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Abstract

We approach the problem of finding witnessing terms in proofs by
the method of meta-variables. We describe an efficient method for
handling meta-variables in natural style proofs and its implementation
in the TH∃OREM∀ system. The method is based on a special technique
for finding meta-substitutions when the proof search is performed in
an AND-OR deduction tree. The implementation does not depend on the
search strategy and allows easy integration with various special provers
as well as with special unification/solving engines. We demonstrate
the use of this method in the context of a special forward/backward
inference strategy for producing proofs in elementary analysis.

1 Introduction

The problem of generating proofs that can be easily read by non-specialists
has raised an increased interest in the recent years (see e.g. [7, 13, 5, 24]).
One of the main advantages of “natural style” proving is that one can imple-
ment as proof procedures the techniques used by mathematicians, and one
can also use advanced solvers for particular domains, in the form of special
inference rules.

The need for readability of the result, but even more the flexibility needed
for dynamic extension of the prover with special inference rules, as well as for
dynamic interaction with special “black box” computing and solving engines
makes it difficult to use established efficient techniques such as resolution,
tableaux, or connection methods (see e.g. [7] for a survey). Therefore, the
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usual approach is to employ a sequent calculus (like Gentzen or similar)—
whose main draw-back is the lack of determinism in selecting the right re-
placements in some of the quantified rules (elimination of ∀ in assumptions
and of ∃ in goal). The corresponding problem in “natural style” deduction
is the finding of “witnessing terms” (especially for existential goals).

In fact, human produced proofs often proceed by denoting such a de-
sired witness by a variable at the meta-level, which is then instantiated
later in the proof with a suitable term suggested by the inferred knowl-
edge. In automated deduction this has been formalized as the method of
meta-variables (also called parameters, dummy variables, free variables—see
[26, 28, 21, 9, 8, 17]) and such an approach is used in almost all sequent-
based automated provers since 1980’s and in many tableaux provers (see e.
g. [27]).

In any implementation of the meta-variable method, one constructs first
a (partial) proof tree which contains meta-variables—this is usually called
a pre-proof (in the literature, it is also named as proof skeleton). A substi-
tution of concrete terms instead of meta-variables maps the pre-proof into
a concrete proof. Roughly speaking, construction of a proof splits into a
propositional part and a “lucky” choice of needed terms. Meta-variables
are usually assigned with values by means of unification, but the problem of
good choice still remains open. It can be seen that given a pre-proof, finding
a correct substitution is NP-hard.

Our paper has two aims. The first aim of the paper, is to present a novel
technique for handling meta-variables that we call solution lifting. Instead
of commonly used enumeration of possible deduction trees, we incorporate
AND and OR nodes into the deduction tree itself. We associate with each node
of a pre-proof a substitution which makes the subtree a correct proof. Then,
we “lift” the substitutions bottom-up along the pre-proof. If at certain node
the substitutions assigned to its successors are incompatible, the pre-proof
should be expanded somewhere under this node. If eventually we succeed
to lift a substitution up to the root, the proof search is finished.

The resulting procedure uses restricted backtracking: we never roll-back
proof tree construction steps, instead, different solutions are tried. Inspec-
tion of possible solutions is unavoidable, unless P = NP .

The second aim of the paper is to present implementation of the method
within the TH∃OREM∀ system [10, 13, 11]. We build our implementation
upon the TH∃OREM∀’s mechanism for combining various provers and solvers
by adding the functionality which is needed for handling meta-variables.

The TH∃OREM∀ system is a result of work of the TH∃OREM∀ group (see
http://www.theorema.org) based on earlier work of Buchberger [10]. The
meta-variable method was incorporated into the system by the first author
of this paper during his visit to RISC.

This paper is an extended version of [22].
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2 Meta-variables in Natural Deduction

In this section we explain how meta-variables appear in the sequent-based
calculus and how they help to find witnessing terms. Our major contribution
is not the fact that our method uses meta-variables, but the special technique
for handling them, presented in Section 3. The notion of meta-variables,
the use of unification for finding values, the use of Skolem constants instead
of Skolem functions, “liberalized” skolemizations, and various variants of
ordering restrictions can be found in the literature, e.g. [15, 16, 17, 25, 23, 1];
however, we put the material here in order to make the paper self-contained
and to make the notations precise.

We consider a Natural Deduction calculus operating on proof situations,
which are represented as single-conclusion sequents of the form

A1, A2, . . . , An ⊢ G or Γ, A ⊢ G

where A1, A2, . . . , An, A denote assumptions, Γ denotes several assumptions,
and G is the goal (to be proved).

In order to construct the proof of a sequent, we recursively transform
it to one or several sequents until we reduce it to a set of obviously valid
sequents (final sequents). Reductions are performed by means of inference
rules of the form

S1; S2; . . . ; Sn

S

(sequent S reduces to sequents S1, . . . , Sn). Usually (and in this paper) one
only considers rules where S is valid iff all S i are valid: see Section 3.1. A
proof is a tree of sequents whose root is the initial sequent and the leaves
are final sequents.

The “difficult” rules that eliminate quantifiers (cf. [18]) are:

Γ ⊢ F{x→t} ∨ ∃xF

Γ ⊢ ∃xF
,

Γ, F{x→t} ∧ ∀xF ⊢ G

Γ,∀xF ⊢ G
, (1)

where t is a ground term, and F{x→t} is the result of substituting the term
t in place of all free occurrences of x in F .

For these rules a technique is needed to generate the appropriate terms t.
The main idea of the meta-variable method is to postpone the construction
of the concrete term t until the moment when the proof search suggests an
appropriate one. This is done by replacing t in (1) by a new meta-variable
ξ, whose value is to be found in the proof process:

Γ ⊢ F{x→ξ} ∨ ∃xF

Γ ⊢ ∃xF
,

Γ, F{x→ξ} ∧ ∀xF ⊢ G

Γ,∀xF ⊢ G
. (2)

The proof-tree obtained using rules (2) is called a pre-proof, which is
called correct if there exist a correct substitution for all meta-variables which
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transforms the pre-proof into a real proof. (We may assume that such a sub-
stitution is ground, because we can place new constants instead of unresolved
meta-variables.) Therefore, a substitution is correct iff (a) all intermediate
rule applications are correct; and (b) final nodes are valid.

Concerning (a), the only rules that may become incorrect are:

Γ ⊢ F{x→c}

Γ ⊢ ∀xF
,

Γ, F{x→c} ⊢ G

Γ,∃xF ⊢ G
, (3)

and the classical sequent calculus [18] requires that c be a new free
variable (we can also view at c as to a new constant, that is more
natural and does not change validity of the derivation) that is:

c does not occur in Γ, F, and G. (4)

A straightforward way to ensure (4) is to keep track of a set of restric-
tions of the form c /∈ ξ, for all ξ occurring in Γ, F,G, see, e.g., [25, 23].
However, this turns out to be excessively restrictive: it often leads to
much backtracking and/or to longer proofs [1].

Therefore, we use a milder version of restriction which does not actu-
ally ensure (4), but still produces only valid proofs. For each meta-
variable ξ and for each Skolem constant c that occur in F we keep
track of the restrictions

c1 ≻ ξ, . . . , cn ≻ ξ and c1 ≻ c, . . . , cn ≻ c.

In order to test whether a substitution σ satisfies a set of restrictions
R, first, for each replacement in σ of the form ξ → t (ξ: meta-variable,
t: term), we add to the set of restrictions: ξ ≻ c and ξ ≻ ζ for each
Skolem constant c and for each metavariable ζ occurring in t. Then,
we check whether the relation ≻ does not have any cycle.

This mechanism ensures the soundness of the calculus, because it is
essentially a simulation of the method presented in [1]: Skolem con-
stants, as we use them, correspond to Skolem functions; restrictions
correspond to function arguments. Note that the relation ≻ is of prac-
tical significance for the presentation of the proof, as we discuss in
Section 4.

Concerning (b), final proof situations are of the form

Γ, F ⊢ F, and Γ, A,¬A ⊢ G,

where F and A are atomic formulas. Therefore, a leaf of a pre-proof
is transformable into a final proof situation if and only if one of the
assumptions is unifiable with the goal or an assumption is unifiable
with the negation of an assumption. The union of all such pairs of
formulas forms a unification problem for the pre-proof.
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3 The proof search procedure

In our system, the successive reductions (and finally the proof) are rep-
resented as an AND-OR deduction tree. AND nodes correspond to the usual
sequent reductions (see Section 2), while OR nodes represent proof alterna-
tives; OR nodes cannot be unary.

Speaking formally, a deduction tree generated by the system is not a
proof: it contains extra branches. We call a deduction tree an AND/OR proof
if for every OR node there exists a successor such that the tree made by
recursive replacing the OR node with the corresponding successor is a proof
as defined in Section 2.

TH∃OREM∀ can combine several proof engines called basic provers,
some of them specialized for certain domains. Basic provers return subtrees
representing one or several deduction steps. A control procedure activates
the various basic provers, combines their output and thus constructs the
proof-tree in a top-down inductive manner. The proof search procedure of
TH∃OREM∀ is described in detail in [14].

A proof value is assigned to each node of a deduction tree. The proof
value of a node can be proved , failed or pending (with the obvious mean-
ing). After each step of inference, some of the proof values may change.
The control procedure propagates the proof values in a bottom-up manner,
changing pending into proved or failed when possible.

The mechanism that handles meta-variables splits on two levels—the
level of a basic prover and the level of the control procedure. Indeed, the
basic prover assigns some particular values to meta-variables, while the con-
trol procedure ensures that values assigned to a meta-variable on different
branches of the deduction tree are compatible.

3.1 Basic prover for first-order logic

In the TH∃OREM∀ system, the basic prover that carries-out the inferences
in first-order logic is called PND (Proof by Natural Deduction) [12]. In this
section we describe the extension of this prover for handling meta-variables.
The prover is implemented as a set of rules which correspond to sequent
calculus inferences.

The first rule is the one which detects [possible] final proof situations:
Given a sequent of the form

Γ, A ⊢ B, ( or Γ, A,¬B ⊢ G),

where A and B are quantifier free and this pair of formulas was not tried
earlier, check whether they are unifiable. If the most general unifier of A,B
satisfies the set of restrictions R, associated to the node of the proof tree as
explained later, then the prover will create an OR node with two alternative
branches:

5



• A “proved” branch where the new substitution and the augmented set
of restrictions are retained as “proof-value”.

• A “pending” branch with the old proof situation, but where this par-
ticular substitution is forbidden in future inferences.

(Information about the “forbidden” substitution is than recursively passed
to descendants of the node).

Informally, the prover tries a substitution and keeps the possibility to go
further if it is not correct.

If the given proof situation cannot be transformed into a final proof
situation, (or the substitution is not compatible with the set of restrictions)
then PND tries to apply other rules, which basically split either the goal or
one of the assumptions in a natural way. Some of these rules will create AND
nodes with several branches.

• Rules for simplification and splitting:

Γ,¬G2, . . . ,¬Gk ⊢ G1

Γ ⊢ G1 ∨ · · · ∨G2

;
Γ, G1 ⊢ G2

Γ ⊢ G1 =⇒ G2

;

Γ,¬A ∨B ⊢ G

Γ, A =⇒ B ⊢ G
;

Γ, A1, . . . , Ak ⊢ G

Γ, A1 ∧ · · · ∧ Ak ⊢ G
;

Γ, G ⊢ false

Γ ⊢ ¬G
;

Γ, A ⊢ G

Γ,¬¬A ⊢ G
;

Γ,¬A1 ∨ · · · ∨ ¬Ak ⊢ G

Γ,¬(A1 ∧ · · · ∧ Ak) ⊢ G
;

Γ,¬A1 ∧ · · · ∧ ¬Ak ⊢ G

Γ,¬(A1 ∨ · · · ∨ Ak) ⊢ G
;

Γ, A ∧ ¬B ⊢ G

Γ,¬(A =⇒ B) ⊢ G
;

Γ, ∀x1, . . . , xn¬F ⊢ G

Γ,¬(∃x1, . . . , xnF ) ⊢ G
;

Γ, ∃x1, . . . , xn¬F ⊢ G

Γ,¬(∀x1, . . . , xnF ) ⊢ G
.

Γ, A1 ⊢ G ; · · · Γ, Ak ⊢ G

Γ, A1 ∨ · · · ∨ Ak ⊢ G
;

Γ ⊢ G1 ; · · · Γ ⊢ Gk

Γ ⊢ G1 ∧ · · · ∧Gk

.

Of particular interest to the meta-variables method are the following:

• Rules that introduce Skolem constants:

Γ ⊢ F{x1→c1,...,xn→cn}

Γ ⊢ ∀x1, . . . , xnF
;

Γ, F{x1→c1,...,xn→cn} ⊢ G

Γ,∃x1, . . . , xnF ⊢ G
,

where c1, . . . cn are new Skolem constants1. For each meta-variable ξ
and for each Skolem constant c that occur in F we associate with the
node of the proof tree the set of restrictions

c1 ≻ ξ, . . . , cn ≻ ξ and c1 ≻ c, . . . , cn ≻ c,

as explained in Section 2 and pass them to the successors.

1In the classic Gentzen’s calculus, [18], free variables are used instead of constants.
Replacement of the variables with constants keeps the proof valid and is more natural for
non-professionals.
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• Rules that introduce meta-variables:

Γ ⊢ G{x1→ξ1,...,xn→ξn} ∨ ∃x1, . . . , xnG

Γ ⊢ ∃x1, . . . , xnG
;

Γ, A{x1→ξ1,...,xn→ξn} ∧ ∀x1, . . . , xnA ⊢ G

Γ,∀x1, . . . , xnA ⊢ G
,

where ξ1, . . . , ξn are new meta-variables.

3.2 Control procedure

We consider first the situation of deterministic proofs—that is, we have only
AND nodes. During the construction of the pre-proof, each node is augmented
with a set R of restrictions of the form a ≻ b, which are propagated top-
down. Each final node (leaf) is assigned the proof value proved and the
appropriate substitutions for the meta-variables. When all the subnodes of
an AND node are proved , then we try to combine the corresponding substitu-
tions and restrictions as shown below (compatibility of a substitution with
the restrictions is checked as described in the previous section, at the final
proof rules). If successful, the node is also proved . Inductively, this will
construct bottom-up a correct substitution σ for the root. At the root, still
unresolved meta-variables are replaced with new constants in order to make
the substitutions ground.

The induction is provided by the function:

Function Simple Combine

Input: A list of pairs {(λ1, R1), (λ2, R2), . . . , (λn, Rn)} [substitutions and
restrictions of the subnodes].

Output: A pair (σN , RN ) or NULL [substitution and restrictions of the fa-
ther node].

Method:

• Let λi = {ξi,k → ti,k}k=1,....

• Find a most general unifier σN for 〈ξ1,1 . . . ξn,1 . . . 〉 and
〈t1,1 . . . tn,1 . . . 〉.

• If σN exists and satisfies ∪iRi, then return (σN ,∪iRi) else return
NULL.

Obviously the resulting λ is a most general substitution mapping the
corresponding subtree in a real proof. (Note that we do not have ordering
restrictions between meta-variables, and different most general unifiers may
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differ only in variable renaming-way; therefore, any most general unifier can
be selected in the functions.)

Note that the unification algorithm used above can be particularly tai-
lored to the special domains involved in the proof problem with the following
restriction: There must be a way to compute a solution to the specific unifi-
cation problem incrementally, i.e., given solutions corresponding to subnodes
N1, N2, . . . , Nn, one should be able to construct a solutions that satisfies all
these subnodes simultaneously, or to find out that there is no such a simul-
taneous solution.

Consider now the case, when the deduction tree may contain OR nodes.
An OR node N may have some pending subnodes, as well as some proved
subnodes N1, . . . , Nn assigned with (λ1, R1), . . . , (λn, Rn). It is natural to
assign to N the set {(λ1, R1), . . . , (λn, Rn)} of “possible” solutions.

The pending subnodes have no solutions assigned, however we keep a list
of pointers to these nodes, in order to return there in the case of failure.

Now we are ready to describe the general case. To each node we add a
solution system—a set whose elements are either pairs of the form (σN , RN )
or pointers to nodes of the constructed deduction tree. Let functions Pairs()
and Pointers() select from a solution system the elements of the first and
the second type respectively. A node is proved if the solution system as-
signed to it contains a pair. Thus, solution systems play the key role in
manipulating proof values; in fact, we compute proof values and solution
systems by means of one function Compute Value.

To describe the function Compute Value we need two auxiliary functions
CombineOR and CombineAND that compute a solution system associated with
OR and AND nodes of the deduction tree.

For an OR node the solution system is the union of solution systems of
its immediate successors.

Function CombineOR

Input: A list of solution systems {S1, . . . , Sr}.

Output: A solution system S.

Method:

• Return the union of S1, . . . , Sr.

If all immediate successors of an AND node are proved, a solution system is
assigned to each of them. Let us denote these solution systems by S1, . . . , Sr.
Each substitution occurring in Pairs(Si) is correct for the corresponding
subtree. CombineAND chooses an element si of Pairs(Si) for all i : 1 ≤ i ≤
r, and passes s1, . . . , sr to the function Simple Combine. The output of
Simple Combine contains a correct substitution or is NULL.
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If no solution system can be obtained in this way, the function returns
the union of sets of pointers occurring in the input solution systems. The
proof search procedure can expand further the deduction tree starting from
these nodes, then new leaves with the proved proof value may appear.

If there are no pointers, there is no hope to prove the node, and the
function returns NULL.

Function CombineAND

Input: A list of solution systems {S1, . . . , Sr}.

Output: A solution system {(σ1, R1), . . . , (σM , RM ), p1, . . . , pN} or a list of
pointers {p1, . . . , pN} or NULL.

Method:

• Let S = ∅.

• Let P = Pointers(S1) ∪ · · · ∪ Pointers(Sr).

• For all sequences (s1, s2, . . . , sr) ∈ Pairs(S1)× Pairs(S2)×· · · ×
Pairs(Sr)

– if Simple Combine(s1, . . . , sr) 6= NULL, add the output of
Simple Combine(s1, . . . , sr) to S.

• If S = ∅ and P = ∅, return NULL,

• else if S = ∅, return P ,

• else return S ∪ P .

The function Compute Value combines the computation of proof values
with the computation of solution systems. In addition, it builds the global
list NList of nodes.

Function Compute Value

Input: A node N having immediate successors N1, . . . , Nt.

Output: A proof value and a solution system assigned to N .

Side effect: Changes the global list NList.

Method:

• If N is an AND node

– If the proof value of one of N1, . . . , Nt is failed , set the proof
value of N to failed and exit.

– If the proof value of one of N1, . . . , Nt is pending , set the
proof value of N to pending and exit.
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– Let S1, . . . , St be the solution systems associated with
N1, . . . , Nt respectively. Let SAND = CombineAND(S1, . . . , St).

∗ if Pairs(SAND) = ∅ and Pointers(SAND) = ∅, then set the
proof value of N to failed and exit.

∗ if Pairs(SAND) = ∅ and Pointers(SAND) 6= ∅, then set
the proof value of N to pending , add Pointers(SAND) to
NList and exit.

∗ if Pairs(SAND) 6= ∅, then set the proof value of N to
proved , associate with N the solution system SAND and
exit.

• If N is an OR node

– If the proof values of all of N1, . . . , Nt are failed , set the proof
value of N to failed and exit.

– If the proof values of all of N1, . . . , Nt are pending or failed ,
set the proof value of N to pending and exit.

– If the proof value of one of N1, . . . , Nt is proved ,

∗ Let N ′
i1
, . . . , N ′

ij
be those of the nodes N1, . . . , Nt that

have the proved proof value. Let Si1 , . . . , Sij be the solu-
tion systems associated with N ′

i1
, . . . , N ′

ij
respectively.

∗ Let N ′′
k1
, . . . , N ′′

kl
be those of the nodes N1, . . . , Nt that

have the pending proof value. Let pk1 , . . . pkl be the point-
ers to the nodes N ′′

k1
, . . . , N ′′

kl
respectively. Let T be the

solution system {pk1 , . . . pkl}.

∗ Set the proof value of N to proved , associate with it the
solution system CombineOR(Si1 , . . . , Sij , T ) and exit.

Note that some final proof steps may create the empty solution system
E = {ǫ, ∅}, where ǫ in the empty substitution. The empty solution system
can be combined with any solution system.

The proof search is performed by the function Proof Search (the dis-
cussion of the proof strategy follows).

Function Proof Search

Input: Initial proof situation Γ ⊢ G.

Output: If Γ ⊢ G is valid, a deduction tree T presenting its proof.

Method:

• Construct the deduction tree T consisting of a single AND node
corresponding to the initial proof situation.
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• Let NList = ∅.

• While the proof value of the root of T is pending do

– Choose (according to the proof search strategy) a leaf L of T
having the pending proof value such that one of the following
conditions is satisfied:

1. no predecessor of L has the proved proof value;

2. L is a successor of one of the nodes occurring in NList.

– If no proof-rule is applicable to L, set the proof value of L to
failed .

– Apply (according to the proof search strategy) a proof-rule
to L, generating one or more successors of L in an AND or
an OR node.

– Propagate proof values from leaves to root applying induc-
tively the function Compute Value. During the propagation,
the list NList may change.

– Exclude from the list NList all nodes that do not have suc-
cessors with the pending proof value.

Note that in an AND/OR deduction produced by the described proof search
procedure, each OR node has the following property: One of its two successor
is a final node; thus, backtracking is not actually performed. Note also, that
the procedure is not restricted to this case, and we can implement in it
non-proof-confluent calculi, like versions of the connection method [6] where
backtracking is unavoidable.

Proof search strategy. The function Proof Search finds a proof of a
given valid formula if supplied with a fair proof strategy. A strategy is fair
if on an unsuccessful run with unlimited resources, for each branch of the
deduction tree the following holds: To each formula, occurring in a proof
situation of the branch, a rule is eventually applied, and if the formula is an
existential goal or a universal assumption, metavariables are introduced in
it infinitely many times. (Our notion of fair derivation coincides with the
notion used for semantic tableaux, [7].)

The strategy used in the system is the following: We extend a deduction
tree in a depth-first manner, until we found a candidate to be a final proof
situation. When all successors of an AND node are proved, we try to combine
these solutions. When it is not possible, we extend the deduction tree at the
closest to the AND node pending leaf. Thus, we combine depth-first manner
for exploring the tree with breadth-first manner of node selection to continue
the search in the case of failure.
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AND

P (a), P (b), Q(c), Q(b) ⊢ ∃x(P (x) ∧ Q(x))

pending, E

AND

P (a), P (b), Q(c), Q(b) ⊢ P (ξ) ∧ Q(ξ)

pending, {p2, p3}

OR

P (a), P (b), Q(c), Q(b) ⊢ P (ξ)

proved , {(ξ → a), p2}

AND

P (a), P (b), Q(c), Q(b) ⊢ P (ξ)

proved , {(ξ → a)}
︸ ︷︷ ︸

(i)

?

pending, E
︸ ︷︷ ︸

(ii)

OR

P (a), P (b), Q(c), Q(b) ⊢ Q(ξ)

proved , {(ξ → b), p3}

?

pending, E
︸ ︷︷ ︸

(iii)

AND

P (a), P (b), Q(c), Q(b) ⊢ Q(ξ)

proved , {(ξ → b)}
︸ ︷︷ ︸

(iv)

Figure 1: Deduction tree for P (a), P (b), Q(c), Q(b) ⊢ ∃x(P (x) ∧Q(x)) with
proof values and solution systems.

In Figure 1 we present a deduction tree where we show proof values and
associated solution systems.

In the figure, p2 and p3 are pointers to the leaves (ii) and (iii) respectively.
At the presented moment, the list NList contains nodes (ii) and (iii). Hence,
the procedure chooses as L one of the leaves (ii) and (iii), w.l.g., the leaf (ii).
After the procedure expands the deduction tree, we get the deduction tree
presented in Figure 2. The solution system associated with the root of the
tree contains a correct substitution ξ → b. The pointer p3 shows the place
where the deduction tree can be further expanded.

4 Example

This section describes our experiments with the system on a comprehensive
example. It turns out that an unrestricted introduction of meta-variables (as
described in Section 3.1) leads to large deduction trees, and, therefore, the
system based on this method only is not able to find a proof in a reasonable
time. Currently, we are working on strategy of combination of the method
with some more special rules (e.g. instantiation of the goal if it matches
a ground assumption), which are applied before the introduction of meta-
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AND

P (a), P (b), Q(c), Q(b) ⊢ ∃x(P (x) ∧ Q(x))

proved , {(ξ → b), p3}

AND

P (a), P (b), Q(c), Q(b) ⊢ P (ξ) ∧ Q(ξ)

proved , {(ξ → b), p3}

OR

P (a), P (b), Q(c), Q(b) ⊢ P (ξ)

proved , {(ξ → a), (ξ → b)}

AND

P (a), P (b), Q(c), Q(b) ⊢ P (ξ)

proved , {(ξ → a)}
︸ ︷︷ ︸

(i)

AND

P (a), P (b), Q(c), Q(b) ⊢ P (ξ)

proved , {(ξ → b)}
︸ ︷︷ ︸

(ii)

OR

P (a), P (b), Q(c), Q(b) ⊢ Q(ξ)

proved , {(ξ → b), p3}

?

pending, E
︸ ︷︷ ︸

(iii)

AND

P (a), P (b), Q(c), Q(b) ⊢ Q(ξ)

proved , {(ξ → b)}
︸ ︷︷ ︸

(iv)

Figure 2: Finished deduction tree for P (a), P (b), Q(c), Q(b) ⊢ ∃x(P (x) ∧
Q(x)).

variables. Such an approach is especially good for the case when a proof
situation consists of formulas of a special kind, like Horn-formulas.

The presented proof was fully automatically generated by the system by
use of the following strategy:

• Try to detect final proof situations.

• Apply rules for simplification and splitting.

• Match the goal vs. a ground assumption: backward chaining on the
goal.

• Introduce meta-variables into the goal.

• Match assumptions: forward reasoning.

The difference between this strategy and the one described in Section 3.2 is
that backward chaining is performed before introduction of meta-variables
into the goal and meta-variables are not introduced into assumptions at all.
(The latter choice is questionable so it is controlled by an option of the
prover.)
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In the proof shown in Appendix 1, Skolem constants are denoted by
integer subscripted symbols (e. g. N0), while meta-variables are denoted by
symbols superscripted with “*” and subscripted with integers (e. g. N ∗

0
).

Only one successful branch is shown (the simplification is also done automat-
ically). The (few) alternative branches which have been removed include:
further use of the transitivity (formula (>=>)), and alternative solutions
for i∗

0
, j∗

0
(an alternative branch also finds the solution max(N2, N1)).

We mentioned in Section 2 that ordering constraints are of great signifi-
cance for the presentation of proofs because it can be interpreted as: if ξ ≻ c,
(for ξ metavariable and c Skolem constant), then the deduction step intro-
ducing ξ should occur after the deduction step introducing c. Therefore,
≻ indicates the order in which the deduction steps should be rearranged in
order to be able to transform the pre-proof into a concrete proof in which
(4) holds—which is more natural.

In this proof the relation ≻ over the Skolem functions and the meta-
variables is:

n0 ≻ N∗
0 ≻ i∗0, j

∗
0 ≻ N0, N1 ≻ δ0 ≻ ǫ0.

This suggests the rearrangement of the steps presented in Appendix 2
(only the part after the line labeled (9) changes).

Note that the steps of the type “Because (14), we instantiate (eps) to
...” have been changed into “We instantiate (eps) to ...”, in order to avoid
forward references. In the former case the prover uses (14) as a hint in order
to instantiate (eps) usefully, however the hint is not available in the latter
proof. This shows an additional reason why searching for a proof in the
“correct” order is more difficult than in the “incorrect” one.

This proof can be transformed into a correct proof (without metavari-
ables) by replacing all the occurrences of the metavariables with their ground
value and by changing some of the explanatory text. The part of the proof
which changes is listed in Appendix 3.

5 Conclusions and related work

The presented approach has the following distinctive characteristics:

• The method can be used together with any set of inference rules, in
particular with any special provers.

• The method can be used together with any special (constraint) solvers
and rewrite engines based on implicit or explicit equality sets provided
the simultaneous solution can be computed incrementally.

• The proof is obtained as soon as possible, and inconsistent meta-
substitutions are eliminated as soon as they can be detected.
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• Proof sub-trees are not destroyed, but they are reused as much as
possible.

• The method can be used together with any strategy for constructing
the proof tree.

• The method can be easily parallelized.

A similar approach has been independently discovered by M. Giese [20,
19] for semantic tableaux. His primer goal is proof efficiency; the readability
of the resulted proof is hardly discussed.

We survey briefly other implementations of the metavariable method we
are aware of.

In free variable tableau calculi (see e.g. [3]), the choice of substitution
is done non-deterministically and the substitution is applied immediately to
the whole pre-proof. The indeterminism needs to be resolved by enumeration
of all possible substitutions and backtracking. Usually an AND-OR tree (of
proofs) is used for this purpose (cf. [3]). The main disadvantage of such a
method is that the information on inference steps may have been lost after
backtracking—this is why this kind of methods are also called destructive.

A straightforward way to enforce non-destructiveness for tableau calculus
is described in [16, 17]. The method consists of delaying any application
of the substitution until all branches can be closed simultaneously. This
requires global termination testing after each deduction step.

Recently, complete destructive procedures that avoid backtracking have
appeared [4] (similar ideas can be found in [2]). The essence of these proce-
dures is that whenever a substitution is applied, new subtrees are added to
all affected branches of the deduction tree. These subtrees “reconstruct” the
destroyed formulas. Thus, backtracking is avoided at the cost of increasing
the size of the deduction tree.

References
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Appendix 1: Automatically generated proof

Prove:
(lim +) lim[f, a] ∧ lim[g, b] ⇒ lim[f ⊕ g, a + b],
under the assumptions:
(lim:) l∀a,f(lim[f, a] :⇔ ∀ǫ (ǫ > 0 ⇒ ∃N ∀n (n ≥ N ⇒ |f [n]−a| < ǫ))),
(⊕:) ∀f,g,x((f ⊕ g)[x] := f [x] + g[x]),
(|++|) l∀a,b,x,y,δ,ǫ(|x− a| < δ ∧ |y− b| < ǫ ⇒ |(x+ y)− (a+ b)| < δ+ ǫ),
(max) ∀i,j,k(k ≥ max[i, j] ⇒ k ≥ i ∧ k ≥ j),
(eps) ∀ǫ (ǫ > 0 ⇒ ∃δ (δ > 0 ∧ (δ + δ = ǫ))),
(<=<) ∀t,u,v(u < v ∧ (v = t) ⇒ u < t).
We prove (lim +) by the deduction rule.
We assume
(1) lim[f, a] ∧ lim[g, b]
and show
(2) lim[f ⊕ g, a+ b].
For proving (2), by the definition (lim:), it suffices to prove:
(3) ∀ǫ (ǫ > 0 ⇒ ∃N ∀n (n ≥ N ⇒ |(f ⊕ g)[n]− (a+ b)| < ǫ)).
Using (⊕:), the goal (3) is transformed into:
(4) ∀ǫ (ǫ > 0 ⇒ ∃N ∀n (n ≥ N ⇒ |(f [n] + g[n])− (a+ b)| < ǫ)).
The formula (1.1) is expanded by the definition (lim:) into:
(5) ∀ǫ (ǫ > 0 ⇒ ∃N ∀n (n ≥ N ⇒ |f [n]− a| < ǫ)).
The formula (1.2) is expanded by the definition (lim:) into:
(6) ∀ǫ (ǫ > 0 ⇒ ∃N ∀n (n ≥ N ⇒ |g[n]− b| < ǫ)).
For proving (4) we take all variables arbitrary but fixed and prove:
(7) ǫ0 > 0 ⇒ ∃N ∀n (n ≥ N ⇒ |(f [n] + g[n])− (a+ b)| < ǫ0).
We prove (7) by the deduction rule.
We assume
(8) ǫ0 > 0
and show
(9) ∃N ∀n (n ≥ N ⇒ |(f [n] + g[n])− (a+ b)| < ǫ0).
For proving (9) we have to find N ∗

0
such that:

(10) ∀n (n ≥ N∗
0
⇒ |(f [n] + g[n])− (a+ b)| < ǫ0).

For proving (10) we take all variables arbitrary but fixed and prove:
(11) n0 ≥ N∗

0
⇒ |(f [n0] + g[n0])− (a+ b)| < ǫ0.

We prove (11) by the deduction rule.
We assume
(12) n0 ≥ N∗

0

and show
(13) |(f [n0] + g[n0])− (a+ b)| < ǫ0.
In order to prove (13), by (<=<), it is sufficient to prove:
(14) ∃v (|(f [n0] + g[n0])− (a+ b)| < v ∧ (v = ǫ0)).
Because (14), we instantiate (eps) to:
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(15) ǫ0 > 0 ⇒ ∃δ (δ > 0 ∧ (δ + δ = ǫ0)).
From (8) and (15) we obtain by modus ponens
(16) ∃δ (δ > 0 ∧ (δ + δ = ǫ0)).
By (16) we can take appropriate values such that:
(17) δ0 > 0 ∧ (δ0 + δ0 = ǫ0).
For proving (14) (using (17.2)) it suffices to prove:
(18) |(f [n0] + g[n0])− (a+ b)| < δ0 + δ0 ∧ (δ0 + δ0 = ǫ0).
Because a part of (18) coincides with (17.2), it is sufficient to prove:
(19) |(f [n0] + g[n0])− (a+ b)| < δ0 + δ0.
For proving (19), by (|++|) it suffices to prove
(20) |f [n0]− a| < δ0 ∧ |g[n0]− b| < δ0.
We prove the individual conjunctive parts of (20):
Proof of (20.1) |f [n0]− a| < δ0:
Because (20.1), we instantiate (5) to:
(21) δ0 > 0 ⇒ ∃N ∀n (n ≥ N ⇒ |f [n]− a| < δ0).
From (17.1) and (21) we obtain by modus ponens
(22) ∃N ∀n (n ≥ N ⇒ |f [n]− a| < δ0).
By (22) we can take appropriate values such that:
(23) ∀n (n ≥ N0 ⇒ |f [n]− a| < δ0).
In order to prove (20.1), by (23), it is sufficient to prove:
(24) n0 ≥ N0.
In order to prove (24), by (max), it is sufficient to prove:
(29) ∃j (n0 ≥ max[N0, j]).
For proving (29) we have to find j∗

0
such that:

(30) n0 ≥ max[N0, j
∗
0
].

Formula (30) is proved because it is identical to (12) with the substitution
{N∗

0
→ max[N0, j

∗
0
]}.

Proof of (20.2) |g[n0]− b| < δ0:
Because (20.2), we instantiate (6) to:
(25) δ0 > 0 ⇒ ∃N ∀n (n ≥ N ⇒ |g[n]− b| < δ0).
From (17.1) and (25) we obtain by modus ponens
(26) ∃N ∀n (n ≥ N ⇒ |g[n]− b| < δ0).
By (26) we can take appropriate values such that:
(27) ∀n (n ≥ N1 ⇒ |g[n]− b| < δ0).
In order to prove (20.2), by (27), it is sufficient to prove:
(28) n0 ≥ N1.
In order to prove (28), by (max), it is sufficient to prove:
(31) ∃i (n0 ≥ max[i,N1]).
For proving (31) we have to find i∗

0
such that:

(32) n0 ≥ max[i∗
0
, N1].

Formula (32) is proved because it is identical to (12) with the substitution
{N∗

0
→ max[i∗

0
, N1]}.

By combining the resulting substitutions we obtain:
{{j∗

0
→ N1, i∗

0
→ N0, N∗

0
→ max[N0, N1]}}

20



Appendix 2: Rearranged proof

[identical part deleted]
(9) ∃N ∀n (n ≥ N ⇒ |(f [n] + g[n])− (a+ b)| < ǫ0).
We instantiate (eps) to:
(15) ǫ0 > 0 ⇒ ∃δ (δ > 0 ∧ (δ + δ = ǫ0)).
From (8) and (15) we obtain by modus ponens
(16) ∃δ (δ > 0 ∧ (δ + δ = ǫ0)).
By (16) we can take appropriate values such that:
(17) δ0 > 0 ∧ (δ0 + δ0 = ǫ0).
We instantiate (5) to:
(21) δ0 > 0 ⇒ ∃N ∀n (n ≥ N ⇒ |f [n]− a| < δ0).
From (17.1) and (21) we obtain by modus ponens
(22) ∃N ∀n (n ≥ N ⇒ |f [n]− a| < δ0).
By (22) we can take appropriate values such that:
(23) ∀n (n ≥ N0 ⇒ |f [n]− a| < δ0).
We instantiate (6) to:
(25) δ0 > 0 ⇒ ∃N ∀n (n ≥ N ⇒ |g[n]− b| < δ0).
From (17.1) and (25) we obtain by modus ponens
(26) ∃N ∀n (n ≥ N ⇒ |g[n]− b| < δ0).
By (26) we can take appropriate values such that:
(27) ∀n (n ≥ N1 ⇒ |g[n]− b| < δ0).
For proving (9) we have to find N ∗

0
such that:

(10) ∀n (n ≥ N∗
0
⇒ |(f [n] + g[n])− (a+ b)| < ǫ0).

For proving (10) we take all variables arbitrary but fixed and prove:
(11) n0 ≥ N∗

0
⇒ |(f [n0] + g[n0])− (a+ b)| < ǫ0.

We prove (11) by the deduction rule.
We assume
(12) n0 ≥ N∗

0

and show
(13) |(f [n0] + g[n0])− (a+ b)| < ǫ0.
In order to prove (13), by (<=<), it is sufficient to prove:
(14) ∃v (|(f [n0] + g[n0])− (a+ b)| < v ∧ (v = ǫ0)).
For proving (14) (using (17.2)) it suffices to prove:
(18) |(f [n0] + g[n0])− (a+ b)| < δ0 + δ0 ∧ (δ0 + δ0 = ǫ0).
Because a part of (18) coincides with (17.2), it is sufficient to prove:
(19) |(f [n0] + g[n0])− (a+ b)| < δ0 + δ0.
For proving (19), by (|++|) it suffices to prove
(20) |f [n0]− a| < δ0 ∧ |g[n0]− b| < δ0.
We prove the individual conjunctive parts of (20):
Proof of (20.1) |f [n0]− a| < δ0:
In order to prove (20.1), by (23), it is sufficient to prove:
(24) n0 ≥ N0.
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In order to prove (24), by (max), it is sufficient to prove:
(29) ∃j (n0 ≥ max[N0, j]).
For proving (29) we have to find j∗

0
such that:

(30) n0 ≥ max[N0, j
∗
0
].

Formula (30) is proved because it is identical to (12) with the substitution
{N∗

0
→ max[N0, j

∗
0
]}.

Proof of (20.2) |g[n0]− b| < δ0:
In order to prove (20.2), by (27), it is sufficient to prove:
(28) n0 ≥ N1.
In order to prove (28), by (max), it is sufficient to prove:
(31) ∃i (n0 ≥ max[i,N1]).
For proving (31) we have to find i∗

0
such that:

(32) n0 ≥ max[i∗
0
, N1].

Formula (32) is proved because it is identical to (12) with the substitution
{N∗

0
→ max[i∗

0
, N1]}.

By combining the resulting substitutions we obtain:
{{j∗

0
→ N1, i

∗
0
→ N0, N

∗
0
→ max[N0, N1]}}.
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Appendix 3: Proof without meta-variables

[identical part deleted]
For proving (9) , by taking {N → max[N0, N1]}, it suffices to prove:
(10) ∀n(n ≥ max[N0, N1] ⇒ |(f [n] + g[n]) − (a+ b)| < ǫ0).
For proving (10) we take all variables arbitrary but fixed and prove:
(11) n0 ≥ max[N0, N1] ⇒ |(f [n0] + g[n0])− (a+ b)| < ǫ0.
We prove (11) by the deduction rule.
We assume
(12) n0 ≥ max[N0, N1]
[identical part deleted]
For proving (29), by taking {j → N1}, it suffices to prove:
(30) n0 ≥ max[N0, N1].
Formula (30) is proved because it is identical to (12).
[identical part deleted]
For proving (31), by taking {i → N0}, it suffices to prove:
(32) n0 ≥ max[N0, N1].
Formula (32) is proved because it is identical to (12).
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