
Module Extraction for Acyclic Ontologies

William Gatens, Boris Konev, and Frank Wolter

The University of Liverpool, UK

Abstract. We present an implementation (AMEX) of a module extraction algo-
rithm for acyclic description logic ontologies. The implementation uses a QBF
solver (sKizzo) to check whether one ontology is a conservative extension of
another ontology relativised to interpretations of cardinality one. We evaluate
AMEX by applying it to NCI (the National Cancer Institute Thesaurus) and by
comparing the extracted AMEX-modules with locality-based modules. We also
present experiments for a hybrid approach in which AMEX and locality-based
module extraction are applied iteratively to NCI.

1 Introduction

Module extraction is the task of computing, given an ontology and a signature Σ of
interest, a subset (called module) of the ontology such that for certain applications that
use the signature Σ only, the original ontology can be equivalently replaced by the
module [14]. In most applications of module extraction it is desirable to compute a
small (and, if possible, even minimal) module. In logic-based approaches to module
extraction, the most robust and popular way to define modules is via model-theoretic
Σ-inseparability, where two ontologies are called Σ-inseparable iff the Σ-reducts of
their models coincide. Then, a Σ-module of an ontology is defined as a Σ-inseparable
subset of the ontology [10, 7, 3, 8]. It is often helpful and necessary to refine this notion
of Σ-module by considering self-contained Σ-modules (modules that are inseparable
from the ontology not only w.r.t. Σ but also w.r.t. their own signature) and depleting
modules (modules such that the remaining axioms in the ontology say nothing about Σ
and the signature of the module, that is, these remaining axioms are inseparable from
the empty ontology w.r.t. Σ and the signature of the module). Note that every depleting
module is a self-contained module is a module. In all three cases it is often not possi-
ble to compute Σ-modules: by results in [8, 11], for acyclic ALC-TBoxes and general
EL-TBoxes it is undecidable whether a given subset of a TBox is a (self-contained,
depleting) Σ-module. The “maximal” description logics (DLs) for which efficient al-
gorithms computing minimal self-contained and depletingΣ-modules have been devel-
oped are acyclic EL [8] and DL-Lite [9, 10, 6].1 For this reason, for module extraction
for ontologies given in expressive DLs or other expressive ontology languages one has
to employ approximation algorithms: instead of computing a minimal (self-contained,
depleting) Σ-module, one computes some (self-contained, depleting) Σ-module and

1 For typical DL-Lite dialects, model-theoreticΣ-inseparability is decidable. Experimental eval-
uations of module extraction algorithms are, however, available only for language dependent
notions of inseparability.

the main research problem is to minimise the size of the module (or, equivalently, to
approximate minimal modules). Currently, the most popular and successful approxima-
tion algorithm is based on locality and computes so-called >⊥∗-modules [4]. The size
of >⊥∗-modules and the performance of algorithms extracting >⊥∗-modules has been
analysed systematically and in great detail [4]. However, since no alternative logically
sound and implemented module extraction algorithms are available for expressive DLs,
it remained open how large and significant the difference between >⊥∗-modules and
minimal modules is and in how far it is possible to improve upon the approximation
obtained by >⊥∗-modules.2

The contribution of this paper is as follows.

1. We extend the module extraction algorithm introduced in [8] from acyclic ALCI-
TBoxes to acyclicALCQI-TBoxes with repeated concept inclusions and present a
number of optimisations of the algorithm given in [8]. We note that our extraction
algorithm is polynomial time except that it uses a QBF-solver as an oracle.

2. We describe our implementation, called AMEX, of this module extraction algo-
rithm. AMEX is available from http://www.csc.liv.ac.uk/~wgatens/
software/amex.html.

3. We evaluate its efficiency in experiments with NCI and compare the size of the
computed AMEX-modules with the size of >⊥∗-modules.

4. We introduce a hybrid approach to module extraction in which >⊥∗-module ex-
traction and AMEX-module extraction are applied iteratively. Unlike AMEX on
its own, this hybrid approach is applicable to arbitrary description logic TBoxes.
We demonstrate that on some inputs both AMEX and the hybrid approach lead to
significant reductions in the size of modules.

2 Preliminaries

We use standard notation from logic and description logic (DL), details can be found in
[1]. In a DL, concepts are constructed from countably infinite sets NC of concept names
and NR of role names using the concept constructors defined by the DL. For example,
ALCQI-concepts are built according to the rule

C ::= A | > | ¬C | ≥ n r.C | ≥ n r−.C | C uD,

where A ∈ NC, n is a natural number, and r ∈ NR. As usual, we use the following
abbreviations: ⊥ denotes ¬>, ∃r.C denotes ≥ 1 r.C, ∀r.C denotes ¬∃ r.¬C, C t D
denotes ¬(¬C u ¬D), ≤ n r.C denotes ¬(≥ (n + 1) r.C), and (= n r.C) for ((≥
n r.C) u (≤ n r.C)).

A general TBox T is a finite set of axioms, where an axiom can be either a concept
inclusion (CI) C v D or a concept equality (CE) C ≡ D, where C andD are concepts.
A general TBox T is acyclic if all its axioms are of the form A v C or A ≡ C, where

2 An implementation of semantic locality-based ∆∅∗-modules and a comparison between >⊥∗
and ∆∅∗-modules have been presented in [4]; however, the authors found no significant dif-
ference between the two approaches. A promising approach to refine >⊥∗-module extraction
has recently been presented in [12], but an implemented system is not yet publicly available.

A ∈ NC, no concept name occurs more than once on the left-hand side andA 6≺+
T A, for

any A ∈ NC, where ≺+
T is the transitive closure of the relation ≺T ⊆ NC × (NC ∪ NR)

defined by setting A ≺T X iff there exists an axiom of the form A v C or A ≡ C in
T with X ∈ sig(C).

The semantics of DLs is given by interpretations I = (∆I , ·I), where the domain
∆I is a non-empty set and ·I is an interpretation function that maps each A ∈ NC to a
subsetAI of∆I and each r ∈ NR to a binary relation rI ⊆ ∆I×∆I . The function ·I is
inductively expanded to complex concepts C in the standard way [1]. An interpretation
I satisfies a CI C v D (written I |= C v D) if CI ⊆ DI , it satisfies a CE C ≡ D
(written I |= C ≡ D) if CI = DI . I is a model of T if it satisfies all axioms in T .

3 Module Extraction

In this section we define depleting modules and give an algorithm computing depleting
modules of acyclic ALCQI-TBoxes using a QBF solver. To cover the NCI Thesaurus,
we also extend our extraction algorithm to TBoxes that are acyclic except that they
contain repeated concept inclusions. The results presented in this section are extensions
of the results presented in [8] for acyclic ALCI-TBoxes to acyclic ALCQI-TBoxes
with repeated concept inclusions.

A signature Σ is a finite subset of NC ∪ NR. The signature sig(C) (sig(α), sig(T))
of a concept C (axiom α, TBox T , resp.) is the set of concept and role names that occur
in C (α, T , resp.). If a sig(C) ⊆ Σ we call C a Σ-concept. The Σ-reduct I|Σ of an
interpretation I is obtained from I by setting ∆I|Σ = ∆I , and XI|Σ = XI for all
X ∈ Σ, and XI|Σ = ∅ for all X 6∈ Σ. Let T1 and T2 be TBoxes and Σ a signature.
Then T1 and T2 are Σ-inseparable, in symbols T1 ≡Σ T2, if

{I|Σ | I |= T1} = {I|Σ | I |= T2}.

It is proved in [8] that TBoxes T1 and T2 are Σ-inseparable if, and only if, T1 |= ϕ
iff T2 |= ϕ holds for any second-order sentence ϕ using symbols for Σ only. Thus,
Σ-inseparable TBoxes cannot be distinguished by their second-order consequences for-
mulated in Σ. We use Σ-inseparability to define modules.

Definition 1. Let M ⊆ T be TBoxes and Σ a signature. Then M is a depleting Σ-
module of T if T \M ≡Σ∪sig(M) ∅.

Every depleting moduleM of T is inseparable from the T for its signature [8], that is, if
M is a depleting Σ-module of T then T ≡Σ∪sig(M) M, and, in particular, T ≡Σ M.
Thus, a TBox and its depleting Σ-module can be equivalently replaced by each other
in applications which concern Σ only. Unfortunately, checking if a subsetM of T is a
depletingΣ-module of T for some given signatureΣ is undecidable already for general
TBoxes formulated in EL and for acyclic ALC-TBoxes [8, 11].

We therefore consider syntactic restrictions that ensure that depleting modules be-
come decidable. We say that an acyclic TBox T has a direct Σ-dependency, for some
signature Σ, if there exists {A,X} ⊆ Σ with A ≺+

T X; otherwise we say that T
has no direct Σ-dependencies. Although one can construct TBoxes T and depleting
Σ-modulesM of T such that T \M contains direct Σ ∪ sig(M)-dependencies (see

[8]), for typical depleting Σ-modules M, the set T \ M should not contain direct
Σ∪sig(M)-dependencies because such dependencies indicate a semantic link between
two distinct symbols inΣ∪sig(M). The main advantage of making the assumption that
T \M has no direct Σ ∪ sig(M)-dependencies is that it becomes decidable whether
T \M ≡Σ∪sig(M) ∅ [8]. The following lemma directly implies this decidability result.
For an acyclic TBox T and a signature Σ let

LhsΣ(T) = {A ./ C ∈ T | A ∈ Σ or ∃X ∈ Σ (X ≺+
T A)}.

The following is proved in [8] for acyclicALCI-TBoxes. The generalization toALCQI
is straightforward and omitted.

Lemma 1. Let T be an acyclic ALCQI-TBox. If T \M has no direct Σ ∪ sig(M)-
dependencies then the following conditions are equivalent for everyW ⊆ T \M:

(a) W ≡Σ∪sig(M) ∅;
(b) for every I with |∆I | = 1 there exists a model J of LhsΣ∪sig(M)(W) such that
I|Σ∪sig(M) = J |Σ∪sig(M).

Since the condition (b) of Lemma 1 refers to interpretations with a singleton domain, it
can be checked by reduction to validity of a quantified Boolean formula: take a proposi-
tional variable pA for each nameA ∈ Σ∪sig(M) and a (distinct) propositional variable
qX for each symbol X ∈ sig(T)\ (Σ ∪ sig(M)). Translate concepts D in the signature
sig(T) into propositional formulas D† by setting

A† = pA for all A ∈ Σ ∪ sig(M)
A† = qA for all A ∈ sig(T) \ (Σ ∪ sig(M))

(D1 uD2)
† = D†1 ∧D

†
2

(¬D)† = ¬D†
(≥ 1 r.D)† = (≥ 1 r−.D)† = qr ∧D† for all r ∈ sig(T)
(≥ n r.D)† = (≥ n r−.D)† = ⊥ for all n > 1 and r ∈ sig(T)

Now let
T † =

∧
CvD∈T \M

C† → D† ∧
∧

C≡D∈T \M

C† ↔ D†

and let p denote the sequence of variables pA, A ∈ Σ ∪ sig(M), and q denote the
sequence of variables qX ,X ∈ sig(T)\(Σ∪sig(M)). One can show that condition (b)
of Lemma 1 holds if, and only if, the QBF ϕT := ∀p∃qT † is valid. Thus, for TBoxes
with no direct Σ ∪ sig(M)-dependencies the separability check can be implemented
using a QBF solver.

Lemma 1 can be used directly for a naïve module extraction algorithm which goes
through all subsets of T to identify a smallest possible M such that T \ M has no
direct Σ ∪ sig(M)-dependencies and T \M ≡Σ∪sig(M) ∅. Instead, we consider a re-
fined goal-oriented approched based on the notion of a separability causing axiom. Let
M⊆ T and a signatureΣ be such that T \M has no directΣ∪sig(M)-dependencies.
We call an axiom A ./ C ∈ T \M, where ./∈ {v,≡}, separability causing if there
exists aW ⊆ T \M such that

A ./ C ∈ W; (W \ {A ./ C}) ≡Σ∪sig(M) ∅; W 6≡Σ∪sig(M) ∅.

Input: Acyclic ALCQI TBox T , Signature Σ
Apply Rules 1 and 2 exhaustively, preferring Rule 1.
Output: (Minimal) ModuleM s.t T \M ≡Σ∪sig(M) ∅ and T \M has no direct

Σ ∪ sig(M) dependencies.

(R1) If an axiom A ./ C ∈ T \M is such that A ∈ Σ ∪ sig(M))
and A ≺+

T \M X , for some X ∈ (Σ ∪ sig(M)), then setM :=M∪ {A ./ C}
(R2) If an axiom A ./ C ∈ T \M is a separability causing axiom then set
M :=M∪ {A ./ C}

Fig. 1. Module extraction in ALCQI

Input: TBox T , subsetM∈ T and signature Σ such that
T \M contains no direct Σ ∪ sig(M)-dependencies and T \M 6≡Σ∪sig(M) ∅
Output: Separability causing axiom α

1 W = lastAdded = topHalf (LhsΣ∪sig(M)(T \M))
2 lastRemoved = bottomHalf (LhsΣ∪sig(M)(T \M))
3 while lastAdded 6= ∅ do
4 ifW ≡Σ∪sig(M) ∅ then
5 lastAdded = topHalf (lastRemoved)
6 W =W ∪ lastAdded
7 lastRemoved = lastRemoved \ lastAdded
8 else
9 lastRemoved = bottomHalf (lastAdded)

10 W =W \ lastRemoved
11 lastAdded = lastAdded \ lastRemoved

12 return the last axiom ofW

Fig. 2. Finding separability causing axiom

Clearly, if T \M 6≡Σ∪sig(M) ∅ then T \M contains a separability causing axiom.
The algorithm computing a depleting Σ-module of acyclicALCQI-TBoxes is now

given in Figure 1. In the algorithm, the extraction of depleting Σ-modules is broken
into the rules R1 and R2. The rule R1 checks for direct Σ∪ sig(M)-dependencies. The
rule R2 implements an inseparability check. Notice that R2 only applies when R1 is not
applicable, that is only if T \M contains no direct Σ ∪ sig(M)-dependencies. Notice
that applications of the R1 rule can lead to axioms unnecessarily being included into the
module; but such is the price we pay for regaining the decidability of the inseparability
check.

To reduce the number of calls to the QBF solver, rule R2 is implemented as binary
search. We first consider T \M itself asW . If T \M ≡Σ∪sig(M) ∅ then T \M contains
no separability causing axioms. Otherwise, we consider W to be equal to the top half
of T \M (we treat T \M as an ordered set). We then check ifW ≡Σ∪sig(M) ∅ and,
if this is the case, we growW from the bottom and if not, we half it again as shown in

Figure 2. In the worst case we perform log2(|T \M|) inseparability checks to locate a
separability causing axiom.

To summarise, the module extraction algorithm in Figure 1 runs in polynomial time
with each call to the QBF solver being treated as a constant time oracle call. Note that
QBF solvers have been used before in module extraction [9, 10], but the task solved by
the solver here is completely different from its task in [9, 10].

It should be clear that if neither R1 nor R2 is applicable then T \M ≡Σ∪sig(M) ∅
and so the output of the algorithm in Figure 1 is a depleting Σ-module. By a straight-
forward generalisation of the results of [8] to ALCQI one can actually show that the
module computed in Figure 1 is uniquely determined:

Theorem 1. Given an acyclic ALCQI TBox T and signature Σ the algorithm in Fig-
ure 1 computes the unique minimal depleting Σ-module s.t. T \M contains no direct
Σ ∪ sig(M)-dependencies.

Note that the minimality condition in the theorem means that for any M′ ⊆ T such
that T \ M′ has no direct Σ ∪ sig(M′)-dependencies and T \ M′ ≡Σ∪sig(M′) ∅
we have M ⊆ M′. It is, however, still possible that there exists a M′′ ⊆ T with
T \M′′ ≡Σ∪sig(M′′) ∅,M 6⊆M′′ and such that T \M′′ has some directΣ∪sig(M′′)-
dependencies.

Example 1. We apply the algorithm in Figure 1 to the following acyclic TBox T in-
spired by the NCI Thesaurus (we have simplified some axioms and abbreviated ‘kidney’
with K, ‘ureter’ with U and ‘tract’ with T)

Renal Pelvis and U v ∃partOf.K and U (1)
K and U Neoplasm ≡ U T Neoplasm u (∀hasSite.K and U) (2)

Malignt U T Neoplasm ≡ U T Neoplasm u (∀hasAbnCell.Malignt Cell) (3)
Benign U T Neoplasm ≡ U T Neoplasm u (∀excludesAbnCell.Malignt Cell) (4)

and Σ = {Malignt U T Neoplasm, K and U Neoplasm, Renal Pelvis and U}. It can
be seen that R1 is not applicable. To see why LhsΣ(T) 6≡Σ ∅ consider an interpretation
I with ∆I = {d} such that Renal Pelvis and UI = Malignt U T NeoplasmI = {d}
and K and U NeoplasmI = ∅. It can be readily checked for any J with J |Σ = I|Σ
that J 6|= T . This check can be delegated to a QBF solver as explained above.

The algorithm in Figure 2 splits LhsΣ(T) into two parts, lastAdded = {(1), (2)}
and lastRemoved = {(3)}. For W = lastAdded it can be checked that W ≡Σ ∅.
Then the algorithm grows W with (the upper part of) lastRemoved. The same argu-
ment as above shows that for W = {(1), (2), (3)} we have W 6≡Σ ∅ and so the
algorithm identifies (3) as a separability causing axiom. After applying the rule R2,
Σ ∪ sig(M) = {Malignt U T Neoplasm, K and U Neoplasm, Renal Pelvis and U,
U T Neoplasm,hasAbnCell} and then the rule R1 adds axioms (1) and (2) toM.

It can be seen that neither R1 nor R2 applies to T \M = {(4)} and the computation
concludes withM = {(1), (2), (3)}. Notice that although {(4)} ≡Σ∪sig(M) ∅, axiom
(4) is neither ∆- nor ∅-local for Σ ∪ sig(M) and so the >⊥∗-module of T w.r.t. Σ
coincides with T (see below and [3] for definitions).

It is often the case (e.g., for the NCI Thesaurus) that a real-world ontology satisfies all
conditions for acyclic TBoxes with the exception that it contains multiple concept in-
clusions of the form A v C1, . . . , A v Cn. We call such TBoxes acyclic with repeated

concept inclusions. Clearly, one can convert such a TBox into an equivalent acyclic
TBox by replacing all repeated concept inclusions of the form A v C1,. . . , A v Cn
withA v C1u. . .uCn. However, such an explicit conversion is an unattractive solution
for module extraction because if such an axiom is added to a Σ-module the signature
of the module now contains every symbol in the definition of every repeated name in-
creasing the size of the resulting module considerably. The approach we take to handle
acyclic TBoxes with repeated concept inclusions is to introduce fresh concept names
for different repeated occurrences of a concept name in the left-hand side of concept
inclusions, extract modules from the resulting acyclic TBox and then substitute away
the added names as follows.

Theorem 2. Let T be an acyclic TBox with repeated concept inclusions and Σ a
signature. Let T ′ consist of all A ./ C ∈ T which are not repeated in T and all
A′1 v C1, . . . , A

′
n v Cn, A v A′1 u . . . u A′n, where A v C1,. . . , A v Cn are all

concept inclusions in T with A on the left hand side, n > 1, and A′1, . . . , A
′
n are fresh

concept names.
LetM′ be a depletingΣ-module of T ′ and letM be obtained fromM′ by dropping

the added axioms of the form A v A′1 u . . .uA′n and by replacing every occurrence of
the introduced symbols A′1, . . . , A

′
n with A. ThenM is a depleting Σ-module of T .

4 Experiments and Evaluation

We implemented the algorithm presented in Figure 1 and the refinement for acyclic
TBoxes with repeated concept inclusions in the AMEX system which is written in Java
aided by the OWL-API library [5] for ontology manipulation. The inseparability check
was implemented using the reduction to the validity of Quantified Boolean Formulae
(QBF) and uses the QBF solver sKizzo [2].

To evaluate the efficiency of AMEX and the size of the modules computed by AMEX
we compare it to >⊥∗ locality-based module extraction [3, 13] as implemented in the
OWL-API library version 3.2.4.1806 (called STAR-modules for ease of pronunciation).

To evaluate the performance of both approaches we consider random and axiom
signatures. To generate a random signature size n given a TBox T we take the set of all
concepts in T , i.e. sig(T) ∩ NC and select at random n symbols from this set. For each
concept signature size we also include a percentage of role names randomly selected
from sig(T), varying between 0% which equates to just using a concept signature to
100% which would be equal toΣ∪(sig(T)∩NR). For experiments on axiom signatures,
for a given numberm, we select at randomm axioms from T and then extract a module
for each of the signatures of selected axioms.

In our experiments we used the NCI Thesaurus version 08.09d taken from the Bio-
portal [15] repository. This version of NCI contains 116 515 logical axioms among
which 87 934 are concept inclusions of the form A v C and 10 366 are concept equa-
tions of the form A ≡ C. In what follows, NCI?(v) denotes the TBox consisting of all
such inclusions, NCI?(≡) denotes the TBox consisting of all such equations, and NCI?

denotes the union of both. All three TBoxes are acyclic (with repeated concept inclu-
sions), so AMEX can be applied to them. NCI? together with the rest of the ontology

Role% 0% 25% 50% 75% 100%

|Σ| St
ar

A
M

E
X

%
D

iff

St
ar

A
M

E
X

%
D

iff

St
ar

A
M

E
X

%
D

iff

St
ar

A
M

E
X

%
D

iff

St
ar

A
M

E
X

%
D

iff

NCI?

100 3835.7 676.6 467% 3848.6 943.7 308% 3891.7 984.0 295% 3929.4 1014.7 287% 3929.8 1016.5 287%
250 5310.2 1725.9 208% 5365.6 1795.2 199% 5463.1 1871.5 192% 5506.3 1919.3 187% 5505.4 1918.0 187%
500 6985.9 2735.9 155% 7109.6 2844.9 150% 7165.5 2930.3 145% 7252.8 3002.1 142% 7245.9 2990.1 142%
750 8223.3 3572.7 130% 8355.2 3698.8 126% 8464.4 3806.1 122% 8538.5 3878.7 120% 8526.1 3872.0 120%

1000 9276.7 4333.6 114% 9397.2 4458.4 111% 9492.8 4573.9 108% 9564.9 4627.1 107% 9565.3 4642.7 106%
NCI? (v)

100 55.47 65.04 -15% 232.76 281.90 -17% 286.13 318.81 -10% 312.59 333.65 -6% 339.83 351.70 -3%
250 328.28 390.81 -16% 559.56 657.37 -15% 651.05 718.62 -9% 712.87 759.06 -6% 765.30 796.47 -4%
500 852.89 1007.34 -15% 1046.44 1190.43 -12% 1193.75 1301.77 -8% 1278.48 1355.05 -6% 1378.30 1435.99 -4%
750 1325.96 1541.33 -14% 1517.68 1692.20 -10% 1675.37 1808.43 -7% 1802.61 1905.29 -5% 1921.13 1993.60 -4%

1000 1786.342 2039.67 -12% 1973.82 2174.04 -9% 2157.33 2314.21 -7% 2299.00 2416.32 -5% 2440.76 2527.34 -3%
NCI? (≡)

100 2784.33 316.31 780% 2792.99 319.73 774% 2785.51 318.49 775% 2770.32 318.61 770% 2779.03 318.43 773%
250 3982.18 622.74 539% 3988.51 626.22 537% 3984.76 624.03 539% 3989.88 624.62 539% 3982.62 625.91 536%
500 4975.97 1001.20 397% 4988.08 1003.83 397% 4984.67 1002.06 397% 4983.22 1004.13 396% 4988.71 1004.00 397%
750 5529.94 1309.98 322% 5540.59 1315.34 321% 5533.68 1309.22 323% 5532.04 1310.77 322% 5531.00 1311.72 322%

1000 5899.871 1577.42 274% 5897.36 1576.94 274% 5891.82 1576.71 274% 5894.13 1574.57 274% 5900.37 1578.06 274%

Fig. 3. Random signature comparison

(18 215 axioms) is called NCI and contains, in addition, role inclusions, domain and
range restrictions, disjointness axioms, data properties, and 17 763 ABox assertions.

The majority of NCI? (all but 4 588 axioms) are EL-inclusions. The non-EL inclu-
sions contain 7 806 occurrences of value restrictions. The signature of NCI? contains
68 862 concept and 88 role names.

Experiments with NCI∗ and its Fragments The results given in Figure 3 show the
average sizes (over 1 000 random signatures for each signature size and role percentage
combination) of the modules computed by the two approaches for random signatures.
It can be seen that

– in NCI?(≡), AMEX-modules are significantly smaller than STAR-modules (be-
tween 270% and 780%);

– in NCI?(v), STAR-modules are, on average, slightly smaller than AMEX modules;
– in NCI?, AMEX-modules are still significantly smaller than STAR-modules, but

less so than in NCI?(≡).

The huge difference between modules in NCI?(v) and NCI?(≡) can be explained
as follows: it is shown in [8] that for acyclic EL-TBoxes without concept equations,
AMEX-modules and STAR-modules coincide. This is not the case for acyclicALCQI-
TBoxes (there can be axioms in STAR-modules that are not AMEX-modules and vice
versa), but since the vast majority of axioms in NCI?(v) are EL-inclusions one should
not expect any significant difference between the two types of modules. Thus, it is
exactly those acyclic TBoxes that contain many concept equations for which AMEX-
modules are significantly smaller than STAR-modules (see Example 1 for an illustra-
tion).

0−
20

0

20
0−

40
0

40
0−

60
0

60
0−

80
0

80
0−

10
00

10
00

−
12

00

12
00

−
14

00

14
00

−
16

00

16
00

−
18

00

18
00

−
20

00

20
00

−
22

00

22
00

−
24

00

24
00

−
26

00

26
00

−
28

00

28
00

−
30

00

30
00

−
32

00

32
00

−
34

00

F
re

qu
en

cy

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

Module size (#Axioms)

STAR
AMEX

0−
10

0

10
0−

20
0

20
0−

30
0

30
0−

40
0

40
0−

50
0

50
0−

60
0

60
0−

70
0

70
0−

80
0

80
0−

90
0

90
0−

10
00

10
00

−
11

00

11
00

−
12

00

12
00

−
13

00

13
00

−
14

00

14
00

−
15

00

15
00

−
16

00

16
00

−
17

00

F
re

qu
en

cy

0

1000

2000

3000

4000

5000

6000

7000

Module size (#Axioms)

STAR
AMEX

Fig. 4. Frequency of module sizes for NCI? (left) and NCI?(≡) (right).

Figure 4 summarises our experimental results for modules extracted for axiom sig-
natures. The figure shows the frequency of AMEX and STAR-modules of a given size
within NCI? and NCI?(≡) for the cases when the modules differ – which is in 13% and
68% of cases, respectively. For NCI?(≡) in the cases in which we find a difference the
STAR module is always larger than the corresponding AMEX module with an average
difference of 865.6 axioms. For NCI? in a few (87 cases) the STAR modules are smaller
than the corresponding AMEX ones by an average difference of 6.9 axioms whereas in
the rest of the cases the STAR modules are much larger with an average difference of
1427 axioms. We do not show the results for NCI?(v) since, as explained above for the
experiments with random signatures, there is essentially no difference between AMEX
and STAR-modules.

These experiments were carried out on a PC with an Intel i5 CPU @ 3.30GHz with
2GB of Java heap space available to the program. For NCI? the average time taken per
extraction was just under 3s and the maximum time taken was 15s. Interestingly, in
almost all experiments the QBF solver was called just once. Thus, in most cases the
modules were computed purely syntactically and the QBF solver simply provided an
assurance that the extracted axioms indeed constituted a depleting module. Only in 3%
of all experiments the QBF solver identified separability causing axioms. The maximal
number of separability causing axioms recorded in any single extraction was 4 and the
maximal number of QBF solver calls themselves was 73.

Experiments with full NCI Although AMEX-modules are significantly smaller than
STAR-modules for acyclic TBoxes containing many concept equations, the applica-
tions of AMEX alone are very limited since most ontologies contain additional ax-
ioms such as disjointness axioms, role inclusions, and domain and range restrictions.
To tackle this problem we first observe that, in principle, AMEX can be applied to any
general TBoxes: given such a TBox T , one can split T into two parts T1 and T2, where
T1 is an acyclic ALCQI-TBox (and as large as possible) and T2 := T \ T1. Then
for any signature Σ it follows from the robustness properties [7] of the inseparability
relation ≡Σ that if M is a depleting Σ ∪ sig(T2)-module of T1 (note that M can be

computed by AMEX), thenM∪T2 is a depletingΣ-module of T as well. Such a direct
application of AMEX to general TBoxes is unlikely to compute small modules when
T2 is large. However, our first experimental results suggest that this approach is ben-
eficial when iterated with STAR-module extraction. The following result provides the
theoretical underpinning for our experiments.

Theorem 3. LetM ⊆ M′ ⊆ T be TBoxes and Σ a signature such thatM′ is a de-
pleting Σ-module of T andM is a depleting Σ-module ofM′. ThenM is a depleting
Σ-module of T .

Since both AMEX and STAR compute depleting Σ-modules, given a signature Σ and
ontology T one can extract an AMEX module from the STAR module (and vice versa)
and have the guarantee the resulting module is still a depleting Σ-module of T . In this
way, one can repeatedly extract from the output of one extraction approach again a
module using the other approach until the sequence of modules becomes stable.

The following experiments are based on a naïve implementation of this hybrid ap-
proach and extract modules from the full version of NCI. Again we consider random
concept signatures with varying amount of role names. The experiments shown in Fig-
ure 5 are based on 200 signatures for each concept signature size/role percentage com-
bination and compare the average size of modules extracted using the hybrid approach
and using STAR extraction only.

Role% 0% 25% 50% 75% 100%

|Σ| St
ar

It
er

at
ed

%
D

iff

St
ar

It
er

at
ed

%
D

iff

St
ar

It
er

at
ed

%
D

iff

St
ar

It
er

at
ed

%
D

iff

St
ar

It
er

at
ed

%
D

iff

100 5385.7 1949.5 176% 9569.8 6177.7 55% 13733.8 10339.0 33% 19486.4 16089.1 21% 23196.6 19810.2 17%
250 7298.6 3268.7 123% 11959.8 7963.9 50% 16072.1 12069.6 33% 20974.9 16978.8 24% 25141.0 21134.7 19%
500 9445.0 4827.6 96% 13165.1 8533.4 54% 16406.7 11767.0 39% 23046.8 18418.3 25% 27331.2 22691.9 20%
750 11070.2 6058.6 74% 15268.3 10235.9 49% 19696.2 14683.3 34% 23705.7 18689.6 27% 28917.3 23903.4 21%

1000 12370.7 7108.5 74% 16434.7 11174.0 47% 21978.6 16737.6 31% 25529.0 20286.5 26% 30218.5 24965.4 21%

Fig. 5. Iterative module extraction from NCI

For all signatures we found a reduction in the size of the module when iterated with
the STAR module on its own being between 17% and 176% larger than the hybrid
module.

In Figure 6, we show the results of our experiments for axioms signatures. They are
based on 20 000 randomly selected axioms from the full NCI Thesaurus. 13% of such
signatures showed a difference from the STAR module. The frequency of module sizes
for the cases when the modules differ is given in Figure 6. The average difference in
size, for the cases when there is a difference, is 295.2 axioms.

All individual extractions using the hybrid approach saw exactly 2 alternations of
the STAR module extraction whereas the AMEX extraction varied between 1 and 2
times. The cases in which the AMEX extraction alternated just once happened much
more often as the signature sizes grew and the difference between the respective module
sizes became smaller. The additional time taken to extract the hybrid module compared
to the STAR extraction alone was at most only 2.2 seconds.

1−
20

0

20
0−

40
0

40
0−

60
0

60
0−

80
0

80
0−

10
00

27
00

−
29

00

29
00

−
31

00

31
00

−
33

00

33
00

−
36

00

36
00

−
39

00

39
00

−
42

00

42
00

−
44

00

F
re

qu
en

cy

0

200

400

600

800

1000

1200

1400

1600

Module size (#Axioms)

STAR size
Iterated Size

Fig. 6. Frequency of module sizes

5 Conclusion

We have presented a new system, AMEX, for depleting module extraction from acyclic
ALCQI-TBoxes. Using the NCI Thesaurus, we have compared the size of AMEX-
modules with the size of >⊥∗-modules computed by the OWL-API library implemen-
tation (referred as STAR-modules) and we have presented a hybrid approach in which
STAR and AMEX-module extraction are used iteratively. The results show that for
TBoxes with many axioms of the form A ≡ C, AMEX-modules can be significantly
smaller than STAR-modules and that an iterative approach can lead to significantly
smaller modules than ‘pure’ STAR-modules. In contrast to [4], where a large number
of ontologies are used to compare STAR-modules and MEX-modules we consider NCI
only. The reason is that the majority of ontologies considered in [4] contain no (or only
a very small set) of axioms of the form A ≡ C that form an acyclic subset of the ontol-
ogy. For such ontologies it follows both from theoretical results in [8] and experimental
results in [4] that there is no significant difference between AMEX and STAR-modules.
Instead, we focus on a high quality ontology with a reasonable number of concept equa-
tions and where theory predicts that minimal depleting modules can be much smaller
than STAR-modules. Many research questions remain to be explored. In particular, to
apply AMEX to a larger class of ontologies in an iterative approach, one has to gener-
alise the notion of acyclic TBoxes in such a way that the underpinning methodology of
AMEX can still be generalised.

References

1. F. Baader, D. Calvanes, D. McGuiness, D. Nardi, and P. Patel-Schneider. The Description
Logic Handbook: Theory, implementation and applications. Cambridge University Press,
Cambridge, UK, 2003.

2. M. Benedetti. sKizzo: a QBF decision procedure based on propositional skolemization and
symbolic reasoning. Technical Report 04-11-03, ITC-irst, 2004.

3. B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular reuse of ontologies: theory
and practice. Journal of Artificial Intelligence Research (JAIR), 31:273–318, 2008.

4. C. Del Vescovo, P. Klinov, B. Parsia, U. Sattler, T. Schneider, and D. Tsarkov. Empirical
study of logic-based modules: Cheap is cheerful. Technical report, University of Manchester,
2013.

5. M. Horridge and S. Bechhofer. The OWL API: A Java API for OWL ontologies. Semantic
Web, 2(1):11–21, 2011.

6. B. Konev, R. Kontchakov, M. Ludwig, T. Schneider, F. Wolter, and M. Zakharyaschev. Con-
junctive query inseparability of OWL 2 QL TBoxes. In Proceedings of the 25th Conference
on Artificial Intelligence, AAAI 2011, pages 221–226, Menlo Park, CA, USA, 2011. AAAI
Press.

7. B. Konev, C. Lutz, D. Walther, and F. Wolter. Formal properties of modularisation. In Mod-
ular Ontologies: Concepts, Theories and Techniques for Knowledge Modularization, vol-
ume 5445 of Lecture Notes in Computer Science, pages 25–66. Springer, Berlin, Heidelberg,
2009.

8. B. Konev, C. Lutz, D. Walther, and F. Wolter. Model-theoretic inseparability and modularity
of description logic ontologies. Artificial Intelligence, 203:66–103, 2013.

9. R. Kontchakov, L. Pulina, U. Sattler, T. Schneider, P. Selmer, F. Wolter, and M. Za-
kharyaschev. Minimal module extraction from DL-Lite ontologies using QBF solvers. In
Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI 2009,
pages 836–841, Menlo Park, CA, USA, 2009. AAAI Press.

10. R. Kontchakov, F. Wolter, and M. Zakharyaschev. Logic-based ontology comparison and
module extraction, with an application to DL-Lite. Artificial Intelligence, 174(15):1093–
1141, 2010.

11. C. Lutz and F. Wolter. Deciding inseparability and conservative extensions in the description
logic EL. Journal of Symbolic Computing, 45(2):194–228, 2010.

12. R. Nortjé, K. Britz, and T. Meyer. Module-theoretic properties of reachability modules for
sriq. In Proceedings of the 26th international workshop on description logic, DL 2013,
CEUR Workshop Proceedings. CEUR-WS.org, 2013.

13. U. Sattler, T. Schneider, and M. Zakharyaschev. Which kind of module should I extract? In
Proceedings of the 22nd International Workshop on Description Logics, DL 2009, volume
477 of CEUR Workshop Proceedings. CEUR-WS.org, 2009.

14. H. Stuckenschmidt, C. Parent, and S. Spaccapietra, editors. Modular Ontologies: Concepts,
Theories and Techniques for Knowledge Modularization, volume 5445 of Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg, 2009.

15. P. L. Whetzel, N. F. Noy, N. H. Shah, P. R. Alexander, C. Nyulas, T. Tudorache, and M. A.
Musen. Bioportal: enhanced functionality via new web services from the national center for
biomedical ontology to access and use ontologies in software applications. Nucleic Acids
Research, 39(Web-Server-Issue):541–545, 2011.

