
Information and Computation 199 (2005) 55–86

www.elsevier.com/locate/ic

Mechanising first-order temporal resolution

Boris Koneva,∗,1, Anatoli Degtyarevb, Clare Dixona,
Michael Fishera, Ullrich Hustadta

aDepartment of Computer Science, University of Liverpool, Liverpool, UK
bDepartment of Computer Science, King’s College London, Strand, London, UK

Received 1 December 2003; revised 31 August 2004
Available online 8 February 2005

Abstract

First-order temporal logic is a concise and powerful notation, with many potential applications in both
Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monod-
ic first-order temporal logics has identified important enumerable and even decidable fragments. Although
a complete and correct resolution-style calculus has already been suggested for this specific fragment, this
calculus involves constructions too complex to be of practical value. In this paper, we develop a machine-
oriented clausal resolution method which features radically simplified proof search. We first define a normal
form for monodic formulae and then introduce a novel resolution calculus that can be applied to formulae
in this normal form. By careful encoding, parts of the calculus can be implemented using classical first-order
resolution and can, thus, be efficiently implemented. We prove correctness and completeness results for the
calculus and illustrate it on a comprehensive example. An implementation of the method is briefly discussed.
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1. Introduction

In its propositional form, linear, discrete temporal logic [15,38,43] has been used in a wide variety
of areas within Computer Science and Artificial Intelligence, for example robotics [48], databases
[51], hardware verification [33], and agent-based systems [45]. In particular, propositional temporal
logics have been applied to:

• the specification and verification of reactive (e.g., distributed or concurrent) systems [38];
• the synthesis of programs from temporal specifications [36,44];
• the semantics of executable temporal logic [18,19];
• algorithmic verification via model-checking [6,32]; and
• knowledge representation and reasoning [2,16,53].

Although recognised as both a much more powerful and natural formalism [25,27], first-order
temporal logic has generally been avoided due to completeness problems. In particular, the set of
valid formulae of this logic is not recursively enumerable [1,49,50]. However, recent work by Hod-
kinson et al. [31] has shown that a specific fragment of first-order temporal logic, termed themonodic
fragment, has the completeness (and sometimes even decidability) property. This breakthrough has
led to considerable research activity examining the monodic fragment, in terms of decidable classes,
extensions, applications and mechanisation, and promises important advances for the future of
formal methods for reactive systems.
In order to effectively utilise monodic temporal logics, we require tools mechanising their proof

methods. Concerning proof methods for monodic temporal logics, general tableau and resolution
calculi have already been defined, in [35] and [7,8], respectively. However, neither of these is par-
ticularly practical: given a formula � to be tested for satisfiability, the tableau method requires
representation of all possible first-order models of first-order subformulae of �, while the resolu-
tion method involves all possible combinations of temporal clauses in the clause normal form of �.
Thus, improved methods are required.
In this paper, we focus on an important subclass of temporal models, having a wide range of ap-

plications, for example in spatio-temporal logics [28,55] and temporal description logics [3], namely
those models that have expanding domains. In such models, the domains over which first-order
terms range can only increase at each temporal step. The focus on this class of models allows us to
produce a simplified clausal resolution calculus, termed the fine-grained resolution calculus, which is
more amenable to efficient implementation. Thus, we here describe such an implementable calculus,
consider its properties and extend the results to constant-domain problems. We also describe an
implementation of this fine-grained calculus and its use on a range of problems. This represents the
first practically useful tool for handling monodic first-order temporal logics.
The organisation of the paper is the following. In Section 2 we define the expanding domain

monodic fragment. In Section 3 we introduce the divided separated normal form (DSNF) for mo-
nodic temporal formulae and describe how monodic temporal formulae are translated into DSNF.
In Sections 4 and 5 we introduce the fine-grained resolution calculus and provide completeness
results for the fine-grained resolution calculus relative to the completeness of the general resolution
calculus [7]. A number of examples will be given, showing how the fine-grained resolution calculus
works in practice. In Section 7 we briefly describe how constant-domain problems can be handled,
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through a translation of the formulae. Sections 8 and 9 are devoted to an implementation of fine-
grained resolution and to its applications. Finally, in Section 10 we consider conclusions and future
work.

2. First-order temporal logic

First-order (discrete linear time) temporal logic, FOTL, is an extension of classical first-order
logic with operators that deal with a discrete and linear model of time (isomorphic to �, and the
most commonly used model of time). The vocabulary of FOTL consists of:

• Predicate symbols P0, P1, . . . each of which is of some fixed arity (null-ary predicate symbols are
called propositions);

• Individual variables x0, x1, . . .;
• Individual constants c0, c1, . . .;
• Booleans ∧, ¬, ∨,⇒, ≡, true (‘true’), false (‘false’);
• Quantifiers ∀ and ∃;
• Temporal operators (‘always in the future’), ♦ (‘sometime in the future’), ❤ (‘at the next
moment’), U (until), and W (weak until).

There are no function symbols or equality in this FOTL language, but it does contain constants.
The set of FOTL-formulae is defined in the standard way [20,31]:

• Booleans true and false are FOTL-formulae;
• if P is an n-ary predicate symbol and ti, 1 � i � n, are variables or constants, then P(t1, . . . , tn) is
an (atomic) FOTL-formula;

• if � and  are FOTL-formulae, so are ¬�, � ∧  , � ∨  , �⇒  , and � ≡  ;
• if � is an FOTL-formula and x is a variable, then ∀x� and ∃x� are FOTL-formulae;
• if � and  are FOTL-formulae, then so are �, ♦�, ❤�, �U , and �W .

A literal is an atomic formula or its negation.
For a given formula, �, const(�) denotes the set of constants occurring in �. We write �(x) to

indicate that �(x) has at most one free variable x (if not explicitly stated otherwise). A formula having
no free occurrences of variables is called closed.
Intuitively, FOTL formulae are interpreted in first-order temporal structures which are sequences

M of worlds,M = M0,M1, . . . with truth values in different worlds being connected via temporal
operators.
More formally, for every moment of time n � 0, there is a corresponding first-order structure,

Mn = 〈Dn, In〉, where every Dn is a non-empty set such that whenever n < m, Dn ⊆ Dm, and In
is an interpretation of predicate and constant symbols over Dn. We require that the interpreta-
tion of constants is rigid. Thus, for every constant c and all moments of time i, j � 0, we have
Ii(c) = Ij(c).
A (variable) assignment a is a function from the set of individual variables to ∪n∈�Dn. We de-

note the set of all assignments by A. The set of variable assignments An corresponding toMn is a
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subset of the set of all assignments,An = {a ∈ A | a(x) ∈ Dn for every variable x}; clearly,An ⊆ Am

if n < m.
The truth relationMn |=a � in a structureM is defined inductively on the construction of � only

for those assignments a that satisfy the condition a ∈ An:

Mn |=a true, Mn �|=a false
Mn |=a P(t1, . . . , tm) iff 〈I an(t1), . . . , I an(tm)〉 ∈ In(P), where

I an(ti) = In(ti), if ti is a constant, and
I an(ti) = a(ti), if ti is a variable

Mn |=a ¬� iffMn �|=a �

Mn |=a � ∧  iffMn |=a � andMn |=a  

Mn |=a � ∨  iffMn |=a � orMn |=a  

Mn |=a �⇒  iffMn |=a (¬� ∨  )
Mn |=a � ≡  iffMn |=a ((�⇒  ) ∧ ( ⇒ �))

Mn |=a ∀x� iffMn |=b � for every assignment b that may differ
from a only in x and such that b(x) ∈ Dn

Mn |=a ∃x� iffMn |=b � for some assignment b that may differ
from a only in x and such that b(x) ∈ Dn

Mn |=a ❤� iffMn+1 |=a �;
Mn |=a ♦� iff there exists m � n such thatMm |=a �;
Mn |=a � iff for all m � n,Mm |=a �;
Mn |=a (�U ) iff there exists m � n, such thatMm |=a  and

for all i ∈ �, n � i < m impliesMi |=a �;
Mn |=a (�W ) iffMn |=a (�U ) orMn |=a �.

M is a model for a formula � (or � is true inM) if, and only if, there exists an assignment a in D0
such thatM0 |=a �. A formula is satisfiable if, and only if, it has a model. A formula is valid if, and
only if, it is true in any temporal structureM under any assignment a in D0.
The models introduced above are known as models with expanding domains since Dn ⊆ Dn+1.

Another important class of models consists of models with constant domains in which the class of
first-order temporal structures, where FOTL formulae are interpreted, is restricted to structures
M = 〈Dn, In〉, n ∈ �, such thatDi = Dj for all i, j ∈ �. The notions of truth and validity are defined
similarly to the expanding domain case.

Example 1. The formula

∀xP(x) ∧ (∀xP(x)⇒ ❤∀xP(x)) ∧ ♦∃y¬P(y) (1)

is unsatisfiable over both expanding and constant domains; the formula

∀xP(x) ∧ (∀x(P(x)⇒ ❤P(x))) ∧ ♦∃y¬P(y) (2)

is unsatisfiable over constant domains but has a model with expanding domains.

It is known [54] that satisfiability over expanding domains can be reduced to satisfiability over
constant domains with a polynomial increase in the size of formulae.
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The set of valid formulae of first-order temporal logic is not recursively enumerable. So, providing
completemethods for solving the satisfiability or validity problem for this logic in its full generality is
impossible. Furthermore, it is known that even “small” fragments of FOTL, such as the two-variable
monadic fragment (where all predicates are unary), are not recursively enumerable [31,39]. However,
the set of validmonodic formulae (see Definition 1 below) is known to be finitely axiomatisable [56].

Definition 1. An FOTL-formula � is called monodic if, and only if, any subformula of the form T  ,
where T is one of ❤, , ♦ (or 1T  2, where T is one of U , W ), contains at most one free variable.

Example 2. The formulae

∀x ∃yP(x, y) and ∀x P(x, c)

are monodic, whereas the formula

∀x∀y(P(x, y)⇒ P(x, y))

is non-monodic.

We note that the addition of either equality or function symbols to the monodic fragment gener-
ally leads to the loss of recursive enumerability [56]. Moreover, although the two variable monodic
fragmentwithout equality is decidable [31], it was proved in [9] that the two variable monadic monodic
fragment with equality is not even recursively enumerable. However, in [30] it was shown that the
guarded monodic fragment with equality is decidable.

3. Divided separated normal form (DSNF)

Resolution calculi for first-order logic require that first-order formulae are transformed to a clas-
sical clause normal form [42], before the inference rules of the calculus can be applied. Similarly, the
temporal resolution calculus which will be defined in Section 4 as well as the fine-grained resolution
which will be defined in Section 5 require first-order temporal formulae to be transformed into a
particular normal form. We define this normal form below.

Definition 2.A temporal step clause is a formula either of the form p ⇒ ❤l, where p is a proposition
and l is a propositional literal, or (P(x)⇒ ❤M(x)), where P(x) is a unary atom andM(x) is a unary
literal. We call a clause of the first type an (original) ground step clause, and of the second type an
(original) non-ground step clause. Note that the term ‘original’ is used here to distinguish these step
clauses from other notions (derived, merged, etc. step clauses) that are introduced later.

Temporal step clauses are the key elements of the normal form, providing a description of how
information is transferred from one temporal instant to the next.

Definition 3.Amonodic temporal problem in Divided Separated Normal Form (DSNF) is a quadruple
〈U , I ,S , E〉, where

(1) the universal part, U , is given by a finite set of arbitrary closed first-order formulae;
(2) the initial part, I , is, again, given by a finite set of arbitrary closed first-order formulae;
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(3) the step part, S , is given by a finite set of original (ground and non-ground) temporal step
clauses, the left-hand sides of step clauses are pairwise distinct; and

(4) the eventuality part, E , is given by a finite set of clauses of the form ♦L(x) (a non-ground even-
tuality clause) and ♦l (a ground eventuality clause), where l is a propositional literal and L(x)
is a unary non-ground literal.

Note that, in a monodic temporal problem, we do not allow two different temporal step clauses
with the same left-hand sides. (A problem containing two different temporal step clauses with the
same left-hand sides can be easily transformed by renaming into one without.)
In what follows, we will not distinguish between a finite set of formulae X and the conjunction∧ X of formulae within the set. With each monodic temporal problem, we associate the formula

I ∧ U ∧ ∀xS ∧ ∀xE .
Now, whenwe talk about particular properties of a temporal problem (e.g., satisfiability, validity,

logical consequences, etc.) we refer to properties of the associated formula.
Arbitrary monodic first-order temporal formulae can be transformed into DSNF. The transfor-

mation is based on using a renaming technique to substitute non-atomic subformulae and replacing
temporal operators by their fixed point definitions as described, e.g., in [21]; it consists of a sequence
of steps.

(1) Transform a given monodic formula to negation normal form. (To assist understanding of the
transformation, we list here some equivalences used in this step.)

∀x(¬ �(x) ≡ ♦¬�(x));
∀x(¬♦�(x) ≡ ¬�(x));
∀x(¬ ❤�(x) ≡ ❤¬�(x));

∀x(¬(�(x)U (x)) ≡ ¬ (x)W (¬�(x) ∧ ¬ (x)));
∀x(¬(�(x)W (x)) ≡ ¬ (x)U (¬�(x) ∧ ¬ (x))).

If the transformations above are applied in a naive way, the size of the result may grow ex-
ponentially; we may have to use renaming [42,52] in order to keep the size of the transformed
formula linear in the size of the original formula.

(2) Recursively rename each innermost temporal subformulae, ❤�(x),♦�(x), �(x), �(x)U (x),
�(x)W (x) by a new unary predicate P(x) (using a new name for each subformula). Renaming
introduces formulae defining P(x) of the following form:

(a) ∀x(P(x)⇒ ❤�(x)); (c) ∀x(P(x) ⇒ �(x));
(b) ∀x(P(x)⇒ �(x)W (x)); (d) ∀x(P(x)⇒ �(x)U (x));

(e) ∀x(P(x)⇒ ♦�(x)).

Since we are only interested in satisfiability, we use implications instead of equivalences
renaming positive occurrences of subformulae, see also [42,52].
Formulae of the form (a) above are already in DSNF after renaming complex first-or-

der formulae from the right-hand side; first-order clauses from this renaming are put in the
universal part. This kind of renaming is assumed implicitly in the following.
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(3) Formulae of the form (b), (c), and (d) require extra transformation by removing the temporal
operators using their fixed point definitions (see [21]):

∀x(P(x)⇒ �(x)) is satisfiability equivalent to

∀x(P(x)⇒ R(x)) ∧ ∀x(R(x)⇒ ❤R(x)) ∧ ∀x(R(x)⇒ �(x)),

∀x(P(x)⇒ (�(x)U (x))) is satisfiability equivalent to

∀x(P(x)⇒ ♦ (x)) ∧ ∀x(P(x)⇒ (�(x) ∨  (x)))
∧ ∀x(P(x)⇒ (S(x) ∨  (x))) ∧ ∀x(S(x)⇒ ❤(�(x) ∨  (x)))
∧ ∀x(S(x)⇒ ❤(S(x) ∨  (x))),
and ∀x(P(x)⇒ (�(x)W (x))) is satisfiability equivalent to

∀x(P(x)⇒ (�(x) ∨  (x))) ∧ ∀x(P(x)⇒ (S(x) ∨  (x)))
∧ ∀x(S(x)⇒ ❤(�(x) ∨  (x))) ∧ ∀x(S(x)⇒ ❤(S(x) ∨  (x))),
where R(x) and S(x) are new unary predicates.

(4) Finally, formulae of the form (e) are transformed into DSNF as follows:
∀x(P(x)⇒ ♦L(x)) is satisfiability equivalent (see [7]) to

∀x((P(x) ∧ ¬L(x))⇒ waitforL(x)) (3)

∀x(waitforL(x)⇒ ❤(waitforL(x) ∨ L(x))) (4)

∀x(♦¬waitforL(x)) (5)

where waitforL(x) is a new unary predicate.

Theorem 1 (see [7], Theorem 1). The transformation described above reduces any monodic first-order
temporal formula � to monodic temporal problem P in DSNF with at most linear increase in the size
of the problem such that � is satisfiable over constant and expanding domains if, and only if, P is
satisfiable over constant and expanding domains, respectively.

Example 3. Consider the temporal formula ∃x ♦∀y∀z∃u (x, y , z, u) where  (x, y , z, u) does not
contain temporal operators. To reduce it to DSNF, we first, rename the innermost temporal sub-
formula by a new predicate, P1,

∃x P1(x) ∧ ∀x[P1(x)⇒ ♦∀y∀z∃u (x, y , z, u)].

Next, we rename the first ‘ ’-formula, introducing P3, and the subformula under the ‘♦’ operator,
introducing P2,

∃xP3(x) ∧ ∀x[P1(x)⇒♦P2(x)]
∧ ∀x[P2(x)⇒∀y∀z∃u (x, y , z, u)]
∧ ∀x[P3(x)⇒ P1(x)],



62 B. Konev et al. / Information and Computation 199 (2005) 55–86

“unwind” the ‘ ’ operator, introducing P4,

∃xP3(x) ∧ ∀x[P1(x)⇒ ♦P2(x)]
∧ ∀x[P2(x)⇒ ∀y∀z∃u (x, y , z, u)]
∧ ∀x[P3(x)⇒ P4(x)]
∧ ∀x[P4(x)⇒ ❤P4(x)]
∧ ∀x[P4(x)⇒ P1(x)],

and reduce the subformula with the eventuality.

∃xP3(x) ∧ ∀x[P2(x)⇒ ∀y∀z∃u (x, y , z, u)]
∧ ∀x[P3(x)⇒ P4(x)]
∧ ∀x[P4(x)⇒ ❤P4(x)]
∧ ∀x[P4(x)⇒ P1(x)]
∧ ∀x[(P1(x) ∧ ¬P2(x))⇒ waitforP2(x)]
∧ ∀x[waitforP2(x)⇒ ❤(waitforP2(x) ∨ P2(x))]
∧ ∀x♦¬waitforP2(x).

Finally, we rename the non-literal formula P2(x) ∨ waitforP2 (x) on the right-hand side of ∀x
[waitforP2(x)⇒ ❤(waitforP2(x) ∨ P2(x))] by P5(x) and add the definition ∀x[P5(x)⇒ (P2(x) ∨
waitforP2(x))] for P5(x).
The conjuncts of the resulting formula form the following monodic temporal problem:

U =




∀x(P2(x)⇒ ∀y∀z∃u (x, y , z, u)),
∀x(P3(x)⇒ P4(x)),
∀x(P4(x)⇒ P1(x)),
∀x((P1(x) ∧ ¬P2(x))⇒ waitforP2(x)),
∀x(P5(x)⇒ (P2(x) ∨ waitforP2(x))),



, I = {∃xP3(x)} ,

S =
{
P4(x)⇒ ❤P4(x),
waitforP2(x)⇒ ❤P5(x),

}
, E =

{
♦¬waitforP2(x)

}
.

4. Monodic temporal resolution for the expanding domain case

A resolution method for the monodic fragment over expanding domains has been introduced
in [7]. We sketch the monodic temporal resolution system presented in [7] here to make the paper
self-contained.We slightly change and simplify the notions from [7] for the sake of presentation.We
use this calculus from [7], which has been shown complete, to prove completeness of the fine-grained
calculus introduced in the next section. That is, we prove completeness of the fine-grained calculus
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relative to the completeness of the calculus in [7]. We assume expanding domains throughout this
section.
Let P be a monodic temporal problem, and let

Pi1(x)⇒ ❤Mi1(x), . . . , Pik (x)⇒ ❤Mik (x) (6)

be a subset of the set of its step clauses. Then formulae of the form

Pij (c)⇒ ❤Mij(c), (7)

∃x∧k
j=1 Pij (x)⇒ ❤∃x∧k

j=1Mij(x), (8)

are called derived step clauses,2 where c ∈ const(P) and j = 1 . . . k . Note that formulae of the form
(7) and (8) are logical consequences of (6).
Let { 1 ⇒ ❤"1, . . . , n ⇒ ❤"n} be a set of derived step clauses or original ground step clauses.

Then

∧n
i=1 i ⇒ ❤∧n

i=1"i

is called a merged derived step clause.
Let A ⇒ ❤B be a merged derived step clause, let P1(x)⇒ ❤M1(x), . . ., Pk(x)⇒ ❤Mk(x) be a

subset of the original step clauses, and let A(x) def= A ∧ ∧k
i=1 Pi(x), B(x) def= B ∧ ∧k

i=1Mi(x). Then

∀x(A(x)⇒ ❤B(x))

is called a full merged step clause.
Inwhat follows,A ⇒ ❤B andAi ⇒ ❤Bi denotemergedderived step clauses,∀x(A(x)⇒ ❤B(x))

and ∀x(Ai(x)⇒ ❤Bi(x)) denote full merged step clauses, andU denotes the (current) universal part
of the problem.
We now define the temporal resolution calculus, Ie, for the expanding domain case.
The inference rules of Ie are the following.

• Step resolution rule w.r.t. U :

A ⇒ ❤B
¬A ( ❤U

res
) , where U ∪ {B} |= false.

• Initial termination rule w.r.t. U:

false
(⊥U

res
) , if U ∪ I |= false.

2 In [7] derived step clauses are termed e-derived step clauses.



64 B. Konev et al. / Information and Computation 199 (2005) 55–86

• Eventuality resolution rule w.r.t. U:

∀x(A1(x)⇒ ❤B1(x)) · · · ∀x(An(x)⇒ ❤Bn(x)) ♦L(x)
∀x∧n

i=1¬Ai(x)
(♦U

res
) ,

where ∀x(Ai(x)⇒ ❤Bi(x)) are full merged step clauses such that for all i ∈ {1, . . . , n}, the loop
side conditions ∀x(U ∧ Bi(x)⇒ ¬L(x)) and ∀x(U ∧ Bi(x)⇒ ∨n

j=1(Aj(x))) are both valid.3

The set of full merged step clauses, satisfying the loop side conditions, is called a loop in ♦L(x)
and the formula

∨n
j=1Aj(x) is called a loop formula.

• Ground eventuality resolution rule w.r.t. U:
A1 ⇒ ❤B1 . . . An ⇒ ❤Bn ♦l∧n

i=1¬Ai

(♦U
res
) ,

where Ai ⇒ ❤Bi are merged derived step clauses such that the loop side conditions U ∧ Bi |=
¬l and U ∧ Bi |= ∨n

j=1Aj for all i ∈ {1, . . . , n} are both valid.Ground loop and ground loop
formula are defined similarly to the case above.

Let P be a temporal problem. By TRes(P) we denote the set of all possible conclusions of the
inference rules above applied to P.
Similarly to classical first-order resolution, temporal resolution is a refutationally complete sat-

uration-based theorem proving method, i.e., a contradiction can be deduced from any unsatisfiable
problem, and the search for a contradiction proceeds by saturating the universal part of a given
problem.

Definition 4 (Derivation). A derivation is a sequence of universal parts, U = U0 ⊂ U1 ⊂ U2 ⊂ · · ·,
extended by the conclusions of the inference rules such that Ui+1 is obtained from Ui by applying
an inference rule to I , S , E , and Ui and adding its conclusion to Ui to obtain Ui+1. The I , S and E
parts of the temporal problem are not changed during a derivation.

A derivation terminates if, and only if, either the contradiction is derived, in which case we say that
the derivation successfully terminates, or if no new formulae can be derived by further inference
steps. Note that since there exist only finitely many different full merged step clauses, the number
of different conclusions of the inference rules of temporal resolution is finite. Therefore, every der-
ivation is finite. If a (finite) derivation does not terminate, we call it partial. Any partial derivation
can be continued yielding a terminating derivation.
A derivation U = U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Un is called fair (we adopt terminology from [4]) if for

any i � 0 and formula � ∈ TRes(〈Ui, I ,S , E〉), there exists j � i such that � ∈ Uj .
Note that all the inference rules have side conditions which are first-order problems. In general,

these side conditions will therefore only be semi-decidable and in the case a side condition is false,
it may happen that the test of this side condition does not terminate. So, to ensure fairness we must
make sure that each such test cannot indefinitely block the investigation of alternative applications
of inference rules in a derivation.

3 In the case U |= ∀x¬L(x), the degenerate clause, true ⇒ ❣true, can be considered as a premise of this rule; the conclu-
sion of the rule is then ¬true and the derivation successfully terminates.
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Note 1. In this section, we intentionally do not consider the classical concept of redundancy (see
[4]) and deletion rules over sets of first-order formulae Ui . We come to the issue of redundancy and
deletion rules in Section 5 where we present a machine-oriented calculus.

Let P = 〈U , I ,S , E〉 be a monodic temporal problem, then the set of formulae
Pc = 〈U , I ,S , E ∪ {♦L(c) | ♦L(x) ∈ E , c ∈ const(P)}〉

is termed the constant flooded form of P. (Strictly speaking, Pc is not in DSNF: we have to rename
ground eventualities by propositions.) Evidently, Pc is satisfiability equivalent to P.

Theorem 2 (see [7, Theorem 10]). The rules of Ie preserve satisfiability over expanding domains. If a
monodic temporal problem P is unsatisfiable over expanding domains, then any fair derivation in Ie
from Pc successfully terminates.

Example 4. The need for constant flooding can be demonstrated by the following example. None
of the rules of temporal resolution can be applied directly to the (unsatisfiable) temporal problem
P given by

I = {P(c)}, S = {q⇒ ❤q},
U = {q ≡ P(c)}, E = {♦¬P(x)}.

The constant flooded form Pc is the extension of P by the eventuality clause

♦¬P(c)
or, after renaming, an eventuality♦l and a universal clause l⇒ ¬P(c). Now, the step clause q⇒ ❤q

will be a loop in ♦l and the eventuality resolution rule will derive a contradiction.4

5. Fine-grained resolution for the expanding domain case

The main drawback of the calculus introduced in the previous section is that the search for (full)
merged derived step clauses that may serve as premises in an inference is computationally hard.
Finding sets of such full merged step clauses needed for the eventuality resolution rule is even more
difficult.
In this section we formulate a clausal calculus, called fine-grained resolution, where the inference

rules of Ie are refined into smaller steps, more suitable for effective implementation. First, we con-
centrate on the step resolution inference rule; then we show how to effectively find premises for the
eventuality resolution rule by means of step resolution.
The calculus is inspired by the following consideration: Suppose that Ie applies the step resolu-

tion rule to amerged derived step clauseA ⇒ ❤B. The rule can only be applied ifB ∪ U |= false and
this fact can be established by a first-order resolution procedure (that would skolemise the universal
part). However, a refutation of B ∪ U by resolution would also tell us which formulae in B ∪ U are

4 Note that the non-ground eventuality ♦¬P(x) is not used. It was shown in [7] that if all step clauses are ground, for
constant flooded problems we can ignore all non-ground eventualities.
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involved in the derivation of a contradiction. Thus, not only canwe check the side conditions for the
rules of Ie by means of first-order resolution, but also search for clauses to merge at the same time.
In contrast to Ie which can be applied to monodic temporal problems 〈U , I ,S , E〉 where the

universal part U and the initial part I are sets of arbitrary closed first-order formulae, fine-grained
resolution operates on temporal problems where U and I are given by sets of first-order clauses.
Definition 5. Let P be a monodic temporal problem. We define a set S(P) of initial, universal, and
step clauses, called the result of clausification P, as follows.

(1) Step clauses from P are in S(P).
(2) For every original non-ground step clause

P(x)⇒ ❤M(x)

and every constant c ∈ const(P), the clause
P(c)⇒ ❤M(c) (9)

is in S(P).
(3) Clauses obtained by clausification of the universal and initial parts, as if there is no connection
with temporal logic at all, are also in S(P). The resulting clauses are called universal clauses and
initial clauses, respectively. In the beginning, universal and initial clauses do not have common
Skolem constants and functions.

Note that fine-grained resolution operates typed clauses (every clause is marked as “initial,”
“universal,” or “step”). In contrast to derivations by Ie which proceed by extending the universal
part of a temporal problem while keeping all other parts of a temporal problem constant, fine-
grained resolution might not only derive new universal clauses, but also additional initial clauses
and step clauses of the form

C ⇒ ❤D, (10)

where C is a conjunction of propositions, unary predicates of the form P(x), and ground formulae
of the form P(c), where P is a unary predicate symbol and c is a constant occurring in the problem
given originally; D is a disjunction of arbitrary literals.
We consider initial and universal clauses as literal multisets, and step clauses of the form (10) as

ordered pairs of literal multisets. We assume basic knowledge of classical first-order resolution (see,
for example, [4,5,37]).
Fine-grained resolution differs from the calculus Ie in two aspects: First, instead of the step

resolution and the initial termination rule of Ie, we use fine-grained step resolution, a set of deduc-
tion and deletion rules operating on clausified problems; second, we use a particular algorithm,
called FG-BFS, to determine the loops to which we apply the ground and non-ground eventuality
resolution rule of Ie.
Let us first define the deduction rules of fine-grained step resolution. In the following, we as-

sume that different premises and conclusions of the deduction rules have no variables in common;
variables may be renamed if necessary.
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• First-order resolution between two universal clauses and factoring on a universal clause. The result
is a universal clause.

• First-order resolution between an initial and a universal clause, between two initial clauses, and
factoring on an initial clause. The result is an initial clause.

• Fine-grained (restricted) step resolution.

C1 ⇒ ❤(D1 ∨ L) C2 ⇒ ❤(D2 ∨ ¬M)
(C1 ∧ C2)% ⇒ ❤(D1 ∨ D2)% ,

where C1 ⇒ ❤(D1 ∨ L) and C2 ⇒ ❤(D2 ∨ ¬M) are step clauses and % is a most general unifier
of the literals L and M such that % does not map variables from C1 or C2 into a constant or a
functional term.5

C1 ⇒ ❤(D1 ∨ L) D2 ∨ ¬N
C1% ⇒ ❤(D1 ∨ D2)% ,

where C1 ⇒ ❤(D1 ∨ L) is a step clause, D2 ∨ ¬N is a universal clause, and % is a most general
unifier of the literals L and N such that % does not map variables from C1 into a constant or a
functional term.

• Right factor.

C ⇒ ❤(D ∨ L ∨M)
C% ⇒ ❤(D ∨ L)% ,

where % is a most general unifier of the literals L and M such that % does not map variables from
C into a constant or a functional term.

• Clause conversion.
A step clause of the form C ⇒ ❤false is rewritten into the universal clause6 ¬C .

A (linear) proof by fine-grained resolution of a clause C from a set of clauses S is a sequence
of clauses C1, . . . ,Cm such that C = Cm and each clause Ci is either an element of S or else the
conclusion by a deduction rule applied to clauses from premises C1, . . . ,Ci−1. A proof of false is
called a refutation.

Example 5. Fine-grained step resolution without the restriction on substitutions would, certainly,
lead to unsoundness: Consider the monodic problem given by

U = {u1 : ∃x¬Q(x), u2 : ∀x(P(x) ∨ Q(x))}, I = ∅,
S = {s1 : P(x)⇒ ❤Q(x)}, E = ∅,

which is satisfiable. After skolemisation, U s = {us1 : ¬Q(c), us2 : P(x) ∨ Q(x)}. Unrestricted reso-
lution would derive us3 : ¬P(c) from us1 and s1, and then a contradiction from us1, us2, and us3.

5 This restriction justifies skolemisation of the universal part: Skolem constants from one moment of time do not
propagate to the previous moment.
6 Here, and further, ¬(L1(x) ∧ · · · ∧ Lk(x)) abbreviates (¬L1(x) ∨ · · · ∨ ¬Lk(x)).
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The restriction that a most general unifier % applied to step clauses C ⇒ ❤D does not map a var-
iable in C into a Skolem constant is violated since % maps the variable x in s1 to the constant c.
Thus, the restriction we impose on step resolution inferences prevents the derivation of the clause
us3 and, therefore, prevents the derivation of a contradiction.

Example 6. It might seem that the restriction onmost general unifiers is too strong andmay destroy
completeness of the calculus. For example, at first glance it may appear that, under this restriction,
it is not possible to deduce a contradiction from the following (unsatisfiable) temporal problem P
given by

I = {∀xP (x)}, U = {¬Q(c)},
S = {P (x)⇒ ❤Q(x)}, E = ∅.

However, we can derive a contradiction because we apply our calculus to S(P) which contains
an additional step clause

P(c)⇒ ❤Q(c).

Then, a contradiction can be easily derived from the additional, universal, and initial clauses.

We will now prove some basic results which will help us to establish the completeness of our
calculus.

Definition 6. A clause of the form C ⇒ ❤false, where C is of the same form as in (10), is called a
final clause.

Lemma 3. Let ( be a proof of a final clause C ⇒ ❤false by the rules of fine-grained resolution,
except the clause conversion rule, from a set of step clauses S and a set of universal clauses U . Then
there exists a merged derived step clause A ⇒ ❤B such that B ∪ U |= false and A = ∃̃C , where ∃̃
denotes existential quantification over all free variables.

Proof. Let

{Pi(xi)⇒ ❤Mi(xi) | i = 1 . . . K},
{pi ⇒ ❤li | i = 1 . . . L}

be the set of all step clauses from S involved in ( where pi ⇒ ❤li denotes either a ground step
clause, or an derived step-clause of the form (9) added by clausification (w.l.o.g., we assume that all
the variables x1, . . ., xK are pairwise distinct). We assume that ( is tree-like, that is, no clause in (
is used more than once as an premise for an inference rule; we may make copies of the clauses in(
in order to make it tree-like.
Note that (by accumulating the most general unifiers used in the proof) it is possible to construct

a finite set of instances of these clauses (and universal clauses) such that there exists a tree-like
proof of C ⇒ ❤false from this new set of clauses and all most general unifiers used in the proof
are identity substitutions.7 That is, there exist substitutions {%i,j | i = 1 . . . K , j = 1 . . . si} such that
7 The condition that premises of the non-ground binary resolution rule should be variable disjoint may be violated here;
note, however, that this condition is needed for completeness, not correctness.



B. Konev et al. / Information and Computation 199 (2005) 55–86 69

{Pi(xi)%i,j ⇒ ❤Mi(xi)%i,j | i = 1 . . . K , j = 1 . . . si},
{pi ⇒ ❤li | i = 1 . . . L} (11)

(together with some instances of universal clauses) contribute to the proof of C ⇒ ❤false where
all most general unifiers used in the proof are identity substitutions, and, furthermore,

C =
K∧
i=1

si∧
j=1
Pi(xi)%i,j ∧

L∧
i=1
pi.

Note further (induction) that due to our restriction on the step resolution rule, for any i, j, the
substitution %i,j maps xi into a free variable.
Let us group the instances of the step clauses according to the value of the substitutions %i,j . We

introduce an equivalence relation * on the clauses from (11) as follows: For every i, j, i′, j′ we have(
Pi(xi)%i,j ⇒ ❤Mi(xi)%i,j , Pi′(xi′)%i′,j′ ⇒ ❤Mi′(xi′)%i′,j′

) ∈ *
if, and only if, xi%i,j = xi′%i′,j′ (it can be easily checked that * is indeed an equivalence relation).
Let N be the number of equivalence classes of (11) by *; let Ik be the set of indexes of the kth
equivalence class (we refer to clauses from (11) by indexes of the corresponding substitutions).
Let Ck = ∧

(i,j)∈Ik Pi(xi)%i,j , for every k , 1 � k � N ; let C0 = ∧L
i=1 pi . Note that C = ∧N

k=1 Ck ∧
C0, and that the Ck are pairwise disjoint. Let Dk = ∧

(i,j)∈Ik Mi(xi)%i,j , let D0 =
∧L
i=1 li, let D =∧N

k=1Dk ∧ D0. Note that ∀̃D ∧ U |= false. Note further that if we replace the free variable of Dk
with a fresh constant, ck , there still exists a refutation from

∧N
k=1D(ck) ∧ D0 and universal claus-

es (with most general unifiers applied to universal and intermediate clauses only). It follows that∧N
k=1 ∃xDk(x) ∧ D0 ∧ U |= false.
It suffices to note that (

∧N
k=1 ∃xCk(x) ∧ C0)⇒ ❤(

∧N
k=1 ∃xDk(x) ∧ D0) is a merged derived step

clause. �
Lemma 4. Let P = 〈U , I ,S , E〉 be a monodic temporal problem and S =S(P) be the result of clausifi-
cation P. Let A ⇒ ❤B be a merged derived step clause such that B ∪ U |= false. Then there exists a
final clause C ⇒ ❤false, proved by fine-grained resolution from S, such that A implies ∃̃C.
Proof.We show that the final clause needed, C ⇒ ❤false, can be proved from S by the deduction
rules of fine-grained resolution except the clause conversion rule.
The clause A ⇒ ❤B is merged from derived clauses of the form (8):

{∃x∧si
j=1 Pij (x)⇒ ❤∃x∧si

j=1Mij(x) | i = 1 . . . K}
and original ground step clauses and derived clauses of the form (7):

{pi ⇒ ❤li | i = 1 . . . L}.

Again, as in the proof of Lemma 3, pi ⇒ ❤li denotes either an original ground step clause or a
clause of the form (7). (We simplify indexing for the sake of presentation.)
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The result of merging is:

K∧
i=1


∃x

si∧
j=1
Pij (x)


 ∧

L∧
i=1
pi

︸ ︷︷ ︸
A

⇒ ❤


 K∧
i=1


∃x

si∧
j=1
Mij(x)


 ∧

L∧
i=1
li




︸ ︷︷ ︸
B

.

Since B ∪ U |= false, we have
∧K
i=1

∧si
j=1Mij(ci) ∧

∧L
i=1 li ∧ U |= false where c1, . . . , cK are fresh

(Skolem) constants.
Consider now a set of instances of step clauses

{Pij (ci)⇒ ❤Mij(ci) | i = 1 . . . K , j = 1 . . . si},
{pi ⇒ ❤li | i = 1 . . . L}.

Let ( be a (first-order) refutation of U and the following set of clauses {Mij(ci) | i = 1 . . . K , j =
1 . . . si} ∪ {li | i = 1 . . . L}.
Let {Mj(ci) | (i, j) ∈ I} ∪ {li | i ∈ J }, for some sets of indexes I and J , be its subset containing all

clauses involved in ( (and only the clauses involved in (). It is easy to see that there exists a proof
, by fine-grained step resolution from

{Pj(ci)⇒ ❤Mj(ci) | (i, j) ∈ I},
{pi ⇒ ❤li | i ∈ J }

(and universal clauses) of a final clause C ⇒ ❤false, where

C =
∧
(i,j)∈I

Pj(ci) ∧
∧
j∈J
pi.

By the lifting theorem for first-order resolution (cf., e.g. [37, p. 79]), there exists a non-ground
(first-order) refutation(′ from {Mj(xj) | (i, j) ∈ I} ∪ {li | i ∈ J }, such that(′ �s ( in the terminol-
ogy of [37], that is,(′ is of the same length as(, and every clause C ′

i of(
′ is more general than the

corresponding clause Ci of (.
The lifting theorem can be transferred to fine-grained inferences, and there exists a proof ,′ from

the set of original step clauses

{Pj(xj)⇒ ❤Mj(xj) | (i, j) ∈ I},
{pi ⇒ ❤li | i ∈ J }

(and universal clauses) of a final clause C ′ ⇒ ❤false such that ,′ �s ,, that is, every intermediate
clause C ′

i ⇒ ❤D′
i from ,′ is more general than the corresponding clause from ,. The only diffi-

culty in transferring the lifting theorem to fine-grained resolution is to ensure the requirement on
most general unifiers imposed by our inference system. Note that none of the (Skolem) constants
c1, . . . , cK occurs in ,′. If, in the proof ,′, the requirement on most general unifiers is violated, and
a constant or a functional term is substituted by a most general unifier into a variable occurring in
the left-hand side of a step clause, this clause would not be a generalisation of any clause from ,.
This implies the conclusion of the lemma. �
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Lemma 5. Let P = 〈U , I ,S , E〉 be a monodic temporal problem and S =S(P) be the result of clau-
sification. Let C ⇒ ❤false be an arbitrary final clause proved by fine-grained step resolution from
S . Then there exists a derivation U = U0 ⊆ U1 ⊆ · · · by the step resolution rule of Ie and a merged
derived step clause A ⇒ ❤B such that B ∪ Ui |= false, for some i � 0, and A = ∃̃C.
Proof. Since C ⇒ ❤false is provable, there exists a proof , of this final clause, by fine-grained res-
olution. We prove the lemma by induction on the number of applications of the clause conversion
rule in ,. For the base case, when the clause conversion rule does not contribute to ,, the statement
of the lemma follows directly from Lemma 3.
Suppose that we have proved the lemma for proofs containing less than n applications of the

clause conversion rule, and let , contain n such applications. Let us consider the first application of
the clause conversion rule in ,, and let this rule be applied to a final clause D⇒ ❤false. Thus, the
proof , is of the form:(,D⇒ ❤false,¬D,(′, where( does not contain applications of the clause
conversion rule, and (′ contains n− 1 application of this rule. By Lemma 3, there exists a merged
derived step clause A′ ⇒ ❤B′ such that B′ ∪ U |= false and A′ = ∃̃D. Let the temporal problem
P′ be 〈U ∪ {¬D}, I ,S , E〉. Now, it is possible to repeat the subproof ( by fine-grained resolution
from S(P′), the clause ¬D is already in S(P′), so the subproof (′ can also be repeated. Therefore,
there exists a proof ,′ of C ⇒ ❤false from S(P′) which contains n− 1 applications of the clause
conversion rule. Then the Lemma follows from the induction hypothesis. �
Lemma 6. Let P = 〈U , I ,S , E〉 be a monodic temporal problem and S = S(P) be the result of clau-
sification. Let U = U0 ⊆ U1 ⊆ · · · be a derivation by the step resolution rule of Ie. Let A ⇒ ❤B be a
merged derived step clause such that B ∪ Ui |= false, for some i � 0. Then there exists a final clause
C ⇒ ❤false, proved by fine-grained resolution from S , such that A implies ∃̃C.
Proof. The lemma easily follows from Lemma 4 by induction on i. �
Lemma 5 ensures the soundness of fine-grained step resolution. Lemma 6 says that the conclusion

of an application of the clause conversion rule, ¬C , subsumes the conclusion of an application of
the step resolution rule of Ie, ¬A.
Theorem 7.The calculus consisting of the rules of fine-grained step resolution, together with the ground
and non-ground eventuality resolution rules, is sound and complete for constant flooded monodic tem-
poral problems over expanding domains.

Proof. Soundness follows from Lemma 5.
Suppose now that a temporal problem P = 〈U , I ,S , E〉 is unsatisfiable. Then there exists a termi-

nating derivation U = U0 ⊆ U1 ⊆ U2 ⊆ · · · ⊆ Un. Let us for every i = 1, . . . , n consider the formula
ui = Ui \ Ui−1 (that is, ui is the formula added to Ui−1 by a rule of Ie; in particular, un = false). Let
uk be derived by the step resolution rule. Then, by Lemma 6, there exists a final clause Ck ⇒ ❤false
proved by fine-grained resolution from S(〈Uk−1, I ,S , E〉) such that ¬uk implies ∃̃Ck , which means
∀̃¬Ck implies uk , where ∀̃ denotes universal quantification over free variables. Let u′k = ∀̃¬Ck . It can
be easily seen that the result of replacing u with u′ in the derivation U = U0 ⊆ U1 ⊆ U2 ⊆ · · · ⊆ Un
is still a correct terminating derivation in Ie. �
So far, we have not discussed redundancy elimination and various refinements (e.g., ordering refine-

ments) for fine-grained resolution. However, no modern automated proof-search procedure would
be successful without these computer-oriented techniques [4]. We extend fine-grained resolution
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with deletion rules, which eliminate redundant clauses during proof search, and discuss briefly the
possibility of refinements here.

• First-order deletion. (First-order) subsumption and tautology deletion in universal clauses;
subsumption and tautology deletion in initial clauses; subsumption of initial clauses by universal
clauses (but not vice versa).

• Temporal deletion.
A universal clause D2 subsumes a step clause C1 ⇒ ❤D1 if D2 subsumes D1 or D2 subsumes
¬C1.
A step clause C1 ⇒ ❤D1 subsumes a step clause C2 ⇒ ❤D2 if there exists a substitution % such
that D1% ⊆ D2 and ¬C1% ⊆ ¬C2.
A step clauseC ⇒ ❤D is a tautology ifD is a tautology. (Note that, since we do not have negative
occurrences to the left-hand side of step clauses, C cannot be false).
Tautologies and subsumed clauses are deleted.

We have to consider now derivations over sets of clauses. We adopt the terminology from [4,41].
If a clause C is a tautology or is subsumed by a clause from a set of clauses S, we say that C is
redundantwith respect to S. A (theorem proving) derivation by fine-grained resolution is a sequence
of sets of clauses S0 ✄ S1 ✄ · · · such that every Si+1 differs from Si by either adding the conclusion
of a deduction rule (that is, a deduction rule of fine-grained step resolution or the ground or non-
ground eventuality resolution rule) or else deleting a clause by a deletion rule. We say that a clause
C is derived by fine-grained resolution from S0 if C ∈ Si for some i. A clause C is called persistent in a

derivation S0 ✄ S1 ✄· · · if there exists j � 0 such that for every k � j we have C ∈ Sk . A theorem

proving derivation S0 ✄ S1 ✄ · · · is fair if for every clause C that can be obtained by a deduction

rule from non-redundant persistent clauses of the derivation, either C ∈ ⋃
j�0 Sj or C is redundant

w.r.t.
⋃
j�0 Si , that is, in a fair derivation no inference from non-redundant persistent clauses is

postponed indefinitely.
Note that the proof of completeness given above (in particular, the proof of Lemma 4) may not

work in the presence of deletion rules. To show that any fair theorem derivation by fine-grained
resolution from the clausification of an unsatisfiable temporal problem will eventually produce a
clause set Si containing a contradiction, we consider constrained calculi, that is, resolution over
constrained clauses with constraint inheritance [40]. It is known that such inference systems are
complete and, moreover, compatible with practical redundancy elimination rules [41]. Here, we
take into account that there are no clauses with equality, and therefore all sets are well-constrained
in the terminology of [41].
Then, instead of ground clauses of the form
Pj(ci) ⇒ ❤Mj(ci)

we consider their constrained representations
Pj(xi) ⇒ ❤Mj(xi) · {xi = ci}.

Recall that, in accordance with the semantics of constrained clauses, a clause C · T represents the
set of all ground instances C% where % is a solution of T . In our case, there is exactly one solution
of xi = ci given by the substitution {xi  → ci}. So, the semantics of
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Pj(xi) ⇒ ❤Mj(xi) · {xi = ci}
is just

Pj(ci) ⇒ ❤Mj(ci).

Then all clauses originating from the universal part have empty constraints and all step clauses
have constraints as defined above, and there exists a non-ground proof of a constrained final clause
with constraint inheritance. Note that the (Skolem) constants c1, . . . , ck may only occur in con-
straints but not in clauses themselves. It suffices to note that in this case inferences with constraint
inheritance admit only two kinds of substitutions into xi: either {xi  → ci} (however, this will not
occur because ci occurs only in constraints), or {xi  → xi′ } where xi′ is bound by the same constraint
{xi′ = ci}. The case of matching xi and y where y originates from the universal part is solved by the
substitution {y  → xi}. A non-ground inference of a final clause, satisfying the conditions on substi-
tutions in the fine-grained resolution rules, can be extracted from this constrained proof implying,
thus, the conclusion of Lemma 4.
Then the machinery from [40] can be used to prove completeness of fine-grained resolution with

redundancy elimination and refinements.

Theorem 8. If a constant flooded monodic temporal problem P is unsatisfiable, then any fair theorem
proving derivation by fine-grained resolution from S(P) will derive a contradiction.

6. Loop search

In this section we show that fine-grained step resolution can also be used to find the appro-
priate set of full merged clauses to which we need to apply the ground or non-ground eventual-
ity resolution rule. Our method is based on the breadth-first search (BFS) algorithm presented
in [7]; we give the algorithm in Fig. 1. (In turn, the breadth-first search algorithm for monod-
ic temporal resolution is essentially based on the search algorithm for propositional temporal
resolution [10,11].) As in [7], for simplicity, we consider non-ground eventualities only. The algo-
rithm and the proof of its properties for the ground case can be obtained by considering merged
derived step clauses instead of the general case and by deleting the parameter “x” and
quantifiers.
The results from [7] (Lemmas 7–10, Theorem 9) can be summarised as follows.

Theorem 9. Let P be a temporal problem and ♦L(x) ∈ E . Then the BFS algorithm terminates subject
to termination of all first-order validity tests. If BFS returns a value other than false, then its output is
a loop formula in L(x).

In addition, temporal resolution is complete if we restrict ourselves to loops found by the BFS
algorithm.
In order to effectively find a loop by the breadth-first search algorithm, given a formula with at

most one free variable  (x) we have to be able to find the set of all full merged clauses of the form
∀x(A(x)⇒ ❤B(x)) such that the formula

∀x(B(x) ∧ U ⇒  (x))
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Fig. 1. Breadth-first search algorithm.

is valid (where  (x) = H(x) ∧ ¬L(x) and H(x) is a disjunction of the left-hand sides of some full
merged step clauses).
Let ∀x(A(x)⇒ ❤B(x)) be a full merged step clause such that ∀x(B(x) ∧ U ⇒  (x)). Note that

∀x(B(x) ∧ U ⇒  (x)) is valid if, and only if, ∃x(B(x) ∧ U ∧ ¬ (x)) is unsatisfiable. This observation
suggest searching for such full merged step clauses with the help of fine-grained resolution as we
did to search for merged derived step clauses in the previous section.

Definition 7. Let cl be a distinguished constant to be used in loop search that we call the loop con-
stant. We assume that the loop constant does not occur in a given problem and is not used for
skolemisation.

Definition 8. Let us define a transformation for loop search on a set of universal and step clauses S
as follows. LT(S) is the minimal set of clauses containing S such that for every original non-ground
step clause (P(x)⇒ ❤M(x)) ∈ S, the set LT(S) contains the clause

P(cl)⇒ ❤M(cl). (12)

We add the clause8 true ⇒ ❤¬ (cl) to LT(S) and apply the rules of fine-grained step resolution
except the clause conversion rule to it.

Lemma 10. Let S be a set of universal and step clauses, and let C ⇒ ❤false be a final clause de-
rived by the deduction rules of fine-grained step resolution except the clause conversion rule from
LT(S) ∪ {true ⇒ ❤¬ (cl)} such that at least one of the clauses originating from true ⇒ ❤¬ (cl)
is involved in the proof. Then there exists a full merged ( from S) clause ∀x(A(x)⇒ ❤B(x)) such that
the formula ∀x(B(x) ∧ U ⇒  (x)) is valid and A(x) = (̃∃C){cl  → x}.

8 In fact, a set of clauses since ¬H(x), and consequently ¬ (x), is a set of first-order clauses.
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Proof.ByLemma5, there exists amerged (fromLT (S)) derived clauseA⇒ ❤B such that {¬ (cl)} ∪
B ∪ U |= false andA = ∃̃C . It suffices to notice that ∀x((A ⇒ ❤B){cl  → x}) is a full merged (from
S) step clause and ∃x(¬ (x) ∧ B{cl  → x} ∧ U) is unsatisfiable. �
Lemma 11. Let S be a set of universal and step clauses, and let ∀x(A(x)⇒ ❤B(x)) be a full merged
(from S) step clause such that ∀x(B(x) ∧ U ⇒  (x)).Then there exists a derivation by the rules of fine-
grained step resolution except the clause conversion rule from LT(S) of a final clause C ⇒ ❤false
such that ∀xA(x) implies (̃∃C){cl  → x}).
Proof. The proof is analogous to the proof of Lemma 4. As we have already seen, ∃x(B(x) ∧ U ∧
¬ (x)) is unsatisfiable, and this can be checked by a first-order resolution procedure. Since the
constant cl does not occur in the problem, we can skolemise this existential quantifier with cl. We
then lift all Skolem constants but cl. �
Then the BFS algorithm can be reformulated as shown in Fig. 2.
The proof of the following two statements is a direct adaptation of the proofs from [7] taking into

consideration Lemmas 10 and 11 and arguments similar to those given in the proof of Theorem 7.

Lemma 12. The FG-BFS algorithm terminates provided that all calls of saturation by step resolution
terminate. If FG-BFS returns a value other than false, then its output is a loop formula in L(x).

Note 2. Termination of all calls by step resolution can be achieved for the cases when there exists
a (first-order) resolution decision procedure [17] for formulae in the universal part. In this case, the
class of corresponding monodic formulae is decidable by temporal resolution. This is discussed in
more detail in [7].

Fig. 2. Breadth-first search using fine-grained step resolution.
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Theorem 13. The calculus consisting of the rules of fine-grained step resolution, together with the both
ground and non-ground eventuality resolution rules, is complete for constant flooded monodic temporal
problems over expanding domains if we restrict ourselves to loops found by the FG-BFS algorithm.

Example 7. Let us consider a monodic temporal problem P given by

U =
{∀x(B(x)⇒ A(x) ∧ ¬L(x)),
l⇒ ∃xA(x),

}
, I = ∅,

S = {s1 : A(x)⇒ ❤B(x)}, E = {e1 : ♦L(x), e2 : ♦l}.
We chose such a trivial example specifically to be able to demonstrate thoroughly the steps of

our proof-search algorithm.

We clausify U and obtain

U s =


u1 : ¬B(x) ∨ A(x),
u2 : ¬B(x) ∨ ¬L(x),
u3 : ¬l ∨ A(c).


 .

Since the original problem does not contain any constants (the only constant c is introduced by
skolemisation), constant flooding does not introduce additional step clauses.

• Step resolution
We can deduce the following clauses by fine-grained step resolution:

s2 : A(x)⇒ ❤A(x) ( s1, u1)
s3 : A(x)⇒ ❤¬L(x) ( s1, u2)

With this additional clauses, the set of clauses is saturated. Now we try to find a loop in ♦L(x).
• Loop search for ♦L(x)
The input to the BFS algorithm is the set S = {u1, u2, u3, s1, s2, s3} and the eventuality ♦L(x). In
step (1) of the algorithm, we set H0(x) = true; N0 = ∅; and i = 0. In step (2), we first compute
LT(S) which is given by {lt1 : A(cl)⇒ ❤B(cl)}.
From S1 = LT(S) ∪ {true ⇒ ❤L(cl)} we deduce the following clauses by fine-grained step res-
olution (except the clause conversion rule):

l2 : A(cl)⇒ ❤A(cl) (lt1, u1)
l3 : A(cl)⇒ ❤¬L(cl) (lt1, u2)
l4 : true ⇒ ❤¬B(cl) (u2, l1)
l5 : A(cl)⇒ ❤false (l3, l1)

The set of clauses is saturated. The set N1 of all new final clauses is {A(cl)⇒ ❤false}. Since N1
is not empty, in step (3) we set H1(x) to A(x). Obviously, ∀x(H0(x)⇒ H1(x)) is not true, so we go
back to step (2) of the algorithm.
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Now the set S2 = LT(S) ∪ {l6 : true ⇒ ❤(¬A(cl) ∨ L(cl))} and we deduce from it the following
clauses:

l7 : A(cl)⇒ ❤A(cl) (lt1, u1)
l8 : A(cl)⇒ ❤¬L(cl) (lt1, u2)
l9 : true ⇒ ❤(¬B(cl) ∨ L(cl)) (u1, l6)
l10 : true ⇒ ❤(¬B(cl) ∨ ¬A(cl)) (u2, l6)
l11 : A(cl)⇒ ❤L(cl) (l7, l6)
l12 : A(cl)⇒ ❤¬A(cl) (l8, l6)
l13 : true ⇒ ❤¬B(cl) (u2, l9)
l14 : A(cl)⇒ ❤¬B(cl) (l8, l9)
l15 : A(cl)⇒ ❤false (l8, l11)

The set of clauses is saturated. The set N2 of all new final clauses is {A(cl)⇒ ❤false}. Since N2
is not empty, in step (3) we obtain H2(x) = A(x).
As ∀x(H1(x)⇒ H2(x)), the algorithm terminates in step (4) and returns the loop A(x).

• Eventuality resolution
We can apply now the eventuality resolution rule whose conclusion is

u4 : ¬A(x).
• Step resolution
Since this conclusion extends the set of universal clauses, additional inferences by step resolution
may now be possible. Indeed, we are able to derive

u5 : ¬l ( u3, u4)
using u4.
Since the set of clauses has been extended, it is also possible that additional loops can be found.

However, instead of searching for a loop for ♦L(x) again, we now focus on the eventuality ♦l.
• Loop search for ♦l
The input to the FG-BFS is S = {u1, u2, u3, u4, u5, s1, s2, s3}. In step (1) of the algorithm, we set
H0(x) = true; N0 = ∅; and i = 0. In step (2), we first compute LT(S), which is given by {lt1 :
A(cl)⇒ ❤B(cl)}. From S1 = LT(S) ∪ {l16 : true ⇒ ❤l} we can deduce:
l17 : true ⇒ ❤false ( l16, u5)

that is, a contradiction. Therefore, the loop is true.
• Eventuality resolution
We can apply now the eventuality resolution rule whose conclusion is ¬true.
This means that we have derived a contradiction, and the problem is unsatisfiable.

Note 3.As the example above shows, the presence of clauses of the form (9), introducedby clausifica-
tion, and (12), introduced by the transformation for loop search, might lead to repeated derivations
(with free variables and with constants). This can be avoided, however, if instead of generating these
clauses, we relax the conditions on substitutions in the definition of rules of fine-grained resolution
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by allowing the original constants and the loop constant to be substituted for variables occurring
in the left-hand side of a step clause. It can be seen that the set of derived final clauses would be the
same.

Taking into consideration this note, we do not use the transformation for loop search, and clauses
l2, l3, l7, l8 would not be derived. Instead, at the first iteration of BFS on L(x), we would deduce
the following clauses from S1 = S ∪ {l1 : true ⇒ ❤L(cl)}:

l4′ : true ⇒ ❤¬B(cl) (u2, l1)
l5′ : A(cl)⇒ ❤false (s3, l1);

and at the second iteration from S2 = LT(S) ∪ {l6 : true ⇒ ❤(¬A(cl) ∨ L(cl))}:

l9′ : true ⇒ ❤(¬B(cl) ∨ L(cl)) (u1, l6)
l10′ : true ⇒ ❤(¬B(cl) ∨ ¬A(cl)) (u2, l6)
l11′ : A(cl)⇒ ❤L(cl) (s2, l6)
l12′ : A(cl)⇒ ❤¬A(cl) (s3, l6)
l13′ : true ⇒ ❤¬B(cl) (u2, l9′)
l14′ : A(cl)⇒ ❤¬B(cl) (s3, l9′)
l15′ : A(cl)⇒ ❤false (s3, l11′).

7. Constant domains

A resolution method for the monodic fragment over constant domains has also been introduced
in [7]. The only difference between the calculus Ie of Section 4 aimed at the expanding domain case
and the calculus Ic, which we sketch here, aimed at the constant-domain case is in the way how
derived step clauses are defined.
Let P be a monodic temporal problem, and let

Pi1(x)⇒ ❤Mi1(x), . . . , Pik (x)⇒ ❤Mik (x) (13)

be a subset of the set of its step clauses. For the constant-domain case, derived step clauses are
defined as formulae of the form

Pij (c)⇒ ❤Mij(c), (14)

∃x∧k
j=1 Pij (x)⇒ ❤∃x∧k

j=1Mij(x), (15)

∀x∨k
j=1 Pij (x)⇒ ❤∀x∨k

j=1Mij(x), (16)

where c ∈ const(P) and j = 1 . . . k . Formulae of the form (16), as well as formulae of the form (14)
and (15), are logical consequences of (13) in the constant-domain case, while (16) is not a logical
consequence of (13) in the expanding domain case as Example 1 shows.
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Other notions (merged derived and full merged step clauses) and the inference system are defined
in exactly the same way as those for the calculus Ie in Section 4 based on the new definition of
a derived step clause. It is shown in [7] that the calculus Ic is sound and complete for monodic
temporal problems over constant domains.
Note that if derived step clauses of the form (16) participate in merging, the conclusion of the

step resolution rule contains an existentially quantified formula (the negation of the universally
quantified left-hand side of the derived step clause). Clausifying such formulae would require ex-
tending the signature; therefore, the machinery of Section 5 does not work for the constant-domain
case, and we cannot construct a fine-grained resolution calculus for the constant-domain case. In-
stead, in order to be able to use our procedure for establishing unsatisfiability of constant-domain
problems, we simply reduce satisfiability over constant domains to satisfiability over expanding
domains.
Let P = 〈U , I ,S , E〉 be a temporal problem. The temporal problem Exp(P) is defined as follows.

The universal, initial, and eventuality parts of Exp(P) are that of P; the step part consists of all step
clauses from S together with all derived step clauses of the form (16). More precisely, in order to fit
the definition of a temporal problem, we have to rename complex expressions in the derived step
clauses.

Proposition 14. A temporal problem P is satisfiable over constant domains if, and only if, the temporal
problem Exp(P) is satisfiable over constant domains.

Proof. If P = 〈U , I ,S , E〉 and Exp(P) = 〈U ′, I ,S ′, E〉 then U ⊆ U ′ and S ⊆ S ′. So, if Exp(P) is sat-
isfiable then P is satisfiable. On the other hand, over constant domains, derived step clauses of the
form (16) are logical consequences of the step part S , which means that over constant domains P
implies Exp(P). So, if P is satisfiable then Exp(P) is satisfiable. �
Proposition 15. For any temporal problem P, the temporal problem Exp(P) is satisfiable over constant
domains if, and only if, the temporal problem Exp(P) is satisfiable over expanding domains.

Proof. Follows from the comparison of the calculi Ie and Ic. Indeed, any refutation of the problem
P in Ic can be simulated by a refutation of Exp(P) in Ie and vice versa. �
Example 8. The following temporal problem P, which is unsatisfiable over constant domains,

U =
{∃x¬R(x)
∀x(Q(x) ∧ ∃y¬P(y)⇒ L(x))

}
, I = {∃xQ(x)} ,

S =
{
Q(x)⇒ ❤Q(x)

P(x)⇒ ❤R(x)

}
, E = {♦¬L(x)}

has the following expanding domain model. For every i � 1, let the domain Di be the set of
natural numbers {1, . . . , i}. Then we choose the values of predicates P , Q, R, L as follows. P is true
and L is false on every element of every domain; Q is only true on the element 1 and false for ev-
ery other element. In the domain Di, the predicate R is false on the element i and true everywhere
else.
Fine-grained resolutionof Section 5wouldnot be able todeduce a contradiction fromP; however,

the temporal problem Exp(P) given by
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U =



∃x¬R(x), ∀x(P(x) ∨ Q(x))⇒ p3,
∀x(Q(x) ∧ ∃y¬R(y)⇒ L(x)), q1 ⇒ ∀xQ(x),
∀x(Q(x))⇒ p1, q2 ⇒ ∀xR(x),
∀x(P(x))⇒ p2, q3 ⇒ ∀x(Q(x) ∨ R(x))


 , I = {∃xQ(x)} ,

S =


Q(x)⇒ ❤Q(x), p1 ⇒ ❤q1,
P(x)⇒ ❤R(x), p2 ⇒ ❤q2,

p3 ⇒ ❤q3


 , E = {♦¬L(x)}

is unsatisfiable over both constant and expanding domains and its unsatisfiability can be established
directly by fine-grained temporal resolution.

Our preliminary experiments show that if the step part of a temporal problem is of a moderate
size, this approach performs adequately well.

8. Implementation

The fine-grained resolution calculus described in Section 5 has been implemented in the theorem
prover TeMP [34], which we describe in more detail in this section.
As input TeMP takes the clausified form S = S(P) of a constant-flooded monodic temporal

problem P = 〈U , I ,S , E〉 plus the set E of eventuality clauses. The clauses in S will be called DSNF
clauses.
The main procedure of TeMP consists of a loop where at each iteration (i) the set of clauses

is saturated under application of the rules of fine-grained step resolution, and then (ii) for every
eventuality clause in the clause set, an attempt is made to find a set of premises for an application of
the eventuality resolution rules. If we find such a set, the set of clauses representing the conclusion
of the application is added to the current set of clauses. The main loop terminates if the empty
clause is derived, indicating that the initial set of clauses is unsatisfiable, or if no new clauses have
been derived during the last iteration of the main loop, which in the absence of the empty clause
indicates that the initial set of clauses is satisfiable.
The implementation takes advantage of the fact that the deduction and deletion rules of fine-

grained resolution are close enough to classical first-order resolution to allow us to use a first-or-
der resolution prover to provide the basis for the implementation of these rules. This approach
requires that we have to transform the given set S of DSNF clauses into a set of first-order
clauses.
Let P be a temporal problem and S = S(P) be the result of clausification. For every k-ary pred-

icate, P , occurring in S, we introduce a new (k + 1)-ary predicate P̃ . We will also use the constant 0
(representing the initial moment in time), and unary function symbols s (representing the successor
function on time) and h, which we assume do not occur in S. (The function h is used to ensure
the restriction on the unifiers as we explain in more detail later.) Let � be a first-order formula in
the vocabulary of S. We denote by [�]T the result of replacing all occurrences of predicates in �
by their “tilded” counterparts with T as the first argument (e.g., P (x, y) is replaced with P̃ (T , x, y)).
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The term T will either be the constant 0 or the variable t (intuitively, t represents a moment in time).
The variable t is assumed to be universally quantified.
In the implementation we make use of two different translations FO and FOBFS of S to a set of

first-order clauses. Let us first define FO(S):

• For every initial clause C in S, the clause [C]0 is in FO(S).
• For every universal clause D in S, the clause [D]t is in FO(S).
• For step clauses we have the following subcases:

◦ For every ground step clause p ⇒ ❤l in S, the clause ¬p̃ (t) ∨ l̃(s(t)) is in FO(S);
◦ For every non-ground step clause P(x)⇒ ❤M(x) in S, the clause ¬P̃ (t, x) ∨ M̃ (s(t), h(x)) is in
FO(S);

◦ For every step clause P(c)⇒ ❤M(c) of the form (9) in S, the clause ¬P̃ (t, c) ∨ M̃ (s(t), c) is in
FO(S).

Note that FO does not translate the eventuality clauses in E and that these clauses are not included
in FO(S). It can be shown that for a monodic temporal problem P = 〈U , I ,S , E〉 with correspond-
ing clausified form S = S(P), the temporal formula I ∧ U ∧ ∀xS is satisfiable over expanding
domains if, and only if, FO(S) is first-order satisfiable. Furthermore, if FO(S) is first-order unsat-
isfiable, so is P. However, if E is a non-empty set of eventuality clauses and FO(S) is satisfiable, we
are not able to draw any conclusion about the satisfiability of P.
It is not the aim of FO to reduce temporal satisfiability over expanding domains to first-order sat-

isfiability. Instead the key insight motivating the translation FO is that inferences by the deduction
and deletion rules defined in Section 5 on S, including (implicitly) the clause conversion rule, can be
realised using classical ordered first-order resolution with selection (see, e.g. [4]) on FO(S). For rules
first-order resolution on universal and initial clauses (see Section 5), this is obvious. Step resolution
restricts inferences on step clauses to literals below a ‘ ❤’ operator. In analogy, if a clause in FO(S)
contains a next-state literal, that is, a literal whose first argument starts with the function symbol s, a
resolution inference should only be performed on such a literal. This requirement can be enforced by
an appropriate literal selection strategy. Right factoring and left factoring correspond to standard
factoring inferences on first-order clauses. Note that all rules performing inferences on step clauses
impose the restriction on unifiers % that % does not map variables occurring in the left side of a step
clause into a constant or a functional term. On first-order clauses, this restriction is enforced by the
function symbol h introduced byFO.Each temporal literal ❤M(x) ismapped byFO to M̃ (s(t), h(x)).
The function symbol h “shields” the variable x from being instantiated by a constant or functional
term. Finally, clause conversion is implicit on the first-order level: If the conclusion of an inference
step involving a clause C containing next-state literals results in clause D without any next-state
literals, thenD corresponds to the translation of a universal clause. The standard redundancy elimi-
nation mechanisms for ordered first-order resolution, such as subsumption and tautology deletion,
correspond to deletion rules for temporal clauses that we have defined in Section 5.
So, in each iteration of the main loop of TeMP, step (i) can be achieved with the help of the

translation FO and a first-order theorem prover.
As for step (ii) in the main loop of TeMP, the system implements the FG-BFS algorithm de-

scribed in Section 5. In step (2) of the FG-BFS algorithm, the rules of fine-grained step resolution
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are applied with the exception of the clause conversion rule. To enforce this restriction, we use a
variant FOBFS of FO. Let Si+1 be a monodic temporal problem in clausified form as defined in step
(2) of the FG-BFS algorithm. Then FOBFS(Si+1) is defined as follows:

• For every universal clause D in Si+1, the clause [D]t is in FOBFS(Si+1).
• For every ground step clause p ⇒ ❤l in Si+1, the clause ¬p̃ (0) ∨ l̃(s(t)) is in FOBFS(Si+1), and
for every non-ground step clause P(x)⇒ ❤M(x) in Si+1, the clause ¬P̃ (0, x) ∨ M̃ (s(t), h(x)) is in
FOBFS(Si+1).

Recall that initial clauses do not contribute to loop search, so we should not include their trans-
lation into FOBFS(Si+1). Again, the motivation for FOBFS is that saturation of Si+1 under the rules
of fine-grained step resolution except the clause conversion rule corresponds to the saturation of
FOBFS(Si+1) under ordered first-order resolution as described above. In particular, clauses consist-
ing only of literals whose first argument is 0 in the saturation of FOBFS(Si+1) correspond to final
clauses (up to negation). Using this criterion it is straightforward to extract those clauses from the
saturation of FOBFS(Si+1) to form the set Ni+1 which is the outcome of step (2) of the FG-BFS
algorithm and to proceed with step (3).
Finally, note that it is straightforward to see whether a clause in FO(S) is the result of translating

an initial, a universal, or a (non-)ground step clause. This makes it possible to compute FOBFS(S)
from FO(S) instead of from S. Also, the conclusion of an application of one of the eventuality res-
olution rules can directly be computed as a set of first-order clauses of the appropriate form. Thus,
there is no need to ever translate clauses in FO(S) back to DSNF clauses. Instead, after translating
the input given to TeMP once using FO we can continue to operate with first-order clauses.
The task of saturating clause sets with ordered first-order resolution simulating step resolution is

delegated to the kernel of the first-order resolution proverVampire [46], which is linked to the whole
system as a C++ library. Minor adjustments have been made in the functionality of Vampire to
accommodate step resolution: a special mode for literal selection has been introduced such that in
a clause containing a next-state literal only next-state literals can be selected. At the moment, the
result of a previous saturation step, augmented with the result of an application of the eventuality
resolution rules, is resubmitted to the Vampire kernel, although no non-redundant inferences are
performed between the clauses from the already saturated part. This is only a temporary solu-
tion, and in the future Vampire will support incremental input in order to reduce communication
overhead.
To illustrate the effectiveness of this approach, we have appliedTeMP to each of the examples of

monodic temporal problems in this paper. The results are given in Fig. 3. In this table, ‘Time’ is the
time required by TeMP to solve the problem, measured in CPU seconds; ‘BRes’ is the number of
clauses generated by ordered first-order resolution usingVampire ; ‘SuccEv’ is the number of times
the algorithm FG-BFS was executed and successfully computed a loop; ‘NREv’ is the number of
times the algorithm FG-BFS was executed, successfully computed a loop, and the application of
eventuality rules to this loop results in non-redundant conclusion; ‘FailEv’ is the number of times
the algorithm FG-BFS was executed but failed to find a loop. As can be seen from the results,
none of the examples poses a serious problem for TeMP. Due to the lack of any other system able
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Fig. 3. Performance of TeMP on sample monodic temporal problems.

to solve problems in monodic first-order temporal logic, we cannot compare the performance of
TeMP to that of other provers. However, in [34] we have compared TeMP to decision procedures
for propositional linear time temporal logic with quite positive results.

9. Applications and case studies

We have applied TeMP to problems from several domains, in particular, to examples specified
in the temporal logics of knowledge (the fusion of propositional linear-time temporal logic with
multi-modal S5) and to verification problems.
Whilst problems formalised in the temporal logic of knowledge canbe solvedusingproofmethods

for combined modal and propositional temporal logics [13], we translate them into monodic first-
order temporal logic and apply TeMP to the result of transformation providing thus a practical
possibility of solving those problems. Translations from the temporal logics of knowledge into
FOTL are given in [26]; we also incorporate ideas from [47] to translate some of the modal logic
axioms in a way suitable for TeMP. Moreover, the transformation maps formulae in the tempo-
ral logics of knowledge into a subclass of the monodic fragment which is decidable by temporal
resolution (see Note 2).
A specification of the game Cluedo (a deduction game where reasoning about knowledge is es-

sential) in temporal logics of knowledge is given in [12], for a particular play of the game. At points
in the game, certain properties can be proved, for example that one player knows another player
holds a particular card. Both the specification and properties to be proved have been translated
into monodic first-order temporal logic and the proof carried out using TeMP.
A temporalised version of the well known muddy children problem (see, for example [16]) spec-

ified in temporal logics of knowledge has been translated to monodic first-order temporal log-
ic and relevant properties proved using TeMP. A similar approach can be taken for the proof
of properties of security protocols specified in temporal logics of knowledge (see, for example
[14]).
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Work within the Liverpool Verification Laboratory9 has utilised TeMP in formal verification.
In particular, in a collaboration withMotorola, TeMP was used to support the verification of soft-
ware designs. Recent work within the laboratory has involved identifying a class of Abstract State
Machines [29] that can be translated into a monodic fragment of first-order temporal logic suitable
for input to TeMP. This allows TeMP to be used as the basis for verification of a range of soft-
ware/hardware designs (given using Abstract State Machines) [24]. Recent work has examined the
verification of infinite state systems (something that is impossible using traditional model-checking)
and has shown how, for a significant class of systems, such verification problems can be translated
into a monodic formula suitable for input to TeMP [22,23]. We successfully used TeMP for fully
automatic verification of cache coherence protocols [22].

10. Conclusion

We have here described a fine-grained resolution calculus for monodic first-order temporal logic
over expanding domains. Soundness of the fine-grained resolution calculus is easy to prove and
completeness is shown relative to the completeness proof for the expanding domain for the non-
fine-grained version [7]. While the implementation based on the general calculus would involve
generating all subsets of the step clauses with which to apply the step and eventuality resolution
rules, the fine-grained resolution inference rules can be implemented directly using any appropriate
first-order theorem prover for classical logic. This makes the new calculus presented here particu-
larly amenable to efficient implementation. In this paper, we have also shown a simple method for
extending the applicability of the implementation to constant-domain problems.
Our future work consists of two main aspects: improving the implementation and application to

a wider range of real world examples.
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