAX 2SAT can be solved by the randomized 0.931-approximation algorithm ([10, 11]) or by its
derandomized version ([17]). For MAX 3SAT there are a randomized 7/8-approximation algorith-
m (Karloff and Zwick [14]) and a deterministic 0.801-approximation algorithm (Trevisan, Sudan,
Sorkin and Williamson [18]).

A characterization of NP in terms of probabilistically checkable proofs (Arora and Safra [3]) had
important implications for MAX SAT approximation. Namely, there is a constant α such that
the existence of a α-approximation polynomial-time algorithm for MAX SAT implies P = NP
(Arora et al [2]). H̊astad in [12] improved previous particular values of the limit of polynomial-
time approximation for MAX 2SAT and MAX 3SAT: no (7/8 + ε)-approximation algorithm for
MAX 3SAT and no (0.955 + ε)-approximation algorithm for MAX 2SAT exist unless P = NP.

Main results. What algorithm can we use if we need to find an α-approximation solution when
α is arbitrarily close to 1, for example, when α is greater than the limit of approximation? Can we
find such a solution faster than an exact solution (even if both take exponential time to be found)?
In this paper we answer these questions.

We show how to construct an (α+ε)-approximation algorithm A from a given polynomial-time
α-approximation algorithm A0. The algorithm A runs in time |F |O(1) · φε(1−α)−1K , where φ is the
golden ratio (≈ 1.618) and K is the number of clauses in the input formula. Thus, we estimate the
cost of improving a performance ratio.

The construction and bound remain the same for MAX 2SAT. For MAX 3SAT, we use a
similar construction and obtain an algorithm running in time |F |O(1) · 2ε(1−α)−1K .

We apply our construction, taking the known polynomial-time algorithms mentioned above as
A0. For example, taking the 7/8-approximation algorithm ([14]), we obtain the (7/8 + ε)-approx-
imation algorithm for MAX 3SAT that runs in time |F |O(1) · cεK .

The techniques used. To construct an (α + ε)-approximation algorithm from an α-approxima-
tion algorithm, we apply the splitting method, a method going back to [9, 8] and used in most SAT

algorithms. In the simplest case, a SAT algorithm based on the splitting method transforms an
input formula F into two formulas F

x=True and F
x=False obtained from F by substitution of the

truth values for some variable x. Each of these formulas is split again, and splittings proceed until
we come to formulas whose satisfiability can be checked easily. Many non-trivial upper bounds on
the running time of such algorithms were obtained recently (for example [15, 16, 13]).
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There are various ways of applying the splitting method to MAX SAT (for example [7]). We
employ it as follows. Splittings and some other reductions (pure literal elimination and resolution)
are used to transform an input formula F into formulas F1, . . . , FN . Applying a polynomial-time
MAX SAT approximation algorithm to F1, . . . , FN , we find approximate solutions to them. These
solutions are then used to construct a solution to F .

Organization of the paper. Section 2 contains basic definitions and notation we use. In Sec-
tion 3 we describe an exact MAX SAT algorithm whose running time is |F |O(1) · φK . The main
purpose of this section is to show how we apply the splitting method to solving MAX SAT and how
we estimate the running time of algorithms based on the splitting method. In Section 4 we show how
to construct a deterministic (α+ε)-approximation algorithm from a deterministic polynomial-time
α-approximation algorithm, using the splitting method. Proofs of the corresponding upper bounds
are given in this section too. Section 5 gives a similar construction for randomized algorithms.

2 Basic notation

Notation for Boolean formulas.

Literals are Boolean variables and their negations. If u is a literal, the complementary literal is
denoted by u. A clause is a finite set of literals that contains no pair of complementary literals.
A formula is a finite set of clauses. A clause is interpreted as the disjunction of its literals and a
formula is thought of as the conjunction of the corresponding disjunctions.

Let F be a formula. The number of clauses in F is denoted by K(F ). The length of F , denoted
by |F |, is the sum of cardinalities of its clauses. By #u(F ) we denote the number of occurrences of
a literal u in F , i.e. exactly #u(F ) clauses in F contain u. A literal u is said to be an (m, n)-literal
if #u(F ) = m and #u(F ) = n.

For a variable x, we define formulas F [x] and F [x] as the respect results of substitution of the
truth values True and False for x. Namely, for a literal u, we denote by F [u] the formula obtained
from F by removing all clauses that contain u and removing u from all other clauses.

Truth assignments and satisfiability.

Like a clause, an assignment is defined as a finite set of literals that contains no complementary
literals, but the interpretation is different. Let A be an assignment and x be a variable. We consider
that A assigns to x the truth value True if x ∈ A, and assigns False if x ∈ A. If neither x nor x
belongs to A, the value of x is undefined.

Let F be a formula and A be an assignment. We say that A satisfies a clause C if A ∩ C 6= ∅.
The number of clauses in F satisfied by A is denoted by Eval (F, A). If A satisfies all clauses in
F , we say that A satisfies F . In particular, the empty formula is satisfied by any assignment and
we denote this formula by True. The formula containing only the empty clause is satisfied by no
assignment and we denote it by False. The following problem is denoted by SAT: given a formula
F , determine whether F is satisfiable and, if yes, find any satisfying assignment.

MAX SAT and its approximation.

An assignment A is said to be optimal for a formula F if A satisfies the maximal number of clauses
in F , i.e. Eval (F, A) ≥ Eval (F, A′) for any assignment A′. The number of clauses satisfied by an
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optimal assignment is denoted by Opt(F ). By MAX SAT we mean the problem: given F , find
any optimal assignment. The problems MAX 2SAT and MAX 3SAT differ from MAX SAT in
restrictions on the input. Namely, every clause in F contains at most 2 literals in the case of
MAX 2SAT and at most 3 literals in MAX 3SAT.

Let A be an algorithm that produces on an input formula F an assignment AF . We call A an
exact algorithm for MAX SAT (or for related problems) if Eval (F, AF ) = Opt(F ) for all F . The
algorithm A is called an α-approximation algorithm if Eval (F, AF ) ≥ α · Opt(F ) for all F . The
infimum of the ratio Eval (F, AF ) /Opt(F ) over all F is called the performance ratio of A.

3 An exact algorithm for MAX SAT

Many algorithms for SAT are based on successive reductions of formulas to simpler ones. The
most natural example is the following: satisfiability of a formula F is reduced to satisfiability of
formulas F [x] and F [x] for some variable x in F , each of F [x] and F [x] reduces in a similar way,
and further reductions proceed until we obtain formulas True or False without variables. Such a
process can be represented by a tree, called a reduction tree, in which the root corresponds to the
input formula and other nodes correspond to formulas obtained by reductions. In the example
above, any reduction tree is a binary tree consisting of at most 2n+1 nodes, where n is the number
of variables in the input formula.

Using successive reductions, the satisfiability problem for F can be solved in time |F |O(1) · t,
where t is the number of nodes in the built reduction tree. Various upper bounds on t were obtained
in recent years, for example Hirsch [13] showed that any formula F in CNF has a reduction tree
with at most O(1.2389K(F )) nodes (see [16] for a survey of related results).

In this section we use the approach of successive reductions to find an exact solution for
MAX SAT. We present an algorithm and prove its soundness and an upper bound on its running
time. The technique used in the proof will be developed in next sections to obtain upper bounds
for approximation algorithms.

Theorem 3.1 There exists a deterministic algorithm for MAX SAT whose running time does not
exceed

|I |O(1) · φK ,

where I is an input formula, K is the number of clauses in I, and φ is the golden ratio (φ =
1
2(1 +

√
5) ≈ 1.618).

Proof. The required algorithm is described in Section 3.1. Its soundness and the bound on its
running time are proven in Sections 3.2 and 3.3 respectively.

3.1 Algorithm

The algorithm starts with building a reduction tree for the input formula I . To define such a tree,
we describe three kinds of operations on formulas.

Splitting. Let F be a formula and u be a literal in F . We say that formulas F [u] and F [u] are
obtained from F by splitting F with respect to u.
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Pure literal elimination. A literal u is said to be pure in a formula F if at least one clause in
F contains u and no clause in F contains u. If u is a pure literal in F , we say that F [u] is obtained
from F by pure literal elimination.

Elimination of a (1, 1)-literal. Let u be a (1, 1)-literal in a formula F . Let C1 and C2 be clauses
in F such that u ∈ C1 and u ∈ C2. If the set (C1\{u})∪(C2\{u}) contains no pair of complementary
literals, this set is called a resolvent of C1 and C2. In this case, we define a formula F ′ as the result
of replacing C1 and C2 in F by their resolvent. Otherwise, i.e. when (C1 \{u})∪(C2 \{u}) contains
a pair of complementary literals, we define F ′ as the formula obtained by removing C1 and C2 from
F . In both cases we say that F ′ is obtained from F by (1, 1)-literal elimination.

Now we define a reduction tree as follows. Let F be a formula. Consider a tree T in which each
node N is labeled by a formula FN such that the following conditions hold:

1. The root of T is labeled by F .

2. Each leaf is labeled by True or False.

3. For each non-leaf node N , there are two alternatives:

(a) The node N has one child N ′. The formula FN ′ is obtained from FN by either pure
literal elimination or (1, 1)-literal elimination.

(b) The node N has two children N1 and N2. The formulas FN1
and FN2

are obtained from
FN by splitting with respect to an (m, n)-literal, where both m and n are positive and
at least one of them is greater than 1.

Any such tree T is said to be a reduction tree for F .

Description of the algorithm.

The first step of our algorithm is to build a reduction tree T for the input formula I . At the second
step, the algorithm puts one more label on each node of T . Namely, moving from the leaves to the
root, the algorithm labels each node N by an assignment AN computed as follows.

Each leaf in T is labeled by the empty assignment. For a non-leaf node N , there are the following
three cases.

Case 1. The node N has a single child N ′ and FN ′ is obtained from FN by elimination of a pure
literal u. Then we define AN as AN ′ ∪ {u}.

Case 2. The node N has a single child N ′ and FN ′ is obtained from FN by elimination of a
(1, 1)-literal u. Then there are exactly two clauses C1 and C2 such that u ∈ C1 and u ∈ C2. The
assignment AN is defined depending on whether C1 and C2 contain another pair of complementary
literals, different from u and u.

Assume first that there is no other pair of complementary literals. Then AN is a best of the
assignments AN ′ ∪ {u} and AN ′ ∪ {u}, i.e. the assignment satisfying more clauses in FN or any of
them if they satisfy the same number of clauses in FN .

Assume now that there are literals v and v, different from u and u, such that v ∈ C1 and v ∈ C2.
If neither v nor v belongs to AN ′ , we define AN as a best of AN ′ ∪ {u} ∪ {v} and AN ′ ∪ {u} ∪ {v}.
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When any of v and v belongs to AN ′ , we define AN as follows: AN is AN ′ ∪{u} if v ∈ AN ′ and AN

is AN ′ ∪ {u} if v ∈ AN ′ .

Case 3. The node N has two children N1 and N2 labeled by formulas FN [x] and FN [x]. Then
we define AN as a best of AN1

∪ {x} and AN2
∪ {x}.

Finally, the algorithm returns the assignment computed for the root of T . It is easy to implement
this algorithm as an algorithm running within polynomial space and in time |I |O(1) · t, where t is
the number of nodes in T .

3.2 Soundness.

Let N be the root of the built reduction tree T . Using induction on the height of T , we prove that
AN is an optimal assignment for FN , i.e. Opt(FN ) = Eval (FN , AN). The assertion is trivial when
T consists of a single node. Consider three cases corresponding to the types of reductions.

Pure literal elimination. The root N has a single child N ′ and FN ′ is obtained from FN

by elimination of a pure literal u. Since we have Opt(F ′
N

) = Eval (FN ′ , AN ′) by the inductive
assumption, we obtain

Opt(FN ) = Opt(FN [u]) + #u(FN) =

Eval (FN ′ , AN ′) + #u(FN) = Eval (FN , AN) .

Elimination of a (1, 1)-literal. The root N has a single child N ′ and FN ′ is obtained from FN by
(1, 1)-literal elimination. A simple consideration of possible cases shows that Opt(FN) = Opt(FN ′)+
K(FN)−K(FN ′). From the other hand, we have Eval (FN , AN) = Eval (FN ′ , AN ′)+K(FN)−K(FN ′)
by the construction of AN from AN ′ . Using the inductive assumption, we obtain the required
equality Opt(FN) = Eval (FN , AN).

Splitting. The root N has two children N1 and N2 labeled by formulas FN [u] and FN [u]. Since
FN has an optimal assignment containing u or u, we have

Opt(FN ) = max(Opt(FN [u]) + #u(FN ), Opt(FN [u]) + #u(FN )).

By the inductive assumption, Opt(FN [u]) = Eval (FN [u], AN1
) and Opt(FN [u]) = Eval (FN [u], AN2

).
Therefore, Opt(FN ) is equal to

max(Eval (FN [u], AN1
) + #u(FN), Eval (FN [u], AN2

) + #u(FN )),

and we have
Opt(FN ) = max(Eval (FN , AN1

∪ {u}) , Eval (FN , AN2
∪ {u})).

Since we defined AN as the best of AN1
∪ {u} and AN2

∪ {u}, the assertion holds in this case too.
This completes the proof of soundness.
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3.3 The running time.

Our algorithm runs in time |I |O(1) · t, where t is the number of nodes in T . Since each reduction
decreases the number of clauses, the number t does not exceed |I | · l(T ), where l(T ) denotes the
number of leaves in T . To find an upper bound on l(T ), we use Fibonacci numbers Fi defined by
the equalities F0 = 0, F1 = 1 and Fi+2 = Fi+1 + Fi.

Consider all formulas with k clauses and all possible reduction trees for them. Let lk denote the
maximal number of leaves in these trees. We prove that lk ≤ Fk+1. Indeed, if k = 1, then lk = 1
and Fk+1 = 1. Let F be a formula with k > 1 clauses and T be a reduction tree for F . Then one
of the following alternatives holds.

One child. The root of T has one child labeled by a formula F ′. Obviously, the number of clauses
in F ′ does not exceed k − 1. Therefore, the number of leaves in T is not greater than lk−1, which
does not exceed Fk by the inductive assumption. Since Fk ≤ Fk+1, the number of leaves in such a
tree is bounded by Fk+1.

Two children. The root of T has two children labeled by F [u] and F [u], where u is an (m, n)-
literal. It is easy to see that the number of clauses in F [u] is at most k − m and the number of
clauses in F [u] is at most k−n. Therefore, the number of leaves in T does not exceed lk−m + lk−n.
Since both m and n are positive and at least one of them is greater than 1, the number of leaves
in T is at most

lk−m + lk−n ≤ lk−1 + lk−2 ≤ Fk + Fk−1 = Fk+1.

Thus, the number of leaves in any reduction tree for F does not exceed Fk+1 and we have
lk ≤ Fk+1. It is well known that Fk+1 ≤ φk (easy to prove by induction on k). Hence, we obtain
lk ≤ φk and the required bound on the running time.

4 Approximation algorithms for MAX SAT, MAX 2SAT, and

MAX 3SAT

In this section we prove two theorems. Theorem 4.1 and its corollaries describe approximation
algorithms for MAX SAT and MAX 2SAT. Theorem 4.4 and its corollary describe approxima-
tion algorithms for MAX 3SAT.

Theorem 4.1 Assume that there is a deterministic polynomial-time α-approximation algorithm
for MAX SAT (MAX 2SAT). Let 0 < ε ≤ 1 − α. Then one can construct a deterministic
(α + ε)-approximation algorithm for MAX SAT (respectively MAX 2SAT) whose running time
does not exceed

|I |O(1) · φε(1−α)−1K ,

where I is an input formula, K is the number of clauses in I, and φ is the golden ratio (≈ 1.618).

Proof. We construct the required (α+ ε)-approximation algorithm in Section 4.1 and prove its
soundness and the bound on its running time in Sections 4.2 and 4.3.

We apply this theorem, taking known algorithms as the α-approximation algorithm. Namely,
we take the 0.758-approximation algorithm for MAX SAT ([11, 17]) and the 0.931-approximation
algorithm for MAX 2SAT ([11, 10, 17]). Simple calculations yield the following corollaries.
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Corollary 4.2 For any ε such that 0 < ε ≤ 0.242, there is a deterministic (0.758+ ε)-approxima-
tion algorithm for MAX SAT whose running time does not exceed

|I |O(1) · φ4.133εK,

where I is an input formula, K is the number of clauses in I, and φ is the golden ratio.

Corollary 4.3 For any ε such that 0 < ε ≤ 0.069, there is a deterministic (0.931+ ε)-approxima-
tion algorithm for MAX 2SAT whose running time does not exceed

|I |O(1) · φ14.493εK,

where I is an input formula, K is the number of clauses in I, and φ is the golden ratio.

Theorem 4.4 Assume that there is a deterministic polynomial-time α-approximation algorithm for
MAX 3SAT. Let 0 < ε ≤ 1 − α. Then one can construct a deterministic (α + ε)-approximation
algorithm for MAX 3SAT whose running time does not exceed

|I |O(1) · 2ε(1−α)−1K ,

where I is an input formula and K is the number of clauses in I.

Proof. See Section 4.4.

Using the known 0.801-approximation algorithm for MAX 3SAT as the α-approximation al-
gorithm, we obtain the following corollary.

Corollary 4.5 For any ε such that 0 < ε ≤ 0.199, there is a deterministic (0.801+ ε)-approxima-
tion algorithm for MAX 3SAT whose running time does not exceed

|I |O(1) · 25.026εK,

where I is an input formula, K is the number of clauses in I.

4.1 Algorithm

Like the exact algorithm in Section 3, our approximation algorithm starts with building a reduction
tree T for an input formula I . However, this algorithm builds only a part T ′ of the entire tree
T . Namely, the approximation algorithm starts with the root and proceeds with constructing
descendants as in Section 3.1 while formulas consist of at least K0 clauses, where

K0 = ⌊K − ε(1 − α)−1K⌋
(the choice of this value of K0 will become clear below). Otherwise, i.e. when K(FN) < K0, the
node N is considered to be a leaf in the tree T ′. Thus, T ′ can be viewed as a part of a reduction
tree obtained by deleting some subtrees.

For each node N of T ′, our approximation algorithm computes an assignment AN . This is
similar to the case of the exact algorithm and the only difference is in assignments for the leaves.
At each leaf N , the assignment AN is computed by the polynomial-time α-approximation algorithm
from the statement of the theorem. Namely, we define AN to be the output of this algorithm on
input FN . Computation of the assignments for the non-leaf nodes is performed in the same way as
in the exact algorithm.

The assignment computed for the root of T ′ is considered to be the output of our approximation
algorithm. Like the exact algorithm, the approximation one can be implemented as an algorithm
running within polynomial space.
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4.2 Soundness

The following two lemmas prove that the assignment computed for the root of T ′ satisfies at least
(α + ε) · Opt(I) clauses in I .

Lemma 4.6 Let R be the root of T ′. The tree T ′ has a leaf L such that

Eval (FR, AR) ≥ Eval (FL, AL) +K(FR) −K(FL) (1)

Opt(FR) ≤ Opt(FL) + K(FR)−K(FL) (2)

Proof. The inequality (1) follows from the fact that for each node N and its child N ′, we have
Eval (FN , AN) − Eval (FN ′ , AN ′) ≥ K(FN) −K(FN ′). The latter inequality as well as the inequali-
ty (2) are proved by straightforward consideration of the types of reductions.

Lemma 4.7 Let R be the root of T ′. Then (α + ε) · Opt(FR) ≤ Eval (FR, AR).

Proof. Let L be a leaf such that (1) and (2) hold. Since AL is the assignment computed by the
α-approximation algorithm for FL, we have

Eval (FL, AL) ≥ α · Opt(FL). (3)

We thus obtain

Eval (FR, AR) ≥ α · Opt(FL) +K(FR) −K(FL) ≥
α · (Opt(FR) − (K(FR) −K(FL))) + K(FR) −K(FL) =

α · Opt(FR) − α · (K(FR) −K(FL)) + (K(FR) −K(FL)) =

α · Opt(FR) + (1 − α)(K(FR) −K(FL)).

We estimate the last expression using our choice of K0:

α ·Opt(FR) + (1− α)(K(FR) −K(FL)) ≥
α ·Opt(FR) + (1− α)(K − K0) ≥
α ·Opt(FR) + εK ≥
(α + ε) ·Opt(FR).

4.3 The running time.

As in the case of the exact algorithm in Section 3.3, we estimate the running time of our algorithm
by estimating the number of leaves in T ′. We show that the number of leaves in T ′ is not greater
than FK+1−K0

, where K0 = ⌊K − ε(1−α)−1K⌋. To show it, we prove the inequality lk ≤ Fk+1−K0

(for k ≥ K0) instead of lk ≤ Fk+1 in the proof of Theorem 3.1. This inequality is proved by
induction on k, beginning with K0.

Let k = K0, i.e. the root of T ′ is labeled by a formula having at most K0 clauses. Then the
tree T ′ consists of a single node. Therefore, lK0

= Fk+1−K0
= 1 and the induction basis is proved.

For k > K0, we have the same reductions as in the tree T in Section 3.3. Therefore, the
inequality lk+1 ≤ lk−1 + lk can be proved in the same way. Thus, we obtain lk ≤ Fk+1−K0

≤ φk−K0 .
Substituting the value of K0, we come to the required bound.
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4.4 Proof of Theorem 4.4

The (α+ε)-approximation algorithm for MAX 3SAT is similar to its counterparts for MAX SAT

and MAX 2SAT in Theorem 4.1 and differs only in the following. While the algorithm in Theo-
rem 4.1 uses three kinds of reductions (namely splitting, pure literal elimination and (1, 1)-literal
elimination), the MAX 3SAT algorithm uses only the first two of them. This is connected with
the fact that resolution may increase the number of literals in clauses. Thus, the algorithm for
MAX 3SAT builds a reduction tree by means of splitting and pure literal elimination. Splitting
is allowed for any (m, n)-literal where m and n are positive.

The proof of soundness is similar to the proof in Section 4.2. The proof of the running time
bound differs. Since (1, 1)-literal elimination is not used now, the inequality lk+1 ≤ lk + lk−1 does
not hold. Instead, the inequality lk+1 ≤ lk + lk obviously holds. Therefore, we obtain the required
bound with 2 instead of φ in the base of exponent.

5 Randomized versions

A randomized α-approximation algorithm for MAX SAT (or related problems) is defined as a
randomized algorithm that produces on an input formula F an assignment AF such that

E[Eval (F, AF )] ≥ α ·Opt(F ),

where E denotes the expectation. The algorithms that we construct in this section are similar to
the algorithms in the previous section. The only difference is that α-approximation algorithms are
randomized and, accordingly, we obtain randomized (α + ε)-approximation algorithms.

Theorem 5.1 (a randomized version of Theorem 4.1) Assume that there is a polynomial-
time randomized α-approximation algorithm for MAX SAT (MAX 2SAT). Let 0 < ε ≤ 1 − α.
Then one can construct a randomized (α+ε)-approximation algorithm for MAX SAT (respectively
MAX 2SAT) whose running time is

|I |O(1) · φε(1−α)−1K ,

where I is an input formula, K is the number of clauses in I, and φ is the golden ratio (≈ 1.618).

Proof. We describe the required (α + ε)-approximation algorithm in Section 5.1 and prove its
soundness and the bound on the running time in Section 5.2.

Corollary 5.2 For any ε such that 0 < ε ≤ 0.230, there is a randomized (0.770+ε)-approximation
algorithm for MAX SAT whose running time is

|I |O(1) · φ4.348εK,

where I is an input formula, K is the number of clauses in I, and φ is the golden ratio.

Proof. We obtain this corollary, using the polynomial-time randomized 0.770-approximation algo-
rithm for MAX SAT ([4]) as the α-approximation algorithm.
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Theorem 5.3 (a randomized version of Theorem 4.4) Assume that there is a polynomial-
time randomized α-approximation algorithm for MAX 3SAT. Let 0 < ε ≤ 1 − α. Then one can
construct a randomized (α + ε)-approximation algorithm for MAX 3SAT whose running time is

|I |O(1) · 2ε(1−α)−1K

where I is an input formula and K is the number of clauses in I.

Proof. See Section 5.3.

Corollary 5.4 For any ε such that 0 < ε ≤ 1/7, there is a randomized (7/8 + ε)-approximation
algorithm for MAX 3SAT whose running time is

|I |O(1) · 28εK

where I is an input formula and K is the number of clauses in I.

Proof. We use the polynomial-time randomized 7/8-approximation algorithm for MAX 3SAT

([14]) as the α-approximation algorithm.

5.1 Algorithm

Consider the randomized α-approximation algorithm mentioned in the condition of Theorem 5.1.
We can think of it as a deterministic algorithm computing a function of two arguments: an input
formula F and a string τ of random bits. Thus, we have a polynomial-time deterministic algorithm
A0 that outputs an assignment A0(F, τ) on given F and τ .

Like the deterministic (α + ε)-approximation algorithm in Section 4.1, our randomized (α + ε)-
algorithm starts with building a tree T ′ which is a part of a reduction tree. Let L1, . . . , Ls be the
leaves of T ′ labeled by the formulas FL1

, . . . , FLs
. The next step is computation of the assignments

AL1
, . . . , ALs

. Namely, our algorithm generates a string τ of random bits and runs A0 on all
FL1

, . . . , FLs
to compute

A0(FL1
, τ), . . . ,A0(FLs

, τ).

Further assignments AN for non-leaf nodes N are computed in the same way as in the deter-
ministic case (Section 4.1). The output of our randomized (α + ε)-algorithm is the assignment
computed for the root.

5.2 Soundness and the running time

Soundness. Like the deterministic case, the proof of soundness is based on assertions similar to
the assertions in Lemmas 4.6–4.7. In fact, Lemma 4.6 holds for the randomized case without any
changes.

Lemma 5.5 (a randomized version of Lemma 4.6) Let T ′ be the tree constructed by the ran-
domized (α + ε)-algorithm. Let R be the root of T ′. The tree T ′ has a leaf L such that

Eval (FR, AR) ≥ Eval (FL, AL) +K(FR) −K(FL)

Opt(FR) ≤ Opt(FL) + K(FR)−K(FL)
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Proof. Our algorithm constructs T ′ in completely the same way as in the deterministic case.
Like (1) in Lemma 4.6, the first inequality depends only on the method of computation of assign-
ments for all non-leaf nodes of T ′ and does not depend on the assignments at the leaves. Therefore,
this inequality holds. The second inequality holds because (2) depends only on the construction of
T ′.

Lemma 5.6 (a randomized version of Lemma 4.7) Let R be the root of T ′. Then

(α + ε) · Opt(I) ≤ E[Eval (FR, AR)].

Proof. Let A(I, τ) denote the output of constructed (α + ε)-approximation algorithm on an input
formula I and a string τ of random bits. By the first inequality in Lemma 5.5, the number of
clauses satisfied by A(I, τ) is greater than or equal to Eval (FLi

,A0(FLi
, τ)) + K(I) − K(FLi

) for
any τ . Hence we have

E[Eval (FR, AR)] ≥ E[Eval (FLi
,A0(FLi

)) + K(I)−K(FLi
)],

an “expectation” version of the inequality (3) in the proof of Lemma 4.7. Similarly, “expectation”
versions of the other inequalities in the proof of Lemma 4.7 holds.

Running time. Computation of assignments for non-leaf nodes in T ′ does not depend on the
random string τ . Therefore, the bound on the running time is the same as in Theorem 4.1.

The method of building T ′ by the randomized algorithm is exactly the same as the method
of building T ′ by the deterministic algorithm. Therefore, the running time of the randomized
algorithm can be estimated exactly as in the deterministic case (see Section 4.3).

5.3 Proof of Theorem 5.3

This is an “expectation” version of Theorem 4.4. We use the same arguments as in the proof of
Theorem 5.1.

6 Acknowledgments

E. Dantsin, E. A. Hirsch, and B. Konev are supported in part by grants from INTAS (International
Association for the promotion of cooperation with scientists from the independent States of the
former Soviet Union) and RFBR (Russian Foundation for Basic Research). M. Gavrilovich is
supported by a grant from ISSEP (International Soros Science Education Program). We thank
these foundations for support.

References

[1] S. Arora and C. Lund. Hardness of approximation. In D. Hochbaum, editor, Approximation
algorithms for NP-hard problems, chapter 10. PWS Publishing Company, Boston, 1997.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness of
approximation problems. In Proceedings of the 33rd Annual IEEE Symposium on Foundations
of Computer Science, pages 14–23, 1992.

12



[3] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. In
Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science, pages
2–13, 1992.

[4] T. Asano. Approximation algorithms for MAX SAT: Yannakakis vs. Goemans-Williamson.
In Proceedings of the 5th Israel Symposium on Theory and Computing Systems, pages 24–37,
1997.

[5] L. Babai. Transparent proofs and limits to approximation. In Proceedings of the First European
Congress of Mathematicians, Paris, 1992, vol. 1, pages 31–92. Birkhäuser Verlag, 1994.
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