
Deciding monodic fragments

by temporal resolution?

Ullrich Hustadt1, Boris Konev1, and Renate A. Schmidt2

1 Department of Computer Science, University of Liverpool, UK
{U.Hustadt, B.Konev}@csc.liv.ac.uk

2 School of Computer Science, University of Manchester, UK
Renate.Schmidt@manchester.ac.uk

Abstract. In this paper we study the decidability of various fragments
of monodic first-order temporal logic by temporal resolution. We focus
on two resolution calculi, namely, monodic temporal resolution and fine-
grained temporal resolution. For the first, we state a very general decid-
ability result, which is independent of the particular decision procedure
used to decide the first-order part of the logic. For the second, we in-
troduce refinements using orderings and selection functions. This allows
us to transfer existing results on decidability by resolution for first-order
fragments to monodic first-order temporal logic and obtain new decision
procedures. The latter is of immediate practical value, due to the avail-
ability of TeMP, an implementation of fine-grained temporal resolution.

1 Introduction

Temporal logics have long been recognised as introducing appropriate languages
for specifying a wide range of important computational properties in computer
science and artificial intelligence [6]. However, until recently, the practical use
of temporal logics has largely been restricted to propositional temporal log-
ics. First-order temporal logic has generally been avoided as no complete proof
system can exist for this logic. However, recent work by Hodkinson, Wolter,
and Zakharyaschev [11] shows that a specific fragment of first-order temporal
logic, called the monodic fragment, or monodic first-order temporal logic, has
the completeness property. This initial result was followed by an examination of
the monodic fragment in terms of decidable subclasses, automated deduction,
and applications.

Hodkinson et al. [10, 11, 23] show the decidability of the monadic, two-
variable, fluted, and loosely guarded fragments of monodic first-order temporal
logic without equality as well as the decidability of the monodic packed fragment
of first-order temporal logic with equality. Kontchakov et al. [17] have developed
a framework for devising tableau decision procedures for such decidable monodic
first-order temporal logics. Using this framework they present tableau decision

? Supported by EPSRC (grant GR/L87491) and the Nuffield foundation (grant
NAL/00841/G30)

1

procedures for the one-variable fragment and for the fragment corresponding to
the modal logic S4u of monodic first-order temporal logic.

In parallel, Degtyarev, Dixon, Fisher, Hustadt, and Konev have investigated
monodic first-order temporal logic in the context of resolution. Degtyarev et
al. [5] present a temporal resolution calculus, called monodic temporal resolution,
for this logic, which is then used in [4] to establish a general decidability result for
temporal resolution. Decidability of all the classes from Hodkinson et al., as well
as, the Gödel class and the dual Maslov class K fragments of monodic first-order
temporal logic are shown to be immediate consequences of this general result.
Konev et al. [14, 15] devise the fine-grained resolution calculus as an alternative
resolution calculus for monodic first-order temporal logic which is more amenable
to mechanisation. This calculus forms the basis of the temporal monodic theorem
prover TeMP presented in [12].

In this paper we focus on decidability results in the context of the fine-grained
resolution calculus. To motivate why the general decidability result obtained in
the context of monodic temporal resolution does not easily carry over to the
fine-grained resolution calculus, we first provide a brief presentation of both cal-
culi and some basic results about them, including the mentioned decidability
result. A main contribution of this paper is the introduction of refinements of
fined-grained resolution which incorporate advanced techniques developed in the
context of first-order resolution (e.g. [1, 19]) into temporal resolution, namely or-
derings and selection functions. We prove completeness of this refined calculus
by simulating derivations in the monodic temporal resolution calculus. The re-
fined calculus, called ordered fine-grained resolution with selection, allows us to
transfer decidability results and decision procedures obtained for fragments of
first-order logic to the corresponding fragments of monodic first-order temporal
logic.

2 First-order temporal logic

The language of First-Order Temporal Logic, FOTL, is an extension of classical
first-order logic by temporal operators for a discrete linear model of time (iso-
morphic to

�
, that is, the most commonly used model of time). The signature

of FOTL (without equality and function symbols) consists of a countably infinite
set of variables x0, x1, . . . , a countably infinite set of constants c0, c1, . . . , a
non-empty set of predicate symbols P , P0, . . . , each with a fixed arity ≥ 0, the
propositional operators >, ¬, ∨, the quantifiers ∃xi and ∀xi, and the temporal
operators (‘always in the future’), ♦ (‘eventually in the future’), g(‘at the
next moment’), and U (‘until’). The set of formulae of FOTL is defined as fol-
lows: > is a FOTL formula; if P is an n-ary predicate symbol and t1, . . . , tn
are variables or constants, then P (t1, . . . , tn) is an atomic FOTL formula; if ϕ
and ψ are FOTL formulae, then so are ¬ϕ, ϕ∨ψ, ∃xϕ, ∀xϕ, ϕ, ♦ϕ, gϕ, and
ϕUψ. We also use ⊥, ∧, and ⇒ as additional operators, defined using >, ¬,
and ∨. Free and bound variables of a formula are defined in the standard way,
as well as the notions of open and closed formulae. Given a formula ϕ, we write

2

ϕ(x1, . . . , xn) to indicate that all the free variables of ϕ are among x1, . . . , xn.
As usual, a literal is either an atomic formula or its negation.

Formulae of this logic are interpreted over structures M = (Dn, In)n∈ � that
associate with each element n of

�
, representing a moment in time, a first-order

structure Mn = (Dn, In) with its own non-empty domain Dn and interpreta-
tion In. An assignment a is a function from the set of variables to

⋃
n∈ � Dn.

The application of an assignment to terms is defined in the standard way, in
particular, a(c) = c for every constant c. The truth relation Mn |=a ϕ is defined
(only for those a such that a(x) ∈ Dn for every variable x) as follows:

Mn |=a >
Mn |=a P (t1, . . . , tn) iff (In(a(t1)), . . . , In(a(tn))) ∈ In(P)
Mn |=a ¬ϕ iff not Mn |=a ϕ

Mn |=a ϕ ∨ ψ iff Mn |=a ϕ or Mn |=a ψ

Mn |=a ∃xϕ iff Mn |=b ϕ for some assignment b that may differ
from a only in x and such that b(x) ∈ Dn

Mn |=a ∀xϕ iff Mn |=b ϕ for every assignment b that may differ
from a only in x and such that b(x) ∈ Dn

Mn |=a gϕ iff Mn+1 |=a ϕ

Mn |=a ♦ϕ iff there exists m ≥ n such that Mm |=a ϕ

Mn |=a ϕ iff for all m ≥ n, Mm |=a ϕ

Mn |=a ϕUψ iff there exists m ≥ n such that Mm |=a ψ and
Mi |=

a ϕ for every i, n ≤ i < m

In this paper we make the expanding domain assumption, that is, Dn ⊆ Dm

if n < m, and we assume that the interpretation of constants is rigid, that is,
In(c) = Im(c) for all n,m ∈

�
.

The set of valid formulae of this logic is not recursively enumerable. However,
the set of valid monodic formulae is known to be finitely axiomatisable [23]. A
formula ϕ of FOTL is called monodic if any subformula of ϕ of the form gψ, ψ,
♦ψ, or ψ1 Uψ2 contains at most one free variable. For example, the formulae
∀x ∃yP (x, y) and ∀x P (x, c) are monodic, while ∀x∀y(P (x, y) ⇒ P (x, y))
is not monodic.

Every monodic temporal formula can be transformed into an equi-satisfiable
normal form, called divided separated normal form (DSNF) [14].

Definition 1. A monodic temporal problem P in divided separated normal form
(DSNF) is a quadruple 〈U , I,S, E〉, where

1. the universal part U and the initial part I are finite sets of first-order for-
mulae;

2. the step part S is a finite set of clauses of the form p⇒ gq, where p and q
are propositions, and P (x) ⇒ gQ(x), where P and Q are unary predicate
symbols and x is a variable; and

3. the eventuality part E is a finite set of formulae of the form ♦L(x) (a non-
ground eventuality clause) and ♦l (a ground eventuality clause), where l is
a propositional literal and L(x) is a unary non-ground literal with variable
x as its only argument.

3

With each monodic temporal problem 〈U , I,S, E〉 we associate the FOTL formula
I ∧ U ∧ ∀xS ∧ ∀xE . When we talk about particular properties of a tem-
poral problem (e.g., satisfiability, validity, logical consequences, etc) we refer to
properties of this associated formula.

The transformation to DSNF is based on using a renaming and unwinding
technique which substitutes non-atomic subformulae and replaces temporal op-
erators by their fixed point definitions as described, for example, in [8]. A step
in this transformation which is of relevance for the results presented here is the
following: We recursively rename each innermost open subformula ξ(x), whose
main connective is a temporal operator, by Pξ(x), where Pξ(x) is a new unary
predicate, and rename each innermost closed subformula ζ, whose main connec-
tive is a temporal operator, by pζ , where pζ is a new propositional variable. In
the terminology of [11] Pξ(x) and pζ are called the surrogates of ξ(x) and ζ, re-
spectively. Renaming introduces formulae defining Pξ(x) and pζ of the following
form (since we are only interested in satisfiability, we use implications instead of
equivalences for renaming positive occurrences of subformulae, see also [20]):

(a) ∀x(Pξ(x) ⇒ ξ(x)) and (b) (pζ ⇒ ζ).

If the main connective of ξ(x) or ζ is either or U , then the formula will be
replaced by its fixed point definition. If the main connective of ξ(x) or ζ is either
the g or ♦ operator, the defining formula will be simplified further to obtain
step or eventuality clauses.

Theorem 1 (see [4], Theorem 1). Any monodic first-order temporal formula
can be transformed into an equi-satisfiable monodic temporal problem in DSNF
with at most a linear increase in the size of the problem.

In the next section we briefly recall the temporal resolution calculus first
developed in [5] and we present a general decidability result for this calculus.

3 Monodic temporal resolution

The monodic temporal resolution calculus does not directly operate on the
formulae and clauses of a monodic temporal problem P, but, as described
next, operates on merged derived step clauses and full merged step clauses
computed from the constant flooded form of P. Let P = 〈U , I,S, E〉 be a
monodic temporal problem, then the temporal problem P

c = 〈U , I,S, Ec〉 where
Ec = E∪{♦L(c) | ♦L(x) ∈ E , c is a constant in P} is the constant flooded form of
P. (Strictly speaking, P

c is not in DSNF: We have to rename ground eventualities
by propositions.) Evidently, P

c is satisfiability equivalent to P. Let

Pi1 (x) ⇒
gMi1(x), . . . , Pik

(x) ⇒ gMik
(x) (1)

be a subset of the set of step clauses of P
c. Then formulae of the form

Pij
(c) ⇒ gMij

(c) and ∃x
∧k

j=1 Pij
(x) ⇒ g∃x

∧k
j=1 Mij

(x), (2)

where c is a constant in P
c and j = 1, . . . , k, are called derived step clauses.3

Note that formulae of the form (2) are logical consequences of (1). Let {Φ1 ⇒

3 In [4] derived step clauses, are termed e-derived step clauses.

4

gΨ1, . . . , Φn ⇒ gΨn} be a set of derived step clauses or ground step clauses
in P

c. Then (
∧n

i=1 Φi) ⇒ g(
∧n

i=1 Ψi) is called a merged derived step clause.
Let A ⇒ gB be a merged derived step clause, let P1(x) ⇒ gM1(x), . . . ,

Pk(x) ⇒ gMk(x) be a subset of the original step clauses in P
c, and let A(x)

def
=

A ∧
∧k

i=1 Pi(x), B(x)
def
= B ∧

∧k
i=1Mi(x). Then ∀x(A(x) ⇒ gB(x)) is called a

full merged step clause.
In what follows, A ⇒ gB and Ai ⇒ gBi denote merged derived step

clauses, ∀x(A(x) ⇒ gB(x)) and ∀x(Ai(x) ⇒ gBi(x)) denote full merged step
clauses, and U denotes the (current) universal part of a monodic temporal prob-
lem P. We now define the temporal resolution calculus, Ie, for the expanding
domain case. The inference rules of Ie are the following.

– Step resolution rule w.r.t. U :

A ⇒ gB
¬A

(gU
res) , if U ∪ {B} |= ⊥.

– Termination rule w.r.t. U and I:

⊥
(⊥U

res) , if U ∪ I |= ⊥.

– Eventuality resolution rule w.r.t. U :

∀x(A1(x) ⇒ gB1(x)) . . . ∀x(An(x) ⇒ gBn(x)) ♦L(x)

∀x
∧n

i=1 ¬Ai(x)
(♦U

res) ,

where ∀x(Ai(x) ⇒ gBi(x)) are full merged step clauses such that for every i,
1 ≤ i ≤ n, the loop side conditions ∀x(U ∧ Bi(x) ⇒ ¬L(x)) and ∀x(U ∧
Bi(x) ⇒

∨n

j=1(Aj(x))) are valid.4

The set of full merged step clauses, satisfying the loop side conditions, is
called a loop in ♦L(x) and the formula

∨n

j=1 Aj(x) is called a loop formula.
– Ground eventuality resolution rule w.r.t. U :

A1 ⇒ gB1 . . . An ⇒ gBn ♦l
∧n

i=1 ¬Ai

(♦U
res) ,

where Ai ⇒ gBi are merged derived step clauses such that for every i,
1 ≤ i ≤ n, the loop side conditions U ∧ Bi |= ¬l and U ∧ Bi |=

∨n

j=1 Aj

are valid. The notions of ground loop and ground loop formula are defined
similarly to the case above.

Let P be a temporal problem. By TRes(P) we denote the set of all possible
conclusions of the inference rules above applied to P

c.

Definition 2 (Derivation). Let P = 〈U , I,S, E〉 be a monodic temporal prob-
lem. A derivation from P is a sequence of universal parts, U = U0 ⊂ U1 ⊂
U2 ⊂ · · · , such that Ui+1 is obtained from Ui by applying an inference rule to
〈Ui, I,S, Ec〉 and adding its conclusion to Ui. The I, S and Ec parts of the tem-
poral problem are not changed during a derivation.

4 In the case U |= ∀x¬L(x), the degenerate clause, > ⇒ f>, can be considered as
a premise of this rule; the conclusion of the rule is then ¬> and the derivation
successfully terminates.

5

A derivation terminates if, and only if, either a contradiction is derived, in which
case we say that the derivation terminates successfully, or if no new formulae can
be derived by further inference steps. Any derivation can be continued yielding
a terminating derivation. Note that since there exist only finitely many different
full merged step clauses, the number of different conclusions of the inference rules
of monodic temporal resolution is finite. Therefore, every derivation is finite.

A derivation U = U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Un from 〈U , I,S, E〉 is called fair (we
adopt terminology from [1]) if for any i ≥ 0 and formula ϕ ∈ TRes(〈Ui, I,S, Ec〉),
there exists j ≥ i such that ϕ ∈ Uj .

It is important to note that all the inference rules have side conditions
which are first-order problems. For example, consider a temporal problem
P = 〈U , I,S, E〉, where only I is non-empty, that is, P is simply a first-order
problem. Then the only inference rule applicable is the termination rule. If the
rule can be applied, then a single application of the rule would derive a contra-
diction indicating that P is unsatisfiable. If the rule cannot be applied, because
I is not contradictory, then the derivation terminates without a single inference
step being performed, indicating that P is satisfiable. This also illustrates why
all derivations can be finite although the satisfiability problem of monodic FOTL

is only semi-decidable.
So, in general, the side conditions of our inference rules are only semi-

decidable and in the case a side condition is false, it may happen that the test
of this side condition does not terminate. To ensure fairness we must make sure
that each such test cannot indefinitely block the investigation of alternative ap-
plications of inference rules in a derivation.

Theorem 2 (see [4, Theorem 10]). The rules of Ie preserve satisfiability
over expanding domains. A monodic temporal problem P is unsatisfiable over
expanding domains iff any fair derivation in Ie from P

c terminates successfully.

4 Decidability by monodic temporal resolution

Monodic temporal resolution provides a decision procedure for a class of monodic
FOTL formulae provided that there exists a first-order decision procedure for the
side conditions of all inference rules. Examination of the side conditions shows
that we are interested in the satisfiability of (i) the conjunction of the (current)
universal part and the initial part, and (ii) the conjunction of the (current)
universal part and sets of monadic formulae built from predicate symbols which
occur in the step and eventuality part of a temporal problem. At the same time,
in each step of the derivation the universal part is extended by monadic formulae
from the conclusion of the inference rule applied in the inference step. So, after
imposing restrictions on the form of the universal and initial parts of a class of
temporal problems, we can guarantee decidability of this class.

However, formalising which fragments of monodic FOTL are decidable by
monodic temporal resolution is slightly more complex, since we have to take our
“rename and unwind” transformation to divided separated normal form into
account, as the following example illustrates.

6

Example 1. Let ϕ(x, y, z, u) be the first-order formula Q1(x, y, z) ∨ Q2(y, z) ∨
Q(x, y, z, u). Then the formula ∃x∀y∀z∃uϕ(x, y, z, u) belongs to the dual of
Maslov’s class K which is decidable. In contrast, consider the temporal for-
mula ∃x ♦∀y∀z∃uϕ(x, y, z, u) with the same ϕ. Once transformed to an equi-
satisfiable temporal problem P = 〈U , I,S, E〉 in DSNF, the universal part U
contains the formula ∀x(Pϕ(x) ⇒ ∀y∀z∃uϕ(x, y, z, u)) which does not belong to
Maslov’s class K. (It belongs to the undecidable Surányi class ∀3∃ [2].)

To solve this problem, we define decidable fragments in terms of surrogates.

Definition 3 (Temporalisation by Renaming). Let C be a class of first-
order formulae. Let ϕ be a monodic temporal formula in negation normal form
(that is, the only Boolean connectives are conjunction, disjunction and negation,
and negations are only applied to atoms). Let ϕ denote the formula that results
from ϕ by replacing all of its subformulae whose main connective is a temporal
operator and which is not within a scope of another temporal operator with their
surrogates.

We say that ϕ belongs to the class TrenC if

1. ϕ belongs to C and
2. for every subformula of the form T ψ, where T is a temporal operator (or of

the form ψ1T ψ2 if T is binary), either ψ is a closed formula belonging to
C or the formula ∀x(P (x) ⇒ ψ), where P is a new unary predicate symbol,
belongs to C (analogous conditions for ψ1, ψ2).

Note that the formulae indicated in the first and second items of the definition
exactly match the shape of the formulae contributing to U when we reduce a
temporal formula to the normal form by renaming the complex expressions and
replacing temporal operators by their fixed point definitions.

Theorem 3 (Decidability by Temporal Resolution). Let C be a decidable
class of first-order formulae which does not contain equality and functional sym-
bols, but possibly contains constants, such that

– C is closed under conjunction;
– C contains universal monadic formulae.

Then TrenC is decidable.

Proof [See also [4, Theorem 8.3]] After reduction to DSNF, all formulae from
U belong to C. The (monadic) formulae from side conditions and the (monadic)
formulae generated by temporal resolution rules belong to C. Therefore, testing
the applicability of one of the temporal resolution rules becomes decidable. Given
that all derivations are finite, due to the finiteness of the set of merged derived
step clauses and full merged step clauses, decidability follows. 2

A consequence of Theorem 3 is the decidability of a wide range of temporal
monodic classes. These include the monadic, two-variable, fluted, guarded, and
loosely guarded fragments of monodic first-order temporal logic which have also

7

been shown to be decidable in [11, 23]. In addition, decidability also follows
for other classes, for example, the class Tren∃∗∀2∃∗ and the class TrenK where
K is the dual of Maslov’s class K [18]. Moreover, combining the constructions
from [10] and the saturation-based decision procedure for the guarded fragment
with equality [9], it is possible to build a temporal resolution decision procedure
for the monodic guarded and loosely guarded fragments with equality [16].

5 Monodic fine-grained temporal resolution

The main drawback of monodic temporal resolution is that the notion of merged
derived step clauses and full merged step clauses is quite involved and that the
search for merged step clauses to which one of the deduction rules can success-
fully be applied is computationally hard, in general it is only semi-decidable.
The idea underlying the monodic fine-grained temporal resolution calculus, fine-
grained resolution for short, is to refine the deduction rules of Ie in such a way
that they perform much smaller steps, but with decidable side conditions for
their applicability. Of course, the price that has to be paid is that derivations
are no longer guaranteed to be finite.

In more detail, fine-grained resolution differs from the calculus Ie in two
aspects. First, instead of the step resolution and the termination rule of Ie, we
use a set of deduction rules operating on clausified problems. Second, we use a
particular algorithm, called FG-BFS, to determine the loops to which we apply
the ground and non-ground eventuality resolution rule of Ie.

Definition 4. Let P = 〈U , I,S, E〉 be a monodic temporal problem. The clausifi-
cation Cls(P) of P is a quadruple 〈U ′, I ′,S ′, E〉 such that (i) U ′ is a set of clauses,
called universal clauses, obtained by clausification of U ; (ii) I ′ is a set of clauses,
called initial clauses, obtained by clausification of I; (iii) S ′ is the smallest set of
step clauses such that all step clauses from S are in S ′ and for every non-ground
step clause P (x) ⇒ gL(x) in S and every constant c occurring P, the clause
P (c) ⇒ gL(c) is in S ′.

Example 2. Let P = 〈U , I,S, E〉 where U = {∃xQ(x)}, I = {P (c)}, S =
{P (x) ⇒ gQ(x)}, and E = ∅. Then Cls(P) = 〈U ′, I ′,S ′, E〉 where U ′ = {Q(d)}
with d a Skolem constant, I ′ = {P (c)}, and S ′ = {P (x) ⇒ gQ(x), P (c) ⇒

gQ(c)}.

During a derivation more general step clauses can be derived, which are of
the form C ⇒ gD, where C is a conjunction of propositions, atoms of the
form P (x) and ground formulae of the form P (c), where P is a unary predicate
symbol and c is a constant such that c occurs in the input formula, and D is a
disjunction of arbitrary literals.

Let us first define the deduction rules of fine-grained step resolution which
replace the step resolution and the termination rule of Ie. In the following, we
assume that different premises and conclusions of the deduction rules have no
variables in common; variables may be renamed if necessary.

8

(1) First-order resolution between two universal clauses. Defined as standard
first-order resolution between two clauses. The result is a universal clause.

(2) First-order factoring on a universal clause. Again, defined as standard first-
order factoring on a clause. The result is a universal clause.

(3) First-order resolution between an initial and a universal clause, between two
initial clauses, and factoring on an initial clause. Defined in analogy to the
two deduction rules above only that the result is an initial clause.

(4) Fine-grained step resolution.

C1 ⇒ g(D1 ∨ L) C2 ⇒ g(D2 ∨ ¬M)

(C1 ∧ C2)σ ⇒ g(D1 ∨D2)σ
,

where C1 ⇒ g(D1 ∨ L) and C2 ⇒ g(D2 ∨ ¬M) are step clauses and σ

is a most general unifier of the literals L and M such that σ does not map
variables from C1 or C2 into a constant or a functional term.5

C1 ⇒ g(D1 ∨ L) D2 ∨ ¬M

C1σ ⇒ g(D1 ∨D2)σ
,

where C1 ⇒ g(D1 ∨L) is a step clause, D2 ∨¬M is a universal clause, and
σ is a most general unifier of the literals L and M such that σ does not map
variables from C1 into a constant or a functional term.

(5) Fine-grained step factoring.

C ⇒ g(D ∨ L ∨M)

Cσ ⇒ g(D ∨ L)σ
,

where σ is a most general unifier of the literals L and M such that σ does
not map variables from C into a constant or a functional term.

(6) Clause conversion. A step clause of the form C ⇒ g⊥ is rewritten to the
universal clause6 ¬C.

Besides the rules above we still need the eventuality resolution rule and the
ground eventuality resolution rule of Ie. However, we use a particular algorithm,
called FG-BFS (for fine-grained breadth-first search), to find loop formulae, that
is, to find a disjunction of the left-hand sides of full merged step clauses that
together with an eventuality literal forms the premises for the ground and non-
ground eventuality resolution rules. This algorithm internally uses the deduction
rules above with the exception of the clause conversion rule.

Let fine-grained resolution be the calculus consisting of the rules (1) to (6)
above, together with the ground and non-ground eventuality resolution rules,
restricted to loops found by the FG-BFS algorithm. We denote this calculus by
IFG. The calculus can be extended by first-order redundancy elimination rules,
e.g. tautology and subsumption deletion, as well as analogous rules for step
clauses.

5 This restriction justifies skolemisation of the universal part: Skolem constants from
one moment of time do not propagate to the previous moment.

6 Here, and further, ¬(L1(x) ∧ · · · ∧ Lk(x)) abbreviates (¬L1(x) ∨ · · · ∨ ¬Lk(x)).

9

A (linear) derivation in IFG from the clausification Cls(Pc) of a constant
flooded monodic temporal problem P

c is a sequence of clauses C1, . . . such that
each clauseCi is either an element of Cls(Pc) or else the conclusion by a deduction
rule applied to clauses from premises C1, . . . , Ci−1. A derivation C1, . . . , Cm is
also called a proof of Cm. A proof of the empty clause is called a refutation. A
derivation C1, . . . , Cm terminates iff for any derivation C1, . . . , Cm, Cm+1, the
clause Cm+1 is a variant of a clause in Cls(Pc) ∪ {C1, . . . , Cm}.

Theorem 4 ([15] Theorems 5 and 9). Fine-grained resolution is sound and
complete for constant flooded monodic temporal problems over expanding do-
mains.

For the class of problems where all the literals in a problem are propositional
or ground, fine-grained resolution is a decision procedure, as the inference steps
performed by it are exactly those performed by the clausal temporal calculus [8]
for propositional linear-time temporal logic, which is an exponential time deci-
sion procedure for the satisfiability problem of that logic. However, for all the
classes mentioned at the end of Section 4, termination of fine-grained resolution
cannot be guaranteed. So, in analogy to the approach taken to obtain resolu-
tion decision procedure for decidable fragments of first-order logic, we develop
sound and complete refinements of fine-grained resolution to ensure termination
of derivations. We assume that we are given an atom ordering �, that is, a to-
tal and well-founded ordering on ground first-order atoms which is stable under
substitution, and a selection function S which maps any first-order clause C to a
(possibly empty) subset of its negative literals. An atom ordering � is extended
to literals by (¬)A � (¬)B if A � B and ¬A � A. A literal L is called (strictly)
maximal w.r.t. a clause C iff there exists a ground substitution σ such that for
all L′ ∈ C: Lσ � L′σ (Lσ � L′σ). A literal L is eligible in a clause L∨C if either
it is selected in L ∨ C, or no literal is selected in C and L is maximal w.r.t. C.

The atom ordering � and the selection function S are used to restrict the
applicability of the deduction rules of fine-grained resolution as follows.

(1) First-order ordered resolution with selection between two universal clauses

C1 ∨ A ¬B ∨ C2

(C1 ∨ C2)σ
,

if σ is the most general unifier of A and B, Aσ is eligible in (C1 ∨A)σ, and
¬Bσ is eligible in (¬B ∨ C2)σ.

(2) First-order ordered positive factoring with selection

C1 ∨ A ∨ B

(C1 ∨ A)σ
,

if σ is the most general unifier of A and B, and Aσ is eligible in (C1∨A∨B)σ.
(3) First-order ordered resolution with selection between an initial and a uni-

versal clause, between two initial clauses, and ordered positive factoring with
selection on an initial clause. These are defined in analogy to the two deduc-
tion rules above with the only difference that the result is an initial clause.

10

(4) Ordered fine-grained step resolution with selection.

C1 ⇒ g(D1 ∨A) C2 ⇒ g(D2 ∨ ¬B)

(C1 ∧ C2)σ ⇒ g(D1 ∨D2)σ
,

where C1 ⇒ g(D1 ∨ L) and C2 ⇒ g(D2 ∨ ¬M) are step clauses, σ is
a most general unifier of the literals L and M such that σ does not map
variables from C1 or C2 into a constant or a functional term, Aσ is eligible
in (D1 ∨ A)σ, and ¬Bσ is eligible in (D2 ∨ ¬B)σ.

C1 ⇒ g(D1 ∨ L) D2 ∨ ¬M

C1σ ⇒ g(D1 ∨D2)σ
,

where C1 ⇒ g(D1 ∨ L) is a step clause, D2 ∨ ¬M is a universal clause,
and σ is a most general unifier of the literals L and M such that σ does not
map variables from C1 into a constant or a functional term, Nσ is eligible
in (D2 ∨ ¬N)σ, and Lσ is eligible in (D1 ∨ L)σ.

(5) Ordered fine-grained positive step factoring with selection.

C ⇒ g(D ∨A ∨ B)

Cσ ⇒ g(D ∨ A)σ
,

where σ is a most general unifier of the atoms A and B such that σ does
not map variables from C into a constant or a functional term, and Aσ is
eligible in (D ∨ A ∨B)σ.

(6) Clause conversion. A step clause of the form C ⇒ g⊥ is rewritten to the
universal clause ¬C.

Let ordered fine-grained resolution with selection be the calculus consisting of
the rules (1) to (6) above, together with the ground and non-ground eventuality
resolution rules, restricted to loops found by the FG-BFS algorithm which now
uses the rules (1) to (5) above instead of their unrefined variants. We denote this
calculus by IS,�

FG
. Again, the calculus can be extended by first-order redundancy

elimination rules as well as analogous rules for step clauses.
Note that for ordered fine-grained step resolution with selection, the ordering

and selection function only influence which literals on the right-hand side of a
step clause are eligible, literals on the left-hand side are not taken into account.

Theorem 5. Ordered fine-grained resolution with selection is sound and com-
plete for constant flooded monodic temporal problems over expanding domains.

Proof [Sketch] Soundness of IS,�

FG
is straightforward as any derivation in IS,�

FG

is also a derivation in IFG, which is sound according to Theorem 4.
The proof of completeness proceeds along the lines of the completeness proof

of IFG presented in [14]. Assume that P
c = 〈U0, I,S, E〉 is a constant flooded

monodic temporal problem and ∆ = U0, . . . ,Un is a derivation from P
c in Ie

such that Un contains ⊥, that is, Ie is able to derive a contradiction from P
c.

By induction on the length of the derivation we show that this derivation can be
simulated by IS,�

FG
. We construct a refutation ∆′ = C1

0 , . . . , C
n0

0 , . . . , C1
n, . . . , C

nk
n

11

of the clausification Cls(Pc) of P
c where each step in ∆ will correspond to one

or more steps in ∆′. At the start ∆ just consists of U0 and the corresponding
derivation ∆′ consists of all the clauses C1

0 , . . . , Cn0

0 in Cls(Pc). Let U(∆′) and
I(∆′) denote the set of all universal and initial clauses in ∆′, respectively. By
the fact that clausification preserves satisfiability, U0 is satisfiable iff U(∆′) is
satisfiable and U0 ∪ I is satisfiable iff U(∆′) ∪ I(∆′) is satisfiable. Furthermore,
if U0 would contain ⊥, then ∆′ would contain the empty clause.

Now, in each step of ∆ a first-order formula ui, 1 ≤ i ≤ n, is added to Ui−1

to obtain Ui, where ui is the conclusion of one the deduction rules of Ie applied
to 〈Ui−1, I,S, E〉. We show that using IS,�

FG
we can derive a clause Cni

i from the
clauses in the derivation ∆′ constructed so far such that the universal closure
of Cni

i implies ui. This also implies that Ui is satisfiable iff U(∆′) ∪ {Cni

i } is
satisfiable and Ui ∪ I is satisfiable iff U(∆′) ∪ I(∆′) ∪ {Cni

i } is satisfiable. We
then add Cni

i and all intermediate clauses C1
i , . . . , Cni−1

i used in its derivation
to ∆′. To show the existence and derivability of Cni

i we consider which deduction
rule of Ie has been used to derive ui.

Suppose ui has been derived by an application of the termination rule (which
implies that ui is ⊥). Then the set Ui−1∪I of first-order formulae is unsatisfiable,
which, by induction hypothesis, implies that U(∆′) ∪ I(∆′) is unsatisfiable. By
completeness of first-order ordered resolution with selection (see, e.g. [1]), we
will be able to derive the empty clause from the clauses in U(∆′) ∪ I(∆′) using
the resolution and factoring rules of IS,�

FG
for universal and initial clauses, that

is, rules (1) to (3), and extend ∆′ accordingly.

Suppose ui has been derived by an application of the step resolution rule.
Then there is a merged derived step clause A ⇒ gB such that the formula Ui−1∪
{B} is unsatisfiable. The merged derived step clause A ⇒ gB is constructed
from some step clauses pj ⇒ gqj , 1≤j≤m1, Pk(ck) ⇒ gQk(ck), 1≤k≤m2, and
Pl(xl) ⇒ gQl(xl), 1≤l≤m3, in S which are also present in ∆′. Define a set
L(B) of literals as {qj | 1≤j≤m1} ∪ {Qk(ck) | 1≤k≤m2} ∪ {Ql(xl) | 1≤l≤m3}.
Again, due to the completeness of first-order ordered resolution with selection,
a derivation of the empty clause from L(B) ∪ U(∆′) exists. Then inspection
of the rules (4) and (5) for ordered fine-grained step resolution with selection
and for ordered right positive factoring with selection, respectively, shows that
we can also construct a derivation from {pj ⇒ gqj | 1≤j≤m1} ∪ {Pk(ck) ⇒

gQk(ck) | 1≤k≤m2}∪{Pl(xl) ⇒ gQl(xl) | 1≤l≤m3}∪U(∆′). This will not be
a derivation of the empty clause, but of a step clause P ⇒ g⊥ where P is a con-
junction of literals in {Pj | 1≤j≤m1}∪{Pk(ck) | 1≤k≤m2}∪{Pl(xl) | 1≤l≤m3},
though not necessarily all of them. An application of rule (6) for clause conver-
sion allows us to derive the universal clause ¬P . We can show that the universal
closure of ¬P implies ui. We add all the clauses in the derivation of P ⇒ g⊥
to ∆′ as C1

i , . . . , Cni−1
i for some ni, and also add ¬P as Cni

i .

Finally, concerning the ground and non-ground eventuality resolution rules
and the use of the FG-BFS algorithm to compute loops, we simply observe that
using rules (1) to (5) in the algorithm will not change the loops the algorithm

will compute. This follows from the considerations above. 2

12

6 Decidability by ordered fine-grained resolution with

selection

Ordered fine-grained resolution with selection allows us to transfer decidability
results and decision procedures obtained for fragments of first-order logic to the
corresponding fragments of monodic first-order temporal logic.

We present two examples. First, we consider the temporalisation TrenGF of
the guarded fragment by renaming according to Definition 3 and we show how
a decision procedure can be constructed from the procedure for the guarded
fragment developed in [9]. Second, using the same approach we derive a decision
procedure for TrenK and TrenDK based on the procedure for K and DK developed
in [13] (DK is the class containing all conjunctions of formulae of the class K).

Ganzinger and de Nivelle [9] use the following ordering �GF and selection
function SGF to decide the guarded fragment: �GF is an arbitrary lexicographic
path ordering on terms and atoms based on a precedence � on function and
predicate symbols such that f � c � p for any non-constant function symbol
f , constant c, and predicate symbol p. The selection function SGF selects one
of the guards in any clause that is non-functional7 and contains at least one
guard; it selects one of the functional negative literals in a clause containing
such literals; and it does not select any literal in a clause containing a positive
functional literal but no negative functional literal. On guarded clauses, that
is, the class of clauses which contains the clause normal form of any guarded
formula, the selection function SGF is well-defined. In addition, the decision
procedure in [9] requires that in the computation of the clausification of guarded
formulae structural transformation [7, 20] is used to introduce surrogates for
universally quantified subformulae. Let STGF denote this transformation.

We can use exactly the same ordering and selection function to obtain a
decision procedure for TrenGF .

Theorem 6. Let �GF and SGF be the ordering and selection function defined
above. Then I

SGF ,�GF
FG decides the satisfiability problem of TrenGF.

Proof By Theorem 5, I
SGF ,�GF
FG is sound and complete. It remains to show ter-

mination. Let ϕ be a formula in TrenGF and P
c be the corresponding constant

flooded temporal problem. In analogy to [9], we use the structural transfor-
mation STGF in the computation of the clausification of P

c. Let P
c
Cls denote

Cls(STGF(Pc)). First, we give a syntactical characterisation of the clauses in
P

c
Cls and of the clauses we might have derived from it. To do so, we extend the

notion of a guarded clause to step clauses as follows. A step clause C ⇒ gD

is guarded iff the first-order clause ¬C ∨D is guarded and C is monadic. Then
all the universal, initial, and step clauses in P

c
Cls are guarded. We can also show

that all inference steps possible by I
SGF ,�GF
FG on guarded (step) clauses will re-

sult in a guarded (step) clause. Second, the number of guarded (step) clauses
(up to variable renaming) over the signature Σ of P

c
Cls is finitely bounded, more

7 An expression is functional if it contains a constant or a function symbol, and non-
functional otherwise.

13

precisely, there is a double exponential upper bound in the size of Σ on their
number. Consequently, any derivation from P

c
Cls will either eventually produce

the empty clause or no new clauses can be added to the derivation. 2

Our second example is a decision procedure for TrenK and TrenDK based on
the resolution decision procedure for K and DK by Hustadt and Schmidt [13].
The procedure uses an atom ordering �K which is a recursive path ordering
based on a total precedence � on function and predicate symbols which basically
gives precedence to symbols of greater arity. The selection function SK maps
any clause to the empty set. The decision procedure also uses an additional
inference rule, namely splitting, to perform case analysis on clauses consisting of
variable-disjoint subclauses. While it is possible to extend the calculus IS,�

FG
by a

splitting inference rule, it is easier to use splitting through new predicate symbols
instead [3, 21]. Here, whenever we have a clause C ∨D such that C and D are
variable-disjoint, we replace it by two clauses C ∨p and ¬p∨D, where p is a new
predicate symbol of arity 0 smaller than any other predicate symbol. Finally,
the procedure requires the use of structural transformation in the computation
of the clausification of formulae in K and DK. Here, certain occurrences of one-
variable literals with constant or duplicate variable arguments have to replaced
by surrogates (see [13] for details). Let STK denote this transformation.

Theorem 7. Let �K and SK be the ordering and selection function defined
above. Then I

SK ,�K
K decides the satisfiability problem of TrenK and TrenDK.

Proof Along the lines of the proof of Theorem 6. Let ϕ be a formula in TrenK
or TrenDK, let P

c be the corresponding constant flooded temporal problem, and
let P

c
Cls be Cls(STK(Pc)). The characterisation of clauses in P

c
Cls and of the

clauses we derive from it is based on the notions of (strongly) k-regular and
(strongly) CDV-free clauses introduced in [13]. Again, we need to extend these
notions to step clauses. We can then show that all universal, initial, and step
clauses in P

c
Cls are strongly CDV-free and k-regular, or strongly k-regular if ϕ

belongs to TrenDK. Inference steps restricted by �K and SK will also only derive
clauses with these properties. There is a double exponential upper bound on the
number of (strongly) k-regular, (strongly) CDV-free clauses in the size of the

signature of P
c
Cls . This shows termination of any derivation in I

SK ,�K
K . 2

7 Future work

One motivation for our interest in classes decidable by ordered fine-grained res-
olution with selection is that with the theorem prover TeMP [12] we have an
implementation of fine-grained resolution. TeMP takes advantage of the arith-
metic translation of temporal problems which allows us to use a first-order theo-
rem prover, in our case Vampire, to implement the inference rules of fine-grained
resolution. Consequently, we will have to transfer the restrictions imposed by or-
dered fine-grained resolution with selection to the level of the first-order theorem
prover employed by TeMP to realise the decision procedures presented in this
paper.

14

References

1. L. Bachmair and H. Ganzinger. Resolution theorem proving. In Robinson and
Voronkov [22], chapter 2, pp. 19–99.

2. E. Börger, E Grädel, and Yu. Gurevich. The Classical Decision Problem. Springer,
1997.

3. H. de Nivelle. Splitting through new proposition symbols. In Proc. LPAR 2001,
LNAI 2250, pp. 172–185. Springer, 2001.

4. A. Degtyarev, M. Fisher, and B. Konev. Monodic temporal resolution. ACM
Transactions on Computational Logic. To appear.

5. A. Degtyarev, M. Fisher, and B. Konev. Monodic temporal resolution. In Proc.
CADE-19, LNAI 2741, pp. 397–411. Springer, 2003.

6. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, chapter 16, pp. 997–1072. Elsevier, 1990.

7. C. Fermüller, A. Leitsch, U. Hustadt, and T. Tammet. Resolution decision proce-
dures. In Robinson and Voronkov [22], chapter 25, pp. 1791–1850.

8. M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Transactions
on Computational Logic, 2(1):12–56, 2001.

9. H. Ganzinger and H. de Nivelle. A superposition decision procedure for the guarded
fragment with equality. In Proc. LICS’99, pp. 295–304. IEEE, 1999.

10. I. Hodkinson. Monodic packed fragment with equality is decidable. Studia Logica,
72(2):185–197, 2002.

11. I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments of first-order
temporal logics. Annals of Pure and Applied Logic, 106:85–134, 2000.

12. U. Hustadt, B. Konev, A. Riazanov, and A. Voronkov. TeMP: A temporal
monodic prover. In Proc. IJCAR 2004, LNAI 3097, pp. 326–330. Springer, 2004.

13. U. Hustadt and R. A. Schmidt. Maslov’s class K revisited. In Proc. CADE-16,
LNAI 1632, pp. 172–186. Springer, 1999.

14. B. Konev, A. Degtyarev, C. Dixon, M. Fisher, and U. Hustadt. Mechanising first-
order temporal resolution. Information and Computation. To appear. Also avail-
able as Technical Report ULCS-03-023, Dep. Comp. Sci., Univ. Liverpool, 2003.

15. B. Konev, A. Degtyarev, C. Dixon, M. Fisher, and U. Hustadt. Towards the
implementation of first-order temporal resolution: the expanding domain case. In
Proc. TIME-ICTL 2003, pp. 72–82. IEEE, 2003.

16. B. Konev, A. Degtyarev, and M. Fisher. Handling equality in monodic temporal
resolution. In Proc. LPAR 2003, LNAI 2850, pp. 214–228. Springer, 2003.

17. R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev. Temporalising
tableaux. Studia Logica, 76(1):91–134, 2004.

18. S. Ju. Maslov. The inverse method for establishing deducibility for logical calculi.
In V. P. Orevkov, editor, The Calculi of Symbolic Logic I: Proceedings of the Steklov
Institute of Mathematics, number 98 (1968), pp. 25–96. American Math. Soc., 1971.

19. R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In Robin-
son and Voronkov [22], chapter 7, pp. 371–443.

20. A. Nonnengart and Ch. Weidenbach. Computing small clause normal forms. In
Robinson and Voronkov [22], chapter 6, pp. 335–370.

21. A. Riazanov and A. Voronkov. Splitting without backtracking. In Proc. IJCAI
2001, pp. 611–617. Morgan Kaufmann, 2001.

22. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning. Else-
vier, 2001.

23. F. Wolter and M. Zakharyaschev. Axiomatizing the monodic fragment of first-order
temporal logic. Annals of Pure and Applied logic, 118:133–145, 2002.

15

