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Dynamic topological logics over spaces
with continuous functions

B. Konev, R. Kontchakov, F. Wolter and

M. Zakharyaschev

abstract. Dynamic topological logics are combinations of topological
and temporal modal logics that are used for reasoning about dynamical
systems consisting of a topological space and a continuous function on it.
Here we partially solve a major open problem in the field by showing (by
reduction of the ω-reachability problem for lossy channel systems) that the
dynamic topological logic over arbitrary topological spaces as well as those
over Euclidean spaces R

n, for each n ≥ 1, are undecidable. Actually, we
prove this result for the natural and expressive fragment of the full dynamic
topological language where the topological operators cannot be applied to
formulas containing the temporal eventuality. Using Kruskal’s tree theorem
we also show that the formulas of this fragment that are valid in arbitrary
topological spaces with continuous functions are recursively enumerable,
which is not the case for spaces with homeomorphisms.

1 Introduction

Dynamic topological logics were introduced in [10, 11, 13, 2] with the
aim of logical modelling of and reasoning about the asymptotic proper-
ties of iterations of continuous functions on topological spaces, that is, or-
bits {f(x), f2(x), . . . } of points x in a topological space under a continuous
function f . The full dynamic topological language DT L of these logics can
be regarded as a natural combination of the standard modal language of
S4 (which due to results by McKinsey and Tarski [15] can be considered
as the logic of topological spaces|) interpreted over topological spaces and BK: informal intro added

the propositional temporal language of LT L (which can be used to model
iterations|) interpreted over 〈N, <〉. For instance, the DT L-formulas BK: same here

©Iϕ and I✷Fϕ (1)

are interpreted in a dynamical system 〈〈T, I〉, f〉 (where I is the interior
operator on the space T and f is a continuous function on 〈T, I〉) under a
valuation V as, respectively, the sets

f−1(IV(ϕ)) and I
⋂∞
n=1 f

−n(V(ϕ))

(I denotes the ‘box’ modality of S4). The available body of knowledge in
this area can be roughly classified as follows.
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The fragment DT L© of DT L with sole temporal operator ©:

• The sets of DT L©-formulas that are valid in dynamic topological sys-
tems (DTSs, for short) with homeomorphisms based on (i) arbitrary
topological spaces, (ii) Aleksandrov spaces, (iii) the Euclidean spaces
Rn , for each n ≥ 1, coincide, enjoy the finite model property (fmp),
are finitely axiomatisable and decidable [2, 13, 12, 8].

• The sets of DT L©-formulas that are valid in DTSs (with continuous

functions, not only homeomorphisms) based on (i) topological spaces
and (ii) Aleksandrov spaces coincide, enjoy the fmp, are finitely ax-
iomatisable and decidable [2, 12, 5]. A challenging open problem here
is to investigate the set of DT L©-formulas that are valid in R.

The fragment DT L0 of DT L where no temporal operator can occur
in the scope of a topological operator: The logic in this language
over arbitrary topological spaces and continuous functions was axiomatised
in [12]. It is easy to see, in fact, that this logic is decidable and coincides
with the corresponding logics over Aleksandrov spaces and Rn , n ≥ 1, no
matter whether the functions are continuous or homeomorphisms only.

Full DT L:

• The sets of DT L-formulas that are valid in DTSs with homeomor-

phisms based on (i) topological spaces, (ii) Aleksandrov spaces, (iii) Rn ,
for each n ≥ 1, are all pairwise distinct and are not recursively enu-
merable [8]. It is of interest to note that the logics over (i)–(iii) with
finitely many iterations of homeomorphisms coincide, but are still not
recursively enumerable [8].

• Only two results have been known for the logics of DTSs with continu-

ous functions. First, the logics over arbitrary and Aleksandrov spaces
with finitely many iterations coincide and are decidable, but not in
primitive recursive time [7]. Second, the logic over Aleksandrov spaces
turns out to be undecidable [9]. The major open problem has been to
investigate the computational properties (decidability, axiomatisabil-
ity, etc.) of the logic over Rn and arbitrary topological spaces.

In this paper we present a partial solution to this open problem by showing
that the logics in question are undecidable.

One key observation that has led to this result was the following fact dis-
covered in [6] (and probably elsewhere) in a somewhat different context: the
fragment DT L1 of DT L, where we are not allowed to apply the topological
operators to formulas containing ✷F or ✸F (as in the latter formula in (1))
but can have © in the scope of I, is still expressive enough to encode various
undecidable problems. But, on the other hand, it is not sufficiently strong to
distinguish between arbitrary and Aleksandrov topological spaces. Clearly,
DT L1 extends both DT L© and DT L0. It follows from [8] that the sets
of DT L1-formulas valid in (i) topological spaces, (ii) Aleksandrov spaces,
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(iii) Rn , for each n ≥ 1, with homeomorphisms are still not recursively
enumerable (even for systems with finitely many iterations).

The first main result of this paper is that the undecidable ω-reachability
problem for lossy channel systems can be reduced, via DT L1-formulas, to
satisfiability in Aleksandrov (and so arbitrary topological) spaces. On the
other hand, using Kruskal’s tree theorem, we show that the set of valid
DT L1-formulas is recursively enumerable (we actually conjecture that it is
finitely axiomatisable). However, it is still an open problem whether the set
of all valid DT L-formulas is axiomatisable.

The second key idea is that the technique of embedding Aleksandrov
spaces into R from [3] can be used to show that, given an arbitrary DT L1-
formula ϕ, one can construct a formula ϕR, the relativisation of ϕ, such
that ϕ is satisfiable if and only if ϕR is satisfiable in a DTS based on R.
Therefore, the ω-reachability problem is in fact reduced to the satisfiability
of relativised DT L1-formulas in Euclidean spaces. For the reader’s conve-
nience we summarise the results discussed above in the table below where
merged cells mean that the corresponding logics coincide:

spaces

language functions arbitrary Aleksandrov R
n

DT L
© continuous fmp, finite axiom. [2, 12, 5] ?

homeomorphisms fmp, finite axiom. [2, 13, 12, 8]

DT L0 continuous decidable, finite axiom. (partly in [12])
homeomorphisms

continuous undecidable, but r.e. undecidable

DT L1 homeomorphisms non-r.e. [8] non-r.e. [8]

DT L1 /
continuous/
finite iterations

decidable in
non-prim. recursive time

[7] ?

DT L homeomorphisms/
finite iterations

non-r.e. [8]

continuous undecidable undecidable undecidable

DT L homeomorphisms non-r.e. [8] non-r.e. [8] non-r.e. [8]

2 DT L

The full language DT L of dynamic topological logic is constructed in the
usual way from a countably infinite set {p1, p2, . . . } of spatial variables,
the Booleans ¬, ∧ (and their standard derivatives ∨, →, etc.), the modal
(or rather topological) operators I and C, and the temporal operators ©

(next-time), ✷F (always in the future) and ✸F (eventually). More precisely,
DT L-formulas are given by the following definition:

ϕ ::= pi | ¬ϕ | ϕ1 ∧ ϕ2 | Iϕ | ©ϕ | ✷Fϕ.

We use Cϕ and ✸Fϕ as abbreviations for ¬I¬ϕ and ¬✷F¬ϕ, respectively.
A dynamic topological structure (DTS, for short) is a pair of the form

F = 〈T, f〉, where T = 〈T, I〉 is a topological space with the interior operator
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I, and f : T → T is a continuous function on T, that is, f −1(A) is open
whenever A ⊆ T is open (alternatively, f−1(IA)⊆ If −1(A), for all A ⊆ T ).

A dynamic topological model (DTM, for short) is a pair M = 〈F,V〉,
where F is a DTS and V a valuation assigning to each variable pi a subset
V(pi) of T . The truth-relation (M, w) |= ϕ, for w ∈ T , is defined inductively
as follows:

• (M, w) |= pi iff w ∈ V(pi),

• (M, w) |= ¬ϕ iff (M, w) 6|= ϕ,

• (M, w) |= ϕ1 ∧ ϕ2 iff (M, w) |= ϕ1 and (M, w) |= ϕ2,

• (M, w) |= Iϕ iff w ∈ I{v ∈ T | (M, v) |= ϕ},

• (M, w) |= ©ϕ iff (M, f(w)) |= ϕ,

• (M, w) |= ✷Fϕ iff (M, fn(w)) |= ϕ for all n > 0.

For a class K of DTSs, we denote by LogK, the dynamic topological logic of

K, the set of all DT L-formulas ϕ such that (M, w) |= ϕ for every DTM M

based on a DTS from K and every point w in M. If we are only interested
in the restriction of LogK to a certain fragment DT Li of DT L, then we
write LogiK for LogK ∩ DT Li.

In this paper, we deal with (i) the class T of DTSs based on arbitrary
topological spaces, (ii) the classes Rn of DTSs based on the Euclidean Rn ,
for n ≥ 1, and (iii) the class A of DTSs based on Aleksandrov spaces. If we
restrict these classes to DTSs with homeomorphisms then we write Th, Rn

h ,
and Ah, respectively.

We remind the reader that every quasi-order G = 〈W,R〉 (R is a reflexive
and transitive relation on W ) gives rise to the topological space TG over W
consisting of all R-closed subsets ofW . In other words, the interior operator
IG on TG can be defined by taking, for every X ⊆W ,

IGX = {w ∈ X | ∀v ∈ W (wRv → v ∈ X)}.

Such spaces are known as Aleksandrov spaces. Alternatively they can be
defined as topological spaces where arbitrary (not only finite) intersections
of open sets are open; for details see [1, 4]. Clearly, for M = 〈〈TG, f〉,V〉,

(M, w) |= Iϕ iff (M, v) |= ϕ for every v ∈ W with wRv,

It should be also clear that a function f : W →W is continuous on TG iff

wRv implies f(w)Rf(v),

for all w, v ∈ W . Such a function f is called monotone. A bijection f is a
homeomorphism on TG iff both the implication above and its converse hold.
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3 DT L1

Let us consider now the sublanguage DT L1 of DT L where no ✷F and ✸F

can occur in the scope of I (© is allowed); more precisely, DT L1-formulas

ϕ are defined as follows:

ψ ::= pi | ¬ψ | ψ1 ∧ ψ2 | Iψ | ©ψ, (2)

ϕ ::= ψ | ¬ϕ | ϕ1 ∧ ϕ2 | ©ϕ | ✷Fϕ. (3)

This language turns out to be quite interesting and useful. Note first that
the formulas used in the proof of [8, Theorem 9] belong to DT L1, and so:

THEOREM 1. None of the logics Log1 Th, Log1 Ah, Log1 R
n
h, for n ≥ 1, is

recursively enumerable.

On the other hand, DT L1 does not distinguish between arbitrary topo-
logical and Aleksandrov spaces and, moreover, enjoys a kind of ‘local finite
model property.’ These features of DT L1 are formulated and proved in
Lemmas 2, 5, and 6. They will be heavily used later on in this paper.

LEMMA 2. Every satisfiable DT L1-formula ϕ is satisfiable in a DTM based

on an Aleksandrov topological space. Moreover, one can choose a DTM MG

satisfying ϕ such that MG is based on the Aleksandrov space TG induced by

a quasi-order G = 〈W,R〉 where,

(max) for all x ∈ W and all DT L1-formulas ψ with (MG, x) |= ψ, the

set Ax,ψ = {y ∈ W | xRy and (MG, y) |= ψ} contains an R-maximal

point (i.e., a point z such that if zRz′ for some z′ ∈ Ax,ψ then z′Rz).

To illustrate the idea of the proof suppose that ϕ is satisfied in a DTM
M based on a topological space T. We consider the DTM MG based on
the Aleksandrov space TG of all ultrafilters over T and show by induction
on the formula structure that ϕ is satisfied in M iff it is satisfied in MG.
There is a subtlety in the proof though: the inductive step for subformulas
of the form (2) goes through for all ultrafilters whereas its counterpart for
subformulas of the form (3) for principal ultrafilters only. For details see
a similar lemma in [7].| It also follows from the proof that the claim of BK: citation added

Lemma 2 is true for DTMs with homeomorphisms.

COROLLARY 3. Log1 T = Log1 A and Log1 Th = Log1 Ah.

It is known [16] that Log1 T $ Log1 R
n, n ≥ 1, while the question whether

the equality Log1 Th = Log1 R
n
h holds remains open.

REMARK 4. Note that neither equality in the corollary above holds for full
DT L. For instance, ϕ = ✷F Ip→ I✷F p is valid in all DTMs based on Alek-
sandrov spaces (as infinite intersections of open sets are open there). How-
ever, ¬ϕ can be satisfied in a DTM M based on R: if one takes the contin-
uous function f(x) = 2x and V(p) = (−1, 1) then

⋂∞
k=1 f

−k(IRV(p)) = {0}
but IR

⋂∞
k=1 f

−k(V(p)) = ∅, and so (M, 0) |= ¬ϕ.
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The following lemma shows that, for DT L1, DTMs with continuous func-
tions are closely connected to expanding domain product models introduced
in [7]:

LEMMA 5. Let ϕ be a DT L1-formula and M a DTM based on an Alek-

sandrov space and satisfying (max) such that (M, x0) |= ϕ for some x0.

Then there exist a DTM Mep based on the Aleksandrov space induced by

a quasi-order 〈W ep, Rep〉 and a continuous function fep on it such that

(Mep, r0) |= ϕ for some r0 ∈W ep and

(fin) 〈W ep, Rep〉 is the disjoint union of finite quasi-orders 〈W ep
n , Rep

n 〉, for
n ≥ 0;

(root) for n ≥ 0, rn+1 = fep(rn) and W
ep
n = {y ∈W ep | rnRepy};

(inj) fep is injective;

(size) |W ep
n | ≤ ((1 + ℓ(ϕ))!)n+1, for n ≥ 0, where ℓ(ϕ) is the length of ϕ.

The proof of this lemma is similar to that of [7, Lemma 2.2].

Before proceeding to Lemma 6, we remind the reader that, for a quasi-
order R onW , a set C ⊆W is called a cluster in 〈W,R〉 if, for some x ∈ W ,
C = {y ∈ W | xRy & yRx}; in this case we also say that C is the cluster
generated by x and denote it by C(x). A tree of clusters is a rooted quasi-
order 〈W,R〉 such that, for all x, y, z ∈ W , if xRz and yRz, then xRy or
yRx. A cluster C(y) is said to be an immediate strict successor of a cluster
C(x) if xRy, C(x) 6= C(y) and whenever xRzRy then either C(z) = C(x)
or C(z) = C(y).

LEMMA 6. Let ϕ be a DT L1-formula satisfiable in a DTM based on an

Aleksandrov space and meeting conditions (fin), (root), (inj). Then there

exist a recursive function F (ϕ, n) and a DTM Mex based on the Aleksandrov

space induced by a quasi-order 〈W ex, Rex〉 and a continuous function fex on

it such that (Mex, rex) |= ϕ for some rex ∈W ex, Mex satisfies (inj) and

(tree) 〈W ex, Rex〉 is the disjoint union of finite trees of clusters 〈W ex
n , Rex

n 〉,
for n ≥ 0;

(top) for n ≥ 0, y ∈ W ex
n , x ∈ W ex

n+1 with xRexfex(y), there is z ∈ W ex
n

such that zRexy and fex(z) = x; in particular, for all x, y ∈ W ex,

fex(x)Rexfex(y) implies xRexy;

(size′) |W ex
n | ≤ F (ϕ, n).

Proof. Let (M, r) |= ϕ, where M = 〈〈T, f〉,V〉, T is induced by 〈W,R〉 and
M satisfies (fin), (root), (inj). The DTM Mex satisfying the conditions
of the lemma will be constructed by a kind of ‘unravelling’ M.
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A sequence ~C = (C0, . . . , Cn), n ≥ 0, is called a cluster sequence over

〈W,R〉 iff the Ci are clusters in 〈W,R〉 such that Ci+1 is an immediate strict
successor of Ci. Define a partial order ≤ on cluster sequences by taking

(C0, . . . , Cn) ≤ (C′
0, . . . , C

′
m) iff n ≤ m and Ci = C′

i, for 0 ≤ i ≤ n.

For a point x ∈ W , let T (x) be the set of all pairs y = 〈~C, y〉 of cluster

sequences ~C = (C0, . . . , Cn) in 〈W,R〉 such that C0 = C(x) and Cn = C(y).
Such pairs are ordered by the relation

〈~C, y〉 ≤ 〈~C′, y′〉 iff ~C ≤ ~C′.

Clearly, 〈T (x),≤〉 is a tree of clusters, and every y with xRy is represented

by at least one point y in this tree. Moreover, for every y = 〈~C, y〉 and

z ∈ C(y), T (x) contains z = 〈~C, z〉 and both y and z are in the same
cluster in 〈T (x),≤〉. It should be noted that if 〈W,R〉 is a tree of clusters
then, for every x ∈W , 〈T (x),≤〉 is isomorphic to the quasi-order 〈Wx, Rx〉
generated by x.

The new model Mex will be based on the Aleksandrov space induced
by a quasi-order on sequences of pairs of the form 〈~C, y〉. We define it
inductively: let W ex

0 = {(y) | y ∈ T (r)} (set of sequences of length 1) and

Rex
0 =

{ (
(y), (y′)

)
∈ W ex

0 ×W ex
0 | y ≤ y′

}
.

Suppose that 〈W ex
k , Rex

k 〉, k ≥ 0, has already been defined. Let W ex
k+1 be the

union of two sets:

W
ex

k =
{
(y0, . . . ,yk, f(yk)) | (y0, . . . ,yk) ∈W ex

k

}
,

Xex
k+1 =

⋃

(y0,...,yk)∈W ex
k

{
(y0, . . . ,yk,y) | yk = 〈~Ck, yk〉 and y ∈ T (f(yk))

}
,

where we write f(yk) for 〈~Ck, f(yk)〉 whenever yk = 〈~Ck, yk〉. Note that
W ex
k+1 contains sequences of length k + 2 only and, for every sequence

(y0, . . . ,yk) ∈ W ex
k with yk = 〈~Ck, yk〉, yk indicates the element of W

this sequence represents.
Let Rex

k be the transitive closure of the union of the following relations:

{
((y0, . . . ,yk, f(yk)), (y

′

0
, . . . ,y′

k, f(y
′

k))) ∈W
ex

k ×W
ex

k

∣∣
(y0, . . . ,yk)R

ex
k (y′

0
, . . . ,y′

k)
}
,

{
((y0, . . . ,yk, f(yk)), (y0, . . . ,yk,y)) ∈W

ex

k ×Xex
k+1

∣∣ y ∈ T (f(yk))
}
,

{
((y0, . . . ,yk,y), (y0, . . . ,yk,y

′)) ∈ Xex
k+1 ×Xex

k+1

∣∣ y ≤ y′
}
.

Informally, the first relation above states that W
ex

k is an isomorphic copy of
W ex
k ; the other two relations ‘attach’ a tree to every point (y0, . . . ,yk, f(yk))

ofW
ex

k such that the attachment is an isomorphic copy of the tree generated
by f(yk) in W . It is readily checked that

〈
Rex
k+1,W

ex
k+1

〉
is a tree of clusters.
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The W ex
k are pairwise disjoint. Let W ex =

⋃∞
k=0W

ex
k , Rex =

⋃∞
k=0R

ex
k ,

Tex be the Aleksandrov space induced by 〈W ex, Rex〉. Define fex by taking

fex((y0, . . . ,yk)) = (y0, . . . ,yk, f(yk)),

for all (y0, . . . ,yk) ∈ W ex. Clearly, fex is monotone, injective and satisfies
(top) (in fact, it is a homeomorphism between each pair W ex

k and W
ex

k ).
Finally, define a valuation Vex by taking, for every variable pi,

Vex(pi) = {(y0, . . . ,yk) ∈W ex | yk = 〈~Ck, yk〉 and yk ∈ V(pi)}.

Let Mex = 〈〈Tex, fex〉,Vex〉 and rex = 〈C(r), r〉. It is not difficult to see
that (Mex, rex) |= ϕ. �

We use Lemma 6 and Kruskal’s tree theorem to prove, in a way similar
to the proof of [9, Theorem 4], the following (cf. Theorem 1):

THEOREM 7. Log1 T is recursively enumerable.

We present here only a sketch of the proof. To apply Kruskal’s tree theo-
rem, we require a representation of the models of Lemma 6 as sequences of
labelled trees. This can be achieved in a straightforward way using Hintikka-
type structures of the following form. For a DT L1-formula ϕ, let clϕ be the
set of all subformulas of ϕ and their negations. A full ϕ-type t is Boolean-
closed subset of clϕ, that is,

• ¬ψ ∈ t iff ψ 6∈ t, for every subformula ψ of ϕ,

• ψ1 ∧ ψ2 ∈ t iff ψ1, ψ2 ∈ t, for every subformula ψ1 ∧ ψ2 of ϕ.

A subset s of a ϕ-type t is a (simple) ϕ-type if it does not contain formulas
with occurrences of ✷F but satisfies the conditions above for all subformulas
of ϕ not containing ✷F .

A quasistate S = 〈W,R, l〉 is a finite transitive irreflexive tree 〈W,R〉
with a labelling function l which assigns

• a set l(x) of simple ϕ-types to every x ∈ W that is not the root of
〈W,R〉 (this set is supposed to encode the cluster represented by x),

• a set l(r) = {l1(r)} ∪ l2(r), where l1(r) is a full ϕ-type and l2(r) is a
set of simple ϕ-types, to the root r of 〈W,R〉

such that the following condition holds for all Iψ ∈ ϕ, x ∈ W , and t ∈ l(x):
we have Iψ ∈ t iff ψ ∈ s for every s ∈ l(y) with x = y or xRy.

A sequence Sn = 〈Wn, Rn, ln〉, n < ω, of quasistates is called a quasi-

model for ϕ if there are injective maps fn :Wn →Wn+1 such that

(1) for all x, y ∈Wn, xRny iff fn(x)Rn+1fn(y),

(2) |Sn| ≤ F (ϕ, n), where F (ϕ, n) is the recursive function from Lemma 6,

(3) f(rn) = rn+1 for the roots rn and rn+1 of 〈Wn, Rn〉 and 〈Wn+1, Rn+1〉,
respectively,
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(4) ϕ ∈ l10(r0),

(5) if fn(x) = y, then for every t ∈ ln(x) there exists t′ ∈ ln+1(y) such
that for every ©ψ ∈ clϕ, ©ψ ∈ ln(x) iff ψ ∈ ln+1(y); if x = rn and
t = l1n(rn), then we can choose t′ = l1n+1(rn+1),

(6) for every ✷Fψ ∈ clϕ, ¬✷Fψ ∈ l1n(rn) iff there exists m > n such that
¬ψ ∈ l1m(rm); if m is minimal with this property, then we say that m
realises the eventuality ¬✷Fψ.

The proof of the following lemma is easy and left to the reader.

LEMMA 8. A DT L1-formula ϕ is satisfiable in a DTM iff there exists a

quasimodel for ϕ.

We remind the reader of the following weak version of Kruskal’s tree the-

orem. An injective function h : 〈W1, R1, l1〉 → 〈W2, R2, l2〉 between labelled
trees is called an embedding if, for all x, y ∈ W1, xR1y iff h(x)R2h(y), and
l1(x) = l2(h(x)). We assume that the labels are taken from some finite set.

THEOREM 9 (Kruskal). For any sequence Sn, n < ω, of labelled trees,

there exists i < j such that Si is embeddable into Sj.

Consider now a quasimodel Sn, n < ω, for ϕ. Clearly, if there are i < j

such that Si is embeddable into Sj , then the sequence

S0, . . . ,Si−1,Sj ,Sj+1 . . .

is a quasimodel for ϕ as well. Moreover, we can ‘prune’ the quasistates
Sj ,Sj+1 . . . in such a way that the bound from (2) above still holds.

Now we can recursively enumerate the DT L1-formulas ϕ which are not
satisfiable as follows: for every ϕ enumerate all finite sequences S0, . . . ,Sm

such that conditions (1)–(5) above and the following modification of condi-
tion (6) hold:

• For every ✷Fψ ∈ clϕ and every n < m, we have ¬✷Fψ ∈ l1n(rn) iff
¬✷Fψ ∈ l1m(rm) or there exists k, n < k ≤ m, such that k realises the
eventuality ¬✷Fψ.

• Let 0 = k0 < k1 < k2 · · · < kn ≤ m be the minimal numbers such
that every ¬✷Fψ ∈ l1ki(rki) is realised until ki+1. If no ¬✷Fψ exists
in l1ki(rki), then set ki+1 = ki + 1. Then, if there are m1,m2 with
ki < m1 < m2 < ki+1 or kn < m1 < m2 < m such that Sm1 is
embeddable into Sm2 , then there exists a ¬✷Fψ ∈ l1k1(rk1 ) which is
realised somewhere in the interval [m1,m2).

Now suppose that the enumeration of such sequences does not terminate
for ϕ (i.e., infinite many such sequences are generated). Then, by König’s
lemma, there exists an infinite sequence whose finite initial segments satisfy
the conditions above. But then, by Kruskal’s tree theorem, this sequence
is a quasimodel for ϕ, and so ϕ is satisfiable. Conversely, if the enumera-
tion of such finite sequences terminates (i.e., there are only finitely many
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sequences), then there is no quasimodel for ϕ. Hence ϕ is not satisfiable. It
follows that the non-satisfiable formulas (and therefore the valid formulas)
are recursively enumerable.

4 Embedding DTMs into the real line

THEOREM 10. A DT L1-formula ϕ is satisfiable iff ϕR, the relativisation

of ϕ, is satisfiable in the DTS 〈〈R, IR〉, x 7→ x+ 1〉, where1

ϕR = dom ∧ ✷
+
F I(dom → ©dom) ∧ ϕdom,

dom is a fresh variable, and ϕdom is the result of replacing every occurrence

of a subformula of the form Iψ in ϕ with I(dom → ψ).

Proof. Suppose that ϕR is satisfied in 〈〈R, IR〉, x 7→ x + 1〉. Then, by
Lemma 2, ϕR is satisfied in a DTM M based on an Aleksandrov space.
It is readily seen that ϕ is satisfied in the DTM M′ obtained from M by
removing all those points where dom is false.

Conversely, suppose that ϕ is satisfiable. Let Mex = 〈〈Tex, fex〉,Vex〉 be
the model provided by Lemma 6 and satisfying ϕ. Our plan is (1) to extend

Mex to a DTM M̂ that satisfies ϕR and is based on ω-trees of clusters of

finite depth, and (2) to embed M̂ into a model based on 〈〈R, IR〉, x 7→ x+1〉.
We remind the reader that a tree of clusters 〈W,R〉 is of depth n if n is

the length of the longest sequence C(x1), . . . , C(xn) of clusters in 〈W,R〉
such that C(xi+1) is an immediate strict successor of C(xi). A cluster C is
called final if it has no strict successor. A tree of clusters is called an ω-tree
if every non-final cluster has ω distinct strict immediate successors.

(1) Fix some k ≥ 0. By (tree), 〈W ex
k , Rex

k 〉 is a finite tree of clusters. We

construct an ω-tree of clusters Ĝk = 〈Ŵk, R̂k〉 by attaching an ω-tree of

depth 2 to every cluster in 〈W ex
k , Rex

k 〉: let Ŵk be the union of W ex
k with

{(C(x), n) | x ∈W ex
k , n ∈ N} and R̂k the transitive and reflexive closure of

Rex
k ∪

{
(x, (C(x), n)) | x ∈ W ex

k , n ∈ N
}
.

Note that the Ŵk are pairwise disjoint. Let Ŵ =
⋃∞
k=0 Ŵk, R̂ =

⋃∞
k=0 R̂k,

and let T̂ be the Aleksandrov space induced by Ĝ = 〈Ŵ , R̂〉.

Define a function f̂ : Ŵ → Ŵ by taking, for all x ∈W ex and n ∈ N,

f̂(x) = fex(x),

f̂((C(x), n)) =

{
yn, if n < m,

(C(fex(x)), n −m), otherwise,

where {y0, . . . , ym−1} ⊆ W ex
k+1 \ {f(z) | z ∈ W ex

k } and C(y0), . . . , C(ym−1)
are all the distinct strict immediate successors of C(fex(x)).

1We write ✷
+

F
ψ for an abbreviation of ψ ∧✷Fψ.
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Clearly, f̂ is a well-defined function on Ŵ . Informally, (i) each x ∈ W ex
k

is mapped onto its image fex(x); (ii) for each x ∈W ex
k , its firstm successors

of the form (C(x), n) from Ŵk \W ex
k are mapped onto the roots of the m

distinct trees that are attached to C(fex(x)) at step k+1 and the remaining

successors of this sort are simply renumbered. Since every Ĝk+1 contains

an isomorphic copy of Ĝk and in view of (top), the function f̂ is monotone.

Clearly, ϕR is satisfied in the DTM M̂ under the valuation V̂ defined by
taking V̂(dom) =W ex and V̂(pi) = Vex(pi), for every variable pi in ϕ.

(2) Next, we require the following generalisation of a result from [3]:

LEMMA 11. For every open interval I ⊆ R and every ω-tree of clusters G =
〈W,R〉 of finite depth, there is a surjective open and continuous function

fG
I : I → TG. Moreover, for every initial ω-subtree G′ = 〈W ′, R′〉 of G

(where each cluster of G′ either inherits all strict immediate successors from

G or none of them) and every point z ∈ I,

(cons) if fG
′

I (z) is not in a final cluster of G′, then fG
I (z) = fG

′

I (z);

(final) if fG
′

I (z) is in a final cluster of G′, then there is an open interval

Iz with z ∈ Iz such that fG
I (Iz) = {y ∈W | fG

′

I (z)Ry}.

The above result can be proved by extending [3, Theorem 16] so that in
[3, Lemma 15], the enumeration of all countably many immediate strict
successors is chosen in such a way that each of them occurs infinitely often
in the enumeration.

Thus, Lemma 11 provides us with a surjective open and continuous func-

tion f Ĝk

(0,1) : (0, 1) → Ĝk, for each k ≥ 0. Let D =
⋃∞
k=0(k, k + 1) ⊆ R.

Define a function g : D → Ĝ by taking:

g(k + z) = f Ĝk

(0,1)(z), for all k ∈ N and z ∈ (0, 1).

| The valuation VR is defined by taking VR(dom) = {z ∈ D | g(z) ∈ BK: z argument to f
Ĝk
(0,1)

added

V̂(dom)} and VR(pi) = {z ∈ D | g(z) ∈ V̂(pi)}, for every variable pi of ϕ.
First, we show that, for all z ∈ R,

if z ∈ VR(dom) then (z + 1) ∈ VR(dom) and f̂(g(z)) = g(z + 1). (4)

Indeed, suppose that z ∈ VR(dom). Then g(z) ∈ V̂(dom) and therefore,

g(z) ∈ W ex
k , for some k ≥ 0. Then f̂(g(z)) ∈ W ex

k+1 ⊆ V̂(dom). Moreover,

by (cons), f̂(g(z)) = g(z + 1). Hence, z + 1 ∈ VR(dom). Note that it is

essential that g(z) is not in a final cluster of Ĝk; and this is precisely the

reason why at step (1) we needed to extend 〈W ex, Rex〉 to 〈Ŵ , R̂〉 by ω-trees

of depth 2 (for each final cluster of each Ĝk the attached ω-tree of depth 2
provides countably many ‘placeholders’ for the trees that will be attached
to this cluster in W ex

k+1,W
ex
k+2, . . . ; note also that these placeholders do not

belong to the ‘domain’).
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Now, we prove by induction on the construction of subformulas ψ of ϕdom

that, for every z ∈ VR(dom),2

g(z) ∈ V̂(ψ) iff z ∈ VR(ψ). (5)

The case of variables follows immediately from the definition and the cases
of the Booleans are trivial.

Case ψ = I(dom → ψ′). Since z ∈ VR(dom), there is k ∈ N such that
z ∈ (k, k + 1). Then

z ∈ VR(I(dom → ψ′)) iff [def. of open set]

there is an open U ⊆ (k, k + 1) such that

z ∈ U and U ⊆ VR(dom → ψ′) iff [definition]

there is an open U ⊆ (k, k + 1) such that

z ∈ U and U ∩VR(dom) ⊆ VR(ψ
′) iff [IH]

there is an open U ⊆ (k, k + 1) such that

z ∈ U and g(U) ∩ V̂(dom) ⊆ V̂(ψ′) iff [V = g(U)
g open and cont.]

there is an open V ⊆ Ŵk such that

g(z) ∈ V and V ∩ V̂(dom) ⊆ V̂(ψ′) iff [definition]

g(z) ∈ V̂(I(dom → ψ′))

Case ψ = ©ψ′. Then

z ∈ VR(©ψ
′) iff z + 1 ∈ VR(ψ

′) iff [IH]

g(z + 1) ∈ V̂(ψ′) iff [(4)]

f̂(g(z)) ∈ V̂(ψ′) iff g(z) ∈ V̂(©ψ′).

Case ψ = ✷Fψ
′ is considered in the same way.

By (4) and (5), ϕR is satisfied in the DTM 〈〈〈R, IR〉, x 7→ x+1〉,VR〉. �

COROLLARY 12. A DT L1-formula ϕ is satisfiable iff ϕR is satisfiable

in the DTS 〈〈Rn , IRn〉, (x1, . . . , xn−1, xn) 7→ (x1, . . . , xn−1, xn + 1)〉, n ≥ 1.

It should be noted that although the relativisation ϕR is satisfied in a
DTS based on an Aleksandrov space iff ϕ is satisfied in some (in general,
different) DTS based on an Aleksandrov space, the analogous statement
fails for the Euclidean spaces: ϕ may not be satisfiable in a DTS based on
R even if its relativisation ϕR is satisfiable (e.g., a counterexample in [16]).
The explanation lies in the variable dom which ‘carves’ out of R a subspace
that topologically resembles an Aleksandrov space.

2For a DTM M= 〈F,V〉, we denote by V(ϕ) the set {w ∈ F | (M, w) |= ϕ}.
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5 Undecidability

As usual, for a finite alphabet Σ, the set of all finite words over Σ (including
the empty word ǫ) is denoted by Σ∗ (also called Σ-words). Given a word
w = a1 · a2 · · · · · an, we denote its length n by |w| and refer to its elements
using the bracket notation: w(i) = ai, for 1 ≤ i ≤ n. For a pair of words u
and w, we say that u is a subword of w and write u ⊑h w if there is a strictly
monotone map h : {1, . . . , |u|} → {1, . . . , |w|} such that u(i) = w(h(i)), for
every i, 1 ≤ i ≤ |u|. We also write u ⊑ w if u ⊑h w for some h.

A single channel system is a triple S = 〈Q,Σ,∆〉, where Q = {q1, . . . , qn}
is a set of control states, Σ = {a1, . . . , am} is an alphabet of messages and
∆ ⊆ Q× {?, !} × Σ×Q is a set of transitions.

A configuration of S is a pair γ = 〈q, w〉, where q ∈ Q and w ∈ Σ∗. Define
a lossy relation and two types of perfect transition relations for S between
configurations by taking:

(l) 〈q, w〉 −→ℓ 〈q, w
′〉 iff w′ ⊑ w,

(s) 〈q, w〉
〈q,!,a,q′〉
−−−−−→p 〈q

′, a · w〉, (r) 〈q, w · a〉
〈q,?,a,q′〉
−−−−−−→p 〈q

′, w〉.

(Here l stands for ‘loose’,| s for ‘send’, and r for ‘receive.’) Finally, define BK: ‘loose’ added

lossy transition relations for S as the following compositions:

(ls) 〈q, w〉
〈q,!,a,q′〉
−−−−−→ℓ 〈q

′, w′〉 iff 〈q, w〉
〈q,!,a,q′〉
−−−−−→p 〈q

′, a · w〉 −→ℓ 〈q
′, w′〉,

(lr)〈q, w·a〉
〈q,?,a,q′〉
−−−−−−→ℓ 〈q

′, w′〉 iff 〈q, w·a〉
〈q,?,a,q′〉
−−−−−−→p 〈q

′, w〉 −→ℓ 〈q
′, w′〉.

For a binary relation → on configurations of S, a sequence γ0, . . . , γm of
configurations of S is called a →-computation of S if γk −→ γk+1, for k < m.

The undecidable ‘master problem’ that will be used to prove the un-
decidability of the logics under consideration is the ω-reachability problem

for channel systems : given a channel system S = 〈Q,Σ,∆〉, two states
q0, qrec ∈ Q, and a relation −→ in the interval

( ⋃

δk∈∆

δk−→p

)
⊆ −→ ⊆

( ⋃

δk∈∆

δk−→ℓ

)
(6)

decide whether for every n ∈ N there exists a →-computation of S starting
with 〈q0, ǫ〉 and reaching qrec at least n times. The following lemma can
be proved by a reduction of the undecidable boundedness problem for lossy
channel systems [14]. The reduction was suggested by Ph. Schnoebelen:

LEMMA 13. The ω-reachability problem is undecidable.

We are now in a position to prove the main result of the paper:

THEOREM 14. None of Log1 T and Log1 R
n, for n ≥ 1, is decidable.

Proof. By Corollary 12, it suffices to consider (the complement of) Log1 T .
Given a single channel system S = 〈Q,Σ,∆〉 and states q0, qrec ∈ Q, we
construct a DT L1-formula ϕS,q0,qrec such that
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(⇒) if ϕS,q0,qrec is satisfiable then, for every n ∈ N, there is a lossy compu-
tation starting with 〈q0, ǫ〉 and reaching qrec at least n times;

(⇐) if, for every n ∈ N, there is a perfect computation starting with 〈q0, ǫ〉
and reaching qrec at least n times then ϕS,q0,qrec is satisfiable in a DTM.

By Lemma 13 this will imply that Log1 T is undecidable.

The formula ϕS,q0,qrec is the conjunction of four formulas σ, θS,q0 , τS and
ρS,qrec and is constructed in four steps (σ), (θ), (τ ) and (ρ), respectively.

(⇒) To explain the meaning of each of the four conjuncts, let us assume
that (M, x0) |= ϕS,q0,qrec , for some DTM M = 〈〈T, f〉,V〉, where T is the
Aleksandrov topological space induced by a quasi-order 〈W,R〉.

For every n ≥ 0, letWn = {y ∈W | fn(x0)Ry} and Rn = R∩(Wn×Wn).
Clearly, the 〈Wn, Rn〉 are quasi-orders. By Lemma 5, we may assume that
the Wn are finite and f is injective.

(σ) First we introduce a new operator S (to be interpreted as an almost
‘irreflexive’ diamond in 〈W,R〉). Namely, we fix some fresh variable s and
put, for every DT L©-formula ψ,

Sψ = (s ∧C(¬s ∧Cψ)) ∨ (¬s ∧C(s ∧Cψ)).

Define new relations Rn on Wn, n ≥ 0, by taking, for all x, y ∈Wn,

xRny iff ∃z ∈Wn

(
xRnzRny and (M, x) |= s⇔ (M, z) |= ¬s

)
.

It can be checked that Rn is transitive, Rn ⊆ Rn and, for every x ∈ Wn,

(M, x) |= Sψ iff there is y ∈ Wn such that xRny and (M, y) |= ψ.

Let

σ = ✷
+
F I(s↔ ©s). (7)

By the monotonicity of f , if (M, x0) |= σ then, for all x, y ∈Wn,

if xRny then f(x)Rn+1f(y).

(θ) Next, we encode infinitely many computations along the orbit of x0.
Each computation is encoded backwards (from its end to the beginning),
and the variablem delimits computations in the sense that each computation
is encoded between two consecutive occurrences of m. For every transition
δk ∈ ∆, we introduce a fresh variable trδk and, for every state qi ∈ Q, a
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variable qi.
3 Let θS,q0 be the conjunction of the following formulas:

∧

δi 6=δj

✷
+
F¬(trδi ∧ trδj) ∧

∧

qi 6=qj

✷
+
F¬(qi ∧ qj), (8)

∧

δk=〈qi,∗,a,qj〉∈∆

✷
+
F

(
trδk → qj ∧ ©qi

)
, (9)

✷
+
F

(
¬m →

∨

δi∈∆

trδi
)
, (10)

✷
+
F

(
m → q0

)
, (11)

m ∧ ✷
+
F✸Fm, (12)

where ∗ denotes either of {?, !}. It follows that if (M, x0) |= θS,q0 then there
is an infinite sequence of natural numbers 0 =M0 < M1 < . . . such that

(M, fMn(x0)) |= m,

for every n ≥ 0. Let Nn = Mn − (Mn−1 + 1), for n > 0. Clearly, Nn ≥ 1,
for n > 0. Let N0 = 0. For every n ≥ 0, there are also unique sequences

qin0 , . . . , qinNn
and δkn0 , . . . , δknNn−1

of, respectively, states from Q and transitions from ∆ such that

• (M, fMn−j(x0)) |= qin
j
, for each 0 ≤ j ≤ Nn,

• (M, fMn−(j+1)(x0)) |= trδkn
j
, for each 0 ≤ j < Nn,

• δkn
j
=

〈
qin

j
, ∗, a, qin

j+1

〉
and qin0 = q0.

(τ ) Our next step is to encode Σ-words in the ‘topological dimension.’ For
every message ai ∈ Σ, we introduce a fresh variable ai and let λ =

∨
ai∈Σ ai.

Intuitively, Σ-words are encoded in Rk-connected points of Wk. Denote by
τS the conjunction of the following formulas:

∧

ai 6=aj

✷
+
F I¬(ai ∧ aj), (13)

✷
+
F I(λ→ Iλ), (14)

∧

ai∈Σ

✷
+
F I(ai → ©(λ→ ai)), (15)

✷
+
F (m → I¬λ), (16)

∧

δk=〈q,!,a,q′〉∈∆

✷
+
F

(
trδk → I(λ→ ¬S©¬λ) ∧ I(λ ∧ ©¬λ→ a)

)
, (17)

∧

δk=〈q,?,a,q′〉∈∆

✷
+
F

(
trδk → I(λ→ ©λ) ∧ I(¬Sλ→ ©Sλ) ∧ ©I(¬Sλ→ a)

)
. (18)

3Note the different font we use to denote these variables: their values will be needed
only along the orbit of x0 (in contrast to s and other variables below).
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CLAIM 15. Let y ∈ Wn be such that (M, y) |= λ. Then yRny does not
hold.

Proof of claim. Suppose that yRny. By (16), (M, fn(x0)) |= ¬m and
thus, by (10), (M, fn(x0)) |= trδk for some δk ∈ ∆. Consider two cases:
(a) if δk = 〈q, ?, a, q′〉 then (M, f(y)) |= λ, by the first conjunct of (18);
(b) if δk = 〈q, !, a, q′〉 then, as yRny, we have, by (17), (M, f(y)) |= λ again.

By monotonicity of f , we obtain f(y) ∈ Wn+1 and f(y)Rn+1f(y); there-
fore, one can repeat the above step for f(y). However, this process cannot
continue indefinitely since there is Mj > n such that (M, fMj (x0)) |= m,
and so, by (16), (M, y) |= ¬λ for all y ∈WMj

. �

Say that a finite sequence ~y = (y1, y2, . . . , yk) of elements of Wn with
y1Rny2Rn . . . carries the Σ-word w and write val(~y) = w if (M, yi) |= w(i),
for all 1 ≤ i ≤ |w|. Note that, by (14), if (M, y) |= λ for some y ∈Wn then,
for every z ∈ Wn with yRnz, we will also have (M, z) |= λ. Let val(~y) = ǫ

if ~y is the empty sequence. We say that a sequence ~y ′ = (y′1, . . . , y
′
r) with

y′iRny
′
i+1 is an extension of ~y = (y1, . . . , yk) with yiRnyi+1 if there is a

strictly monotone function h : {1, . . . , k} → {1, . . . , r} (i.e., h(i) > h(j), for
i > j) such that yi = y′

h(i), for 1 ≤ i ≤ k. A sequence ~y = (y1, . . . , yk)

with yiRnyi+1 is said to be maximal carrying a Σ-word if no extension of ~y
carries a Σ-word.

Suppose (M, fn(x0)) |= ¬m. Then, by (10), (M, fn(x0)) |= trδk for
some transition δk ∈ ∆. Let ~y ′ = (y1, . . . , yl) with yiRnyi+1 be a maximal
sequence carrying a Σ-word and val(~y ′) = d1 . . . dl. First, consider the case
when ~y ′ is empty. This means that (M, y) |= ¬λ for all y ∈ Wn. Take
any maximal sequence ~y in Wn+1 carrying a Σ-word. Clearly, ~y can be
regarded as an extension of f(~y ′) = ǫ and, as ǫ is a subword of any word,

we have 〈q, val(~y)〉
δk→ℓ 〈q′, ǫ〉, for any transition δk = 〈q, ∗, a, q′〉 ∈ ∆ (this

corresponds to a situation when everything is lost after the transition).
Suppose now that ~y ′ is not empty. Let f(~y ′) = (f(y1), . . . , f(yl)). Note

that points of this sequence are all distinct since f is injective. Consider
the cases of sending and receiving messages:

Case δk = 〈q, !, a, q′〉. By the first conjunct of (17), only three subcases are
possible:

(0) There is no m, 1 ≤ m ≤ l, such that (M, ym) |= ©λ. Then, by the
first conjunct of (17), ~y ′ = (y1) and, by its last conjunct, val(~y ′) = a.
Take any maximal sequence ~y in Wn+1 carrying a Σ-word. As ~y does
not contain f(y1), it can trivially be regarded as an extension of f(~y ′).

Thus 〈q, val(~y)〉
δk→ℓ 〈q′, a〉 (everything but the sent message is lost).

(1) Let (M, y1) |= ©λ. Then (M, f(y1)) |= λ and, by (15), val(~y ′) =
val(f(~y ′)). Take any maximal extension ~y of f(~y ′) carrying a Σ-

word. Then val(~y) ⊒ val(~y ′) and 〈q, val(~y)〉
δk→ℓ 〈q

′, val(~y ′)〉 (the sent
message is lost; other messages are possibly lost but not completely).
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(2) Let (M, y1) |= ©¬λ but (M, y2) |= ©λ. By the last conjunct of (17),
we have (M, y1) |= a and, by (15), val(~y ′) = a · val(f(~y ′)). Take
any maximal extension ~y of f(~y ′) carrying a Σ-word. Then we have

〈q, val(~y)〉
δk→ℓ 〈q′, val(~y ′)〉 (the sent message is not lost; other messages

are possibly lost but not completely).

Case δk = 〈q, ?, a, q′〉. By the maximality of ~y and Claim 15, (M, yl) |= λ∧
¬Sλ. Then, by the first and second conjuncts of (18), (M, f(yl)) |= λ∧Sλ.
By Claim 15, the set {z ∈ Wn+1 | f(yl)Rn+1z, (M, z) |= λ} contains no
infinite ascending Rn+1-chain, and so we can find some y ∈ Wn+1 such that
f(yl)Rn+1y and (M, y) |= λ ∧ ¬Sλ. By the last conjunct of (18), we have
(M, y) |= a. As, by the first conjunct of (18) and (15), val(f(~y ′)) = val(~y ′),
we obtain val(f(~y ′) · y) = val(~y ′) · a. Finally, take any maximal extension

~y of f(~y ′) · y carrying a Σ-word. Clearly, 〈q, val(~y)〉
δk→ℓ 〈q′, val(~y ′)〉.

Now, given n ≥ 1, we can find a lossy computation. Let (qin0 , . . . , qinNn
)

and (δkn0 , . . . , δknNn−1
) be the unique sequences of states and transitions,

respectively, defined by the modelM as described in step (θ). We start from
the tail: let j = Nn and take any maximal sequence ~yj inWMn−j carrying a
Σ-word. We know from the considerations that there is a maximal sequence
~yj−1 in WMn−(j−1) carrying a Σ-word such that

〈
qin

j−1
, val(~yj−1)

〉 δkn
j

−−→ℓ

〈
qin

j
, val(~yj)

〉
.

By repeating this procedure sufficiently many times, we arrive at 〈q0, ǫ〉,
where the n-th computation starts (here we use (11) and (16)).

(ρ) At the final step we enforce the n-th computation to visit the state qrec
at least n times. We require two fresh variables light and on. Let ρS,qrec be
the conjunction of the following formulas:

light ∧ ✷F

(
m → I(light → ©Slight)

)
, (19)

✷
+
F I(light → ©light), (20)

✷
+
F

(
m → ©I(light → on)

)
, (21)

✷
+
F

(
C(light ∧ on ∧ ©¬on) → qrec

)
, (22)

✷
+
F I

(
(light ∧ on ∧ ©¬on) → ¬S(light ∧ on ∧ ©¬on)

)
, (23)

✷
+
F

(
m → I(light → ¬on)

)
. (24)

The above conjunction works as follows. By (19), with every start of a
computation (i.e., whenever m is true) a fresh point x is picked up and the
variable light is true at it; we say in this case that a new light is created.
By (20), light is also true at all images f i(x) of x. At the next iteration,
by (21), all lights are switched on, i.e., on is true at every point with light.
By (22), whenever a light is switched off the current state of the computation
must be qrec. Finally, by (24), all lights must be switched off at the next
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occurrence of m. It should also be noted that, by (19), the root x0 is always
a light and whenever m is true (for j > 0) a fresh light is created as an Rj-
successor for every existing light. Therefore, after k occurrences of m there
will be an Rj-sequence of lights of length ≥ k. As, by (23), along every
Rj-sequence only one light may be switched off at a time and, by (23),
this may only happen in the state qrec, the variable m cannot become true
sooner than the computation visits qrec at least k times. This completes the
encoding of the ω-reachability problem.

(⇐) For the converse direction, suppose that, for every n ≥ 1, we have a
perfect computation of S starting with 〈q0, ǫ〉 and reaching qrec at least n
times. Let Nn be the number of transitions in the n-th computation; the
0-th computation is considered to be empty and N0 = 0. For n > 0, let
Mn =

∑n
k=1(Nk + 1) and M0 = 0 (for technical reasons, M−1 = −1).

Fix n ≥ 0 and consider the n-th computation:

〈q0, ǫ〉
δkn

1→ p 〈qin1 , w
n
1 〉

δkn
2→ p 〈qin2 , w

n
2 〉

δkn
3→ p · · ·

δkn
Nn→ p

〈
qin

Nn
, wnNn

〉
.

LetHn
0 be the number of send (!) transitions in the above sequence. Clearly,

the number of messages that can be held in the channel during the above
computation is bounded by Hn

0 .
We inductively define the sequence (Lnj , H

n
j ), 0 ≤ j ≤ Nn (wnj will be

written between Lnj and Hn
j ). Let Ln0 = Hn

0 . Suppose (Lnj−1, H
n
j−1) is

defined. Then

(Lnj , H
n
j ) =

{
(Lnj−1, H

n
j−1 − 1), if δin

j
= 〈qin

j−1
, ?, a, qin

j
〉,

(Lnj−1 − 1, Hn
j−1), if δin

j
= 〈qin

j−1
, !, a, qin

j
〉.

We are in a position now to define a satisfying model for ϕS,q0,qrec based
on the computations above. First, for each computation number n ∈ N and
a step j in it, 0 ≤ j ≤ Nn, let

Unj = {0, 1, . . . , Hn
j } × {0, 1}

be the chunk of the model required to encode this step of the computation:
one extra point (0) is needed for a light that is created for this computation;
moreover, points are duplicated to make the strict modality S work properly.
Note that Un0 is the largest among them and includes all of the Unj .

Next, for every m ∈ N, let

Wm = {m} ×
[⋃Mn<m

n=0

(
{n} × Un0

)
∪

(
{n0} × Un0

Mn0−m

)]
,

where n0 is such that Mn0−1 < m ≤ Mn0 (i.e., n0 is the number of the
computation at iteration m and j = Mn0 − m is the step number inside
that computation). Note that the computations are encoded backwards.

Let Rm be the lexicographic order on Wm, i.e.,

(m,n, k, q)Rm(m,n′, k′, q′) iff n < n′ or(
n = n′ and (k < k′ or (k = k′ and q ≤ q′)

)
,
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for all quadruples (m,n, k, q), (m,n′, k′, q′) ∈ Wm (n and n′ are for compu-
tation numbers, k and k′ for elements to write words on, and q and q′ range
{0, 1} for duplication). Note that rm = (m, 0, 0, 0) is the root of 〈Wm, Rm〉.

Let W =
⋃∞
m=0Wm, R =

⋃∞
m=0Rm and let T be the Aleksandrov space

induced by 〈W,R〉. Define f by taking, for all (m,n, k, q) ∈W ,

f((m,n, k, q)) = (m+ 1, n, k, q).

Clearly, f is monotone on 〈W,R〉. Finally, V is defined by taking

V(s) = {(m,n, k, 0) ∈W},

V(m) = {(m, 0, 0, 0) ∈W | ∃n ∈ N C(m;n, 0)},

V(trδk) = {(m, 0, 0, 0) ∈ W | ∃n, j ∈ N C(m;n, j + 1) and δkn
j
= δk},

V(qi) = {(m, 0, 0, 0) ∈W | ∃n, j ∈ N C(m;n, j) and qin
j
= qi},

V(ai) = {(m,n, k, q) ∈W | ∃j ∈ N C(m;n, j) and wnj (L
n
j + k) = ai},

V(light) = {(m,n, 0, q) ∈W},

V(on) = {(m,n, 0, q) ∈W | ∃j ∈ N C(m;n, j) and
qrec occurs > n times among qin

Nn
, . . . , qin

j
},

where the predicate C(m;n, j) is true iff m =Mn − j and 0 ≤ j ≤ Nn.
It can be readily verified that (〈〈T, f〉,V〉, r0) |= ϕS,q0,qrec . �

As a consequence we obtain the following

THEOREM 16. None of Log T , LogA, LogRn, for n ≥ 1, is decidable.
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