
Model-Theoretic Inseparability and Modularity of

Description Logic Ontologies

Boris Koneva,∗, Carsten Lutzb, Dirk Waltherc, Frank Woltera

aUniversity of Liverpool, Liverpool, UK
bUniversität Bremen, Bremen, Germany

cUniversidad Politécnica de Madrid, Madrid, Spain

Abstract

The aim of this paper is to introduce and study model-theoretic notions
of modularity in description logic and related reasoning problems. Our ap-
proach is based on a generalisation of logical equivalence that is called model-
theoretic inseparability. Two TBoxes are inseparable w.r.t. a vocabulary Σ
if they cannot be distinguished by the Σ-reducts of their models and thus
can equivalently be replaced by one another in any application where only
vocabulary items from Σ are relevant. We study in-depth the complexity
of deciding inseparability for the description logics EL and ALC and their
extensions with inverse roles. We then discuss notions of modules of a TBox
based on model-theoretic inseparability and develop algorithms for extracting
minimal modules from acyclic TBoxes. Finally, we provide an experimen-
tal evaluation of our module extraction algorithm based on the large-scale
medical TBox Snomed ct.

1. Introduction

The main use of ontologies in computer and information science is to for-
malise the vocabulary of an application domain; i.e., to fix the vocabulary
as a logical signature and to provide a logical theory that defines the seman-
tics of the terms and relations in the vocabulary. The wide adoption of the

∗Corresponding author
Email addresses: konev@liverpool.ac.uk (Boris Konev),

clu@informatik.uni-bremen.de (Carsten Lutz), dirk.walther@upm.es (Dirk
Walther), wolter@liverpool.ac.uk (Frank Wolter)

Preprint submitted to Artificial Intelligence May 8, 2013

W3C-endorsed ontology language OWL and its profiles [1, 2], the success of
logic-based reasoning support for concept classification and instance retrieval
[3, 4, 5, 6], and the availability of ontology editors and management systems
such as Protégé and SWOOP [7, 8] has led to the development and use of
large-scale and complex ontologies that capture the vocabulary and knowl-
edge of a wide diversity of domains. Especially in the Life Sciences and other
knowledge intensive domains, many such ontologies have been created. Im-
portant examples are the national cancer institute’s thesaurus and ontology
(NCI), the gene ontology (GO), and Snomed ct, the Systematized Nomen-
clature of Medicine, Clinical Terms, which comprises about three hundred
thousand vocabulary items and is used in the healthcare systems of more
than twenty countries [9, 10, 11].

Engineering and maintaining professional ontologies such as the ones men-
tioned above is a complex and challenging task, and it has to be carried out
with great care for the resulting ontology to be of high quality. Ontology de-
sign may involve a group of ontology engineers and domain experts that co-
operate in order to design the ontology, update it to reflect changes/develop-
ments in the domain, and integrate it with other ontologies so as to cover
larger domains. In such an environment, automated tool support for com-
paring, merging, updating, modularising, and re-using ontologies is of critical
importance.

The aim of this paper is to propose and investigate a model-theoretic
notion of inseparability between ontologies that can serve as a logical un-
derpinning for many of these operations. From an application perspective,
two ontologies are inseparable if they can be equivalently replaced by one
another in any context. In logic, this can be formalised by the notion of
logical equivalence, according to which two ontologies are inseparable if they
have the same models. However, logical equivalence as such is clearly not
sufficiently flexible to serve as a logical underpinning of modularity. For ex-
ample, a module of an ontology is typically not logically equivalent to the
ontology itself, and an updated ontology is typically not logically equivalent
to the original ontology. By parameterising logical equivalence with a signa-
ture Σ of vocabulary items of interest, we obtain a notion of inseparability
that has exactly the flexibility and properties required. We say that two
ontologies are Σ-inseparable if the Σ-reducts of their models coincide, where
the Σ-reduct of a structure is simply the restriction of that structure to the
symbols in Σ. Then, a module can be defined as a subset of an ontology
that is self-contained in the sense that it is Σ-inseparable from the ontology,

2

where Σ is the set of vocabulary items that occur in the module. Similarly,
an update can be categorised as not harmful for a signature Σ if the updated
ontology is Σ-inseparable from the original ontology. Many other relevant
notions such as controlled import of ontologies and safety of an ontology for
a signature as studied in [12] can be formalised as well using Σ-inseparability,
see [12, 13].

An important feature of model-theoretic inseparability is its language
independence. Alternative notions of inseparability are based on deduction
and use logical consequence within a given language to define inseparability of
TBoxes. For example, two ALC-TBoxes are called deductively Σ-inseparable
in ALC iff they entail the same ALC-concept inclusions in Σ. Distinct de-
scription logics typically define distinct versions of deductive inseparability
[14] which is clearly undesirable if one moves from one language to another.
In contrast, model-theoretic inseparability implies inseparability w.r.t. any
standard description logic and even w.r.t. second-order logic.

The first main contribution of this paper is a systematic analysis of the
complexity of deciding whether two ontologies are Σ-inseparable. We fo-
cus on ontologies that are formulated as a general or acyclic TBox in the
description logic EL that underpins the OWL2 EL profile, the paradigmatic
expressive description logic ALC, and their extensions with inverse roles ELI
and ALCI. Our analysis starts with two fundamental undecidability results:
Σ-inseparability is undecidable for ALC-TBoxes even if one TBox is acyclic
and the other is empty; for EL, the undecidability result is slightly weaker,
applying to the case where one TBox is empty and the other is a general
TBox. It is due to such undecidability results that automated tool sup-
port for modular ontology design and maintenance is currently not based
on model-theoretic inseparability, but either on deductive versions of insep-
arability (see, for example, [14]) or stronger inseparability notions based on
locality [12]. However, the second part of our complexity analysis reveals
that there are natural conditions on the TBox and/or signature that lead to
a dramatic drop in complexity.

The first such condition is the restriction of the signature to a concept
signature, i.e., a signature that comprises only concept names, but no role
names. In this case, deciding Σ-inseparability becomes coNExpNP-complete
for general EL and ALC-TBoxes. The proof of this result is of particular in-
terest since it reveals a close connection between Σ-inseparability on the
one hand and satisfiability in non-monotonic description logics based on cir-
cumscription on the other hand. By combining concept signatures with the

3

additional condition that one TBox is empty, the complexity goes down to Πp
2

for ALC and PTime for EL. Finally, Σ-inseparability of acyclic EL-TBoxes
from the empty TBox also turns out to be in PTime, even for signatures
with role names. While these cases appear to be rather restricted at first
glance, they actually play a central role in our algorithms for module check-
ing and module extraction, discussed below. All mentioned results also hold
for the extensions of EL and ALC with inverse roles. Note that, in various
relevant cases, model-theoretic inseparability thus turns out to be strictly
less complex than standard reasoning tasks such as subsumption, which is
PSpace-complete for acyclic TBoxes formulated in ALC and in ELI [15]. It
is also interesting that the difference in complexity of subsumption between
EL and ELI (PTime vs. ExpTime [15]) is not reflected in the complexity
of inseparability.

The PTime and Πp
2-complexity results indicate that model-theoretic Σ-

inseparability can be useful not only as a theoretical tool to define an “ideal”
form of modularity, but also for practical purposes. The second aim of this
paper is to apply Σ-inseparability to define several notions of a module in
a TBox, and to develop algorithms for module checking and for extracting
minimal modules. The former task is, given a TBox and a subset of the
TBox, to decide whether the subset is a module; the latter task is, given
a TBox and a signature Σ of interest, to extract an as small as possible
module for the signature Σ. We give a polynomial time algorithm for module
checking in acyclic ELI-TBoxes and a Πp

2-module checking algorithm for
acyclic ALCI-TBoxes under a natural additional syntactic condition. Note
that acyclic TBoxes are used in relevant practical applications, including
Snomed ct, several versions of NCI, and GO. For module extraction, we
consider two approaches. First, we show that a generic module extraction
algorithm can be applied to acyclic ELI- and ALCI-TBoxes in a black box
manner by using our module module checking algorithm as an oracle. Second,
we pursue a white box approach in which we directly use the module checking
algorithm for acyclic ELI-TBoxes to obtain a more direct module extraction
algorithm. Finally, we introduce the module extraction software MEX that
implements the white box approach and carry out a case study by extracting
minimal modules from the Snomed ct ontology. The study shows that our
algorithms scale effortlessly to ontologies of very large size and very often
extract modules that are significantly smaller than those produced by the
standard >⊥∗-module extraction algorithm [16, 17] and all other existing
approaches.

4

The paper is organised as follows. After a section introducing basic defi-
nitions and terminology we define model-theoretic inseparability in Section 3.
In this section, we also introduce and investigate basic properties and appli-
cations of model-theoretic inseparability. In Sections 4 and 5, we investigate
the computational complexity of deciding Σ-inseparability and then, in Sec-
tions 6 and 7 we introduce and investigate module checking and module
extraction based on Σ-inseparability. A case study with experiments follows
in Section 8. The paper closes with a section on related work and a discussion
of future work.

This journal article is an extended version of the conference paper [18].
For the sake of readability, some proofs are deferred to an appendix.

2. Preliminaries

We introduce the syntax and semantics of the description logics consid-
ered in this paper, which are EL, ELI, ALC, and ALCI; for a more thorough
introduction, the reader is referred to the DL handbook [19]. Fix two count-
ably infinite and disjoint sets NC and NR whose elements are the concept
names and the role names, respectively. ALCI-concepts are built according
to the syntax rule

C,D ::= > | A | ¬C | C uD | ∃r.C | ∃r−.C

where A ranges over NC and r over NR. As usual, we use ⊥ to abbreviate
¬>, C t D for ¬(¬C u ¬D), C → D for ¬C t D, and ∀r.C for ¬∃r.¬C.
A role is either a role name or an inverse role, i.e., an expression r− with
r ∈ NR. For each inverse role s = r−, we set s− = r. Throughout the paper,
we typically use A,B to denote concept names, r, s, t to denote roles, and
C,D,E to denote composite concepts.

An ALC-concept is an ALCI-concept that does not use inverse roles,
i.e., the constructor ∃r−.C and the abbreviation ∀r−.C are not allowed. An
ELI-concept is an ALCI-concept that does not use negation ¬C, and thus
also disallows the abbreviations ⊥, C t D, C → D, and ∀r.C. Finally, an
EL-concept is an ELI-concept that does not use inverse roles.

Concepts are used in TBoxes to describe a domain of interest. Formally,
a concept inclusion (CI) is an expression C v D, a concept equality (CE)
is an expression C ≡ D, and a TBox is a finite set of CIs and CEs. When
a TBox T uses only L-concepts with L ∈ {EL, ELI,ALC,ALCI}, then

5

we call T an L-TBox. For uniform reference, we sometimes call CIs and
CEs TBox statements. To explicitly distinguish the TBoxes introduced here
from acyclic TBoxes as introduced later on, we sometimes speak of general
TBoxes.

We are sometimes using also first-order logic (FO) and second-order logic
(SO) over the signature NC of unary predicates and NR of binary predicates,
identifying unary predicates with concept names and binary predicates with
role names. Equality is admitted. SO-formulas are thus built according to
the syntax rule

ϕ ::= x = y | A(x) | X1(x) | X2(x, y) | r(x, y) | ¬ϕ |
ϕ ∧ ϕ | ∃x.ϕ | ∃X.ϕ

where x, y range over first-order variables, A over NC, Xi over second-order
variables of arity i, r over NR, and X over second-order variables of arity
one or two. FO is the fragment of SO without second-order variables and
second-order quantifiers. When speaking of an FO-TBox and an SO-TBox,
we mean a finite set of FO-sentences and SO-sentences, respectively.

A signature Σ is a finite subset of NC ∪ NR. In this context, we refer to
both concept names and role names as symbols. The signature sig(C) of a
concept C is the set of concept and role names that occur in C. If sig(C) ⊆ Σ,
we call C a Σ-concept. The same terminology is applied to TBox statements,
TBoxes, and FO- and SO-formulas.

The semantics of DLs and of FO- and SO-formulas is given by interpre-
tations I = (∆I , ·I), where the domain ∆I is a non-empty set and ·I is an
interpretation function that maps each A ∈ NC to a subset AI of ∆I and each
r ∈ NR to a binary relation rI ⊆ ∆I ×∆I . As usual, I |= ϕ denotes that the
interpretation I is a model of an SO-sentence ϕ, and Φ |= ϕ denotes that the
SO-sentence ϕ follows from the set of SO-sentences Φ. We define the seman-
tics of DL-concepts by the standard translation ·] into FO-formulas with one
free variable shown in the upper half of Figure 1. For each concept C, and an
interpretation I, we set CI = {d ∈ ∆I | I |= C][d]}. The semantics of TBox
statements is given by a translation into FO-sentences, as shown in the lower
half of Figure 1; it can be extended to TBoxes T in the obvious way, setting
T] = {α] | α ∈ T }. We often confuse concepts with their FO-translations
and do the same also for TBox statements and TBoxes, which allows us to
speak of an interpretation being a model of a TBox T , to write T |= C v D
when T is an SO-TBox and C v D is a CI formulated in some DL, and to
write T |= ϕ when T is a DL TBox and ϕ an SO-sentence.

6

Concept C Translation C]

> x = x
A A(x)
¬C ¬C](x)
C uD C](x) ∧D](x)
∃r.C ∃y (r(x, y) ∧ C](x)[y/x])
∃r−.C ∃y (r(y, x) ∧ C](x)[y/x])

Inclusion α Translation α]

C v D ∀x (C](x)→ D](x))
C ≡ D ∀x (C](x)↔ D](x))

Figure 1: Standard translation ·] of ALCI-concept and TBox statements into FO.

The standard reasoning problem in DLs is subsumption: given a TBox T
and a CI C v D, decide whether T |= C v D. Subsumption is ExpTime-
complete in ELI, ALC, and ALCI [20, 19], and in PTime in EL [21]. We
say that TBoxes T1 and T2 are equivalent, in symbols T1 ≡ T2, if they have
the same models.

Acyclic TBoxes

It will often be useful to also study a weaker form of TBoxes, which we
introduce next. A TBox T is acyclic if it satisfies the following conditions:

• all CEs in T are of the form A ≡ C (concept definitions) and all CIs
in T are of the form A v C (primitive concept inclusions), where A is
a concept name;

• no concept name occurs more than once on the left-hand side of a
statement in T ;

• T contains no cyclic definitions, as detailed below.

Let T be a TBox that contains only concept definitions and primitive concept
inclusions. The relation ≺T ⊆ NC × sig(T) is defined by setting A ≺T X if
there exists a TBox statement A ./ C such that X occurs in C, where ./
ranges over {v,≡}. A concept name A depends on a symbol X ∈ NC ∪NR if
A ≺+

T X, where ·+ denotes transitive closure. We use dependT (A) to denote
the set of all symbols X such that A depends on X. We can now make precise

7

what it means for T to contain no cyclic definitions : A 6∈ dependT (A), for
all A ∈ NC.

When proving results about acyclic TBoxes T , it is often convenient to
refer to the definitorial depth of concept names in T , defined as follows:
dT (A) = 0 if A does not occur in any statement A ./ C in T ; otherwise,
there is a unique A ./ C ∈ T and dT (A) = 1 + max{dT (B) | B occurs in C}
with the maximum of the empty set defined as 0.

3. Model-Theoretic Inseparability

We introduce model-theoretic inseparability, explain its relevance for TBox
interoperation and modularity, and establish some fundamental properties.
Let I be an interpretation and Σ a signature. The Σ-reduct I|Σ of I is the
interpretation obtained from I by setting

• ∆I|Σ := ∆I ;

• XI|Σ := XI , for all X ∈ Σ;

• XI|Σ := ∅, for all X ∈ (NC ∪ NR) \ Σ.

Two interpretations I and J coincide on a signature Σ if I|Σ = J |Σ.

Definition 1 (Σ-Inseparability). Let T1 and T2 be SO-TBoxes and Σ a
signature. Then T1 and T2 are Σ-inseparable, in symbols T1 ≡Σ T2, if
{I|Σ | I |= T1} = {I|Σ | I |= T2}.

Note that Σ-inseparability generalises logical equivalence: for every signature
Σ such that sig(T1)∪ sig(T2) ⊆ Σ, it is easy to see that T1 ≡Σ T2 if, and only
if, T1 ≡ T2. However, being able to choose a signature makes inseparability
a more flexible and versatile tool than equivalence, as illustrated by the
examples below.

Example 2. (1) Consider the following two fragments T1 and T2 of ontologies
defining Cystic fibrosis screening. T1 consists of the definition

Cystic fibrosis screening ≡ Screeningu
∃has Focus.Cystic fibrosisu
∃has Intent.Screening procedure intent

8

and T2 consists of the inclusions

Cystic fibrosis screening v Genetic testing
Genetic testing v Molecular analysis u Screening

Clearly, T1 6≡ T2. However, for Σ = {Cystic fibrosis screening, Screening} we
have T1 ≡Σ T2. In fact, let

T3 = {Cystic fibrosis screening v Screening}.

Then one can show that T1 ≡Σ T2 ≡Σ T3.
(2) Assume that a TBox T ′ is a definitorial extension of a TBox T ; i.e., T ′

is obtained from T by adding new concept definitions A ≡ C so that A does
neither occur in T nor on the right-hand side of any of the new definitions.
For example, suppose that T1 from above has been extended with

Tuberculosis screening ≡ Bacterial disease screeningu
∃has Focus.Tuberculosisu
∃has Intent.Screening procedure intent,

where Tuberculosis screening is a new concept name. Intuitively, T ′ does not
interfere with the meaning of symbols in T , but only introduces new names
for complex concepts. Indeed, one can show that T ≡sig(T) T ′ whenever T ′
is a definitorial extension of T .

One can show that ≡Σ is an equivalence relation on the set of SO-TBoxes.
Note that Σ ⊆ Σ′ implies ≡Σ ⊇ ≡Σ′ , i.e., shrinking the signature cannot
result in additional TBoxes to become separable. In what follows, we call
this property the monotonicity property of inseparability.

In the same way that logical equivalence can be decomposed into two
implications, inseparability can be decomposed into two Σ-entailments [13],
defined next. We say that a TBox T1 Σ-entails a TBox T2, in symbols
T1 |=Σ T2, if {I|Σ | I |= T1} ⊆ {I|Σ | I |= T2}. Although we are mainly
concerned with Σ-inseparability, it will sometimes be convenient to also use
Σ-entailment. The following observation shows that, as far as computational
complexity is concerned, there is no difference between the two notions.

Lemma 3. Σ-entailment and Σ-inseparability are mutually reducible in poly-
nomial time.

9

Proof. Obviously, T1 and T2 are Σ-inseparable if T1 Σ-entails T2 and vice
versa.1 Now assume that we want to decide T1 |=Σ T2. By replacing every
non-Σ-symbol X shared by T1 and T2 with a fresh symbol X1 in T1 and a
distinct fresh symbol X2 in T2, we can achieve that Σ ⊇ sig(T1) ∩ sig(T2)
without changing the original (non-)Σ-entailment of T2 by T1. We then have
T1 |=Σ T2 iff T1 ≡Σ T1 ∪ T2.

The further discussion of inseparability is guided by three use cases.

Equivalent Replacement. In applications, it can be necessary or beneficial
to replace an existing TBox T1 with a new TBox T2, for instance with the
aim to speed up reasoning when T2 is significantly smaller than T1 or when
a reference TBox T1 is updated to a new version T2. In such a replacement,
one would like to ensure some form of equivalence of T1 and T2 to guarantee
that correctness is not compromised. Σ-inseparability provides a very strong
form of equivalence as T1 ≡Σ T2 guarantees that T1 can be replaced with
T2 in any application that refers only to symbols from Σ. For example,
the main purpose of many bio-medical ontologies is to produce a systematic
concept hierarchy, the partial order on concept names that is induced by
subsumption. When we are only interested in computing the Σ-part of this
hierarchy and we know that the TBox T1 is Σ-inseparable from T2, then
we can classify T2 instead of T1 since T1 |= A v B iff T2 |= A v B for
all A,B ∈ NC ∩ Σ. Several authors have used this observation to optimise
practical reasoning, see for example [22, 23, 24]. However, T1 ≡Σ T2 does
not only mean that the same subsumptions between concept names from
Σ are entailed: the same is true for composite Σ-concepts formulated in
any DL. This is a consequence of the following useful characterisation of
Σ-inseparability in terms of logical consequence, taken from [13].

Theorem 4. Let T1 and T2 be SO-TBoxes and Σ a signature. The following
conditions are equivalent:

1. T1 and T2 are Σ-inseparable;

2. T1 |= ϕ iff T2 |= ϕ for every a SO-sentence ϕ with sig(ϕ) ⊆ Σ.

1Note that this is a Turing reduction. All complexity classes considered in this paper
are closed under Turing reductions.

10

Proof. (1)⇒ (2). Let T1 and T2 be Σ-inseparable and ϕ an SO-sentence such
that sig(ϕ) ⊆ Σ. Then T1 6|= ϕ iff there is a model I of T1 with I 6|= ϕ iff
there is a model J of T2 with J 6|= ϕ (use the definition of Σ-inseparability
and choose I (respectively J) such that I|Σ = J |Σ) iff T2 6|= ϕ.

(2) ⇒ (1). Assume (2) holds and let I be a model of T1 (for models J of
T2 we can proceed in the same way). We have to show that there exists a
model J of T2 such that I|Σ = J |Σ. To this end, it is sufficient to show
that I |= ∃S ′1 · · · ∃S ′n (

∧
α∈T2 α

′), where {S1, . . . , Sn} = sig(T2) \ Σ, S ′i is a
second-variable of the same arity as Si (1 ≤ i ≤ n) and α′ is the result of
replacing in α each Si with S ′i. We clearly have T2 |= ∃S ′1 · · · ∃S ′n (

∧
α∈T2 α

′)
and thus (2) yields T1 |= ∃S ′1 · · · ∃S ′n (

∧
α∈T2 α

′). Since I is a model of T1, we
are done.

As another application in which equivalent replacement is useful, consider
ontology-based data access (OBDA) where queries are posed against instance
data that is stored in an ABox while a TBox is used to enrich the data
and to obtain more complete answers [25, 26]. Typical query languages
include conjunctive queries, positive existential queries, datalog, and regular
path queries. When using a reference ontology such as Snomed ct in an
OBDA application, it is often the case that only a fragment Σ of the overall
signature is used in the data and in the query—for instance only symbols
that describe patients and findings, but no symbols that concern medical
legislation, drug compounds, and so on. As reference ontologies tend to
be updated regularly, suppose that the currently used TBox T1 has to be
replaced with a revised version T2 in which the Σ-part was not changed,
formalised by T1 ≡Σ T2. Then Theorem 4 guarantees that, for any Σ-instance
data and for any Σ-query formulated in one of the query languages mentioned
above, query answers coincide relative to T1 and T2. More details and formal
definitions can be found in [13].

Controlled Merging and Import. During ontology development and when
customising ontologies for applications, it may be necessary to merge differ-
ent ontologies into a single one. Then, a major challenge is to control the
consequences of the merged ontology and to prevent the merged ontologies
from interacting in undesired ways. For example, if an application needs
ontologies for two different domains that are formalised by TBoxes T1 and T2

with signatures Σ1 and Σ2, then it is natural to take the union T1 ∪ T2. To
formalise that any interaction between T1 and T2 is avoided, one can demand
that T1 ∪ T2 is Σi-inseparable from Ti for i = 1, 2. Interestingly, this can be

11

ensured by demanding that T1 and T2 are Σ1∩Σ2-inseparable. This property
of an inseparability relation is called robustness under joins [13, 14].

As another example, consider the import of a TBox Tim into a TBox T
during the development of T , with the aim of reusing the existing formali-
sation for a particular subdomain instead of modelling it from scratch—an
operation that is used frequently in the development of thematically broad
reference ontologies such as Snomed ct. As in the previous example, the re-
sulting operation is taking the union T ∪Tim. The difference between merging
and import is in the desired interactions: while T is not supposed to inter-
fere with the meaning of the symbols from Tim, T would usually define new
concepts based on the symbols in Tim (cf. Point 2 of Example 2) and thus it
is expected that importing Tim has an impact on the symbols in T . Using
inseparability, we can formalise the resulting requirement as T ∪Tim ≡Σ Tim,
for Σ = sig(Tim).

Finally, we consider the case where a TBox T1 is replaced with a TBox T2

as in equivalent replacement above, but where this happens in the context
of a TBox T into which T1 was imported. The central observation is that
T1 ≡Σ T2 (for an appropriate Σ) yields a notion of equivalence strong enough
to also prevent undesired interactions in the presence of the importing TBox
T , provided that T uses no symbols from T1 and T2 except those in Σ.
Formally, this can be captured by the following property of robustness under
replacement, taken from [13]. We state it as a theorem since robustness under
replacements will be used in several proofs later on.

Theorem 5 (Robustness under Replacement). Let T , T1, and T2 be SO-
TBoxes and Σ a signature. If T1 ≡Σ T2 and sig(T) ∩ sig(T1 ∪ T2) ⊆ Σ, then
T1 ∪ T ≡Σ T2 ∪ T .

Proof. Assume that T1 ≡Σ T2 and sig(T) ∩ sig(T1 ∪ T2) ⊆ Σ. To show
T1 ∪ T ≡Σ T2 ∪ T , let I be a model of T1 ∪ T . We have to show that
there is a model J of T2 ∪ T such that I|Σ = J |Σ. By T1 ≡Σ T2, there
exists a model J of T2 such that I|Σ = J |Σ. We may assume w.l.o.g. that,
additionally, J coincides with I on all symbols that are not in sig(T2). Since
sig(T) ∩ sig(T2) ⊆ Σ, J coincides with I even on sig(T). It follows that J
is also a model of T , as required.

Safe Import / Signature Interfaces. In the ontology import scenario discussed
above, it is possible that the imported ontology Tim is revised frequently. In

12

this case, one would like to design the importing TBox T such that any
TBox Tim can be imported into T without undesired interaction, as long as
the signature of Tim is not changed. Intuitively, T provides a safe interface
for importing ontologies that only share symbols from some fixed signature Σ
with T . This idea has led to the definition of safety for a signature in [12]: an
SO-TBox T is safe for a signature Σ if T ∪Tim ≡sig(Tim) Tim holds for all SO-
TBoxes Tim with sig(T)∩sig(Tim) ⊆ Σ. Using robustness under replacement,
safety can be formulated as inseparability from the empty TBox, eliminating
the quantification over TBoxes used in the original definition.

Theorem 6. An SO-TBox T is safe for a signature Σ iff T ≡Σ ∅.

Proof. Assume first that T 6≡Σ ∅. Then T ∪ Tim 6≡sig(Tim) Tim for the trivial
TBox Tim = {A v A | A ∈ Σ ∩ NC} ∪ {∃r.> v > | r ∈ Σ ∩ NR} with
sig(Tim) = Σ. Hence T is not safe for Σ. Now assume T ≡Σ ∅ and let
Tim be a finite set of SO-sentences such that sig(T) ∩ sig(Tim) ⊆ Σ. Then
T ∪ Tim ≡sig(Tim) Tim follows from robustness under replacement.

Theorem 6 paves the way towards deciding whether a TBox T is safe for
a signature Σ, by checking Σ-inseparability from the empty TBox. We will
thus study the latter problem as an important special case of Σ-inseparability,
with deciding safety and Theorem 6 as our main motivation.

Example 7. To illustrate the notion of safety, we consider a scenario in-
spired by [12]. An ontology engineer wants to build an ontology on sci-
entific projects and intends to import the concept names in the signature
Σ = {Nasopharyngitis,Cystic Fibrosis} from an ontology on medical terms.
Statements that could be part of the project ontology are

Nasopharyngitis Project ≡ Project u ∃has Focus.Nasopharyngitis

Cystic Fibrosis Project ≡ Project u ∃has Focus.Cystic Fibrosis

Project v ∃has Focus.Disease

Disease of HighPriority v Disease u ∃has Focus−.Project

Cystic Fibrosis v Disease of HighPriority

Nasopharyngitis v Disease

13

This TBox if safe for Σ. To see this, let I be any interpretation. Define
J by interpreting Nasopharyngitis and Cystic Fibrosis as in I, selecting some
d ∈ ∆I , and setting

Disease of HighPriorityJ = {d} ∪ Cystic FibrosisI ∪ NasopharyngitisI

DiseaseJ = {d} ∪ Cystic FibrosisI ∪ NasopharyngitisI

ProjectI = {d}
has focusI = {d} × DiseaseI

and finally interpreting Genetic Disorder Project and Cystic Fibrosis Project
according to their definitions:

Nasopharyngitis ProjectJ = (Project u ∃has Focus.Nasopharyngitis)J

Cystic Fibrosis ProjectJ = (Project u ∃has Focus.Cystic Fibrosis)J

Then J is a model of T and I|Σ = J |Σ, as required.
We consider two natural extensions of T that are not safe for Σ. First,

after adding the concept inclusion

Nasopharyngitis v ¬Disease of HighPriority

to T the resulting TBox T ′ implies the disjointness of the imported concepts
Cystic Fibrosis and Nasopharyngitis and is, therefore, not safe for Σ. More for-
mally, there does not exist any model J of T ′ that coincides with the interpre-
tation I defined by ∆I = {d} and Cystic FibrosisI = NasopharyngitisI = {d}
on Σ.

Second, by adding the disjointness condition

Nasopharyngitis Project u Cystic Fibrosis Project v ⊥

to T one obtains a TBox T ′′ which is not safe for Σ. This can be seen by
showing that there does not exist a model of T ′′ that coincides with the
interpretation I with ∆I = {d} and NasopharyngitisI = Cystic FibrosisI =
{d} on Σ.

4. Deciding Inseparability in ALC and ALCI

We study inseparability as a decision problem for ALC and ALCI: given
TBoxes T1 and T2 and a signature Σ, decide whether T1 ≡Σ T2. Since this

14

acyclic general acyclic and general
EL/ELI EL/ELI ALC/ALCI

T1≡Σ T2 ? undecidable undecidable
(Thm. 15) (Thm. 8)

T ≡Σ ∅ PTime undecidable undecidable
(Thm. 25) (Thm. 15) (Thm. 8)

T1≡Σ∩NC
T2 ? coNExpNP-com. coNExpNP-com.

(Thm. 16) (Thms. 9 and 10)

T ≡Σ∩NC
∅ PTime PTime Πp

2-complete
(Thm. 25/16) (Thm. 16) (Thm. 14)

Table 1: Results of Section 4

general version of the problem turns out to be undecidable even for acyclic
ALC-TBoxes, we also consider three more restricted versions of the original
problem: (i) The case where Σ contains only concept names, but no role
names. We argue in Section 4.2 that this case captures several relevant ap-
plications. We exhibit an interesting connection to DLs with circumscription
[27, 28] and use it to show coNExpNP-completeness for the inseparability
of acyclic and general TBoxes formulated in ALC and ALCI.2 (ii) The
case where T2 = ∅, which corresponds to deciding safety for a signature as
discussed in the previous section, and which is still undecidable for acyclic
ALC-TBoxes. We also consider (iii) the combination of the cases (i) and (ii),
which turns out to be Πp

2-complete for acyclic and general TBoxes formulated
in ALC and ALCI. The results obtained in this and the subsequent section
are summarised in Table 1 where ≡Σ∩NC

means that Σ contains only concept
names.

We briefly comment on the two open problems in Table 1: nothing is
known about the complexity of deciding T1 ≡Σ T2 if T1 and T2 are acyclic
EL or ELI-TBoxes. For all we know, the problem could be undecidable (as
in the case of general EL-TBoxes) or in PTime (which holds if one TBox is
empty). If Σ is a concept signature, then a coNExpNP upper bound follows
from the corresponding upper bounds for ALCI-TBoxes but no non-trivial
lower bound is known.

2Interestingly, the import-by-query approach presented in [29, 30] shows a similar drop
in complexity when signatures consisting of concept names only are considered.

15

4.1. The General Case

We start with the fundamental observation that inseparability is undecidable
even when T1 is an acyclic ALC-TBox and T2 is empty.

Theorem 8. Given an acyclic ALC-TBox T and a signature Σ, it is unde-
cidable whether T ≡Σ ∅.

Proof. The proof is by reduction of the universal consistency problem in
bimodal logic [31]. The DL version of this problem can be stated as follows.
Fix two role names r1 and r2. A frame is a structure F = (∆F , rF1 , r

F
2) with

∆F a non-empty domain and rFi ⊆ ∆F×∆F for i ∈ {1, 2}. An interpretation
I is based on F if ∆I = ∆F and rIi = rFi for i ∈ {1, 2}. In other words, I is
based on F iff I|Σ = F for Σ = {r1, r2}. We say that an ALC-concept C is
valid on F and write F |= C if CI = ∆I for every interpretation I based on
F . Then C is universally consistent if there is a frame F with F |= C. The
universal consistency problem is to decide, given an ALC-concept C with
sig(C) ⊆ NC ∪ {r1, r2}, whether C is universally consistent. By a result of
S. Thomason, this problem is undecidable; see Theorem 1(b) in [31].

For the reduction, let C be an ALC-concept with sig(C) ⊆ NC ∪ {r1, r2}.
Fix an A ∈ NC that does not occur in C and an u ∈ NR distinct from r1, r2.

Claim. C is universally consistent iff T 6≡Σ ∅, where T = {A v ∃u.¬C} and
Σ = {A, r1, r2}.

Assume first that C is universally consistent. Then there is a frame F
with F |= C. To show that T 6≡Σ ∅, we have to find an interpretation J
such that for all interpretations I with I ≡Σ J , we have I 6|= T . Choose as
J any interpretation based on F such that AJ 6= ∅ and let I be such that
I ≡Σ J . Then I is based on F and thus CI = ∆I and (∃u.¬C)I = ∅. We
also have AI 6= ∅, and consequently I 6|= T as required.

Conversely, suppose that T 6≡Σ ∅. Then there is an interpretation J such
that I 6|= T for all I with I ≡Σ J . Let F be the frame on which J is based.
To prove that C is universally consistent, we show that F |= C. Assume to
the contrary of what is to be shown that there is an interpretation I ′ based
on F with CI

′ 6= ∆F . Let I be identical to I ′ except that AI = AJ and
uI = ∆F × ∆F . Obviously, I|Σ = J |Σ. Moreover, I is a model of T : it
suffices to note that we have (¬C)I = (¬C)I

′ 6= ∅ and thus (∃u.¬C)I = ∆F .
This is a contradiction to the choice of I.

16

4.2. Concept Signatures

We now consider the case where the signature Σ contains only concept
names, but no role names. From now on, we will call such a signature Σ
a concept signature. This case is of interest for two reasons. First, it lays
the technical foundations for the results about ontology modules obtained in
Sections 6 and 7. And second, it covers relevant special cases of ontology
merging and import. For ontology merging recall that, by robustness under
joins, T1∪T2 is sig(Ti)-inseparable from Ti for i = 1, 2 if, and only if, T1 and T2

are sig(T1)∩sig(T2)-inseparable. If T1 and T2 cover different domains, it might
well be that they do not share any role names. In this case, the signature
sig(T1)∩ sig(T2) relevant for testing inseparability is a concept signature. For
safe ontology import, the focus of description logics on modeling concepts
rather than roles suggest that importing only concept names is a relevant
special case. By Theorem 6, checking safety can in this case be realized by
deciding T ≡Σ ∅ with Σ a concept signature.3

In the following, we show that deciding Σ-inseparability w.r.t. concept
signatures is coNExpNP-complete for both ALC and ALCI. Our main tech-
nical tool is a close correspondence between Σ-inseparability w.r.t. concept
signatures and satisfiability of a certain kind of TBoxes with circumscrip-
tion [28], which is interesting in its own right. We start with introducing
TBoxes with circumscription.

A circumscribed TBox 4 CircM,F (T) consists of a (general) TBox T and
disjoint finite sets of concept names M and F , where M identifies those
concept names that are circumscribed (i.e., whose extension is minimised)
and F identifies those concept names whose extension must remain fixed
during circumscription. The extension of all other symbols, including those
of all role names, can be varied freely during circumscription. To formally
define the semantics of circumscribed TBoxes, we define a preference relation
<M,F on interpretations by setting I <M,F I ′ if ∆I = ∆I

′
, AI = AI

′
for all

A ∈ F , AI ⊆ AI
′

for all A ∈ M , and there exists an A ∈ M such that
AI (AI

′
. An interpretation I is a model of CircM,F (T) if I is a model of

T and there is no model I ′ of T with I ′ <M,F I. A concept C is satisfiable

3Note that, by definition of safety, a concrete import TBox Tim should not share any
non-Σ-symbols with the importing TBox T , including role names. In practical cases this
can be attainable by renaming roles in Tim [29].

4Called simple concept circumscribed TBox in [28].

17

w.r.t. CircM,F (T) if there is a model I of CircM,F (T) with CI 6= ∅. It is shown
in [28] that satisfiability of concepts w.r.t. circumscribed TBoxes formulated
in ALC or ALCI is NExpNP-complete.

We establish an upper bound for the inseparability of general ALCI-
TBoxes w.r.t. concept signatures in Theorem 9 and a corresponding lower
bound for acyclic ALC-TBoxes in Theorem 10. Together, the proofs of these
theorems establish the announced connection between inseparability and cir-
cumscription.

Theorem 9. Given ALCI-TBoxes T1 and T2 and a concept signature Σ, it
is in coNExpNP to decide whether T1 ≡Σ T2.

Proof. By Lemma 3, it suffices to give a polynomial reduction of Σ-entailment
for ALCI-TBoxes to concept unsatisfiability w.r.t. circumscribed ALCI-
TBoxes. Assume that we want to decide whether T1 |=Σ T2 with Σ ⊆ NC.
We may assume that T2 = {C ≡ >}, for some ALCI-concept C, and that
sig(T1) ∩ sig(T2) ⊆ Σ (see proof of Lemma 3). Set M = {A} with A a fresh
concept name, F = Σ, and T = T1 ∪ {A ≡ ¬C}.

Claim. T1 |=Σ T2 iff A is unsatisfiable w.r.t. CircM,F (T).

Proof of Claim. Assume that A is satisfiable w.r.t. CircM,F (T) and let I be
a model of CircM,F (T) with AI 6= ∅. Then I is a model of T1. To show that
T1 6|=Σ T2, it is enough to show that there is no model J of T2 with J |Σ = I|Σ.
Assume to the contrary that there is such a J . Since sig(T1) ∩ sig(T2) ⊆ Σ
and J |Σ = I|Σ, we can take the Σ∪ sig(T1)-part of I and the Σ∪ sig(T2)-part
of J to build a new interpretation J ′ that is a model of both T1 and T2.
Since A does not occur in Σ, T1, and T2, we can further assume AJ

′
= ∅.

Since J ′ is a model of T2, we have CJ
′

= ∆J
′
, thus J ′ is not only a model

of T1, but also of T . It can be checked that J ′ <M,F I, in contradiction to
I being a model of CircM,F (T).

Conversely, assume that T1 does not Σ-entail T2. Let Î be a model of T1

such that there is no model J of T2 with J |Σ = Î|Σ. Using filtration, we

show in Appendix A that Î can be assumed to be finite. Consider the class
of models

I := {I | I |= T1, ∆I = ∆Î , and Î|Σ = I|Σ}.

Since A does not occur in Σ, T1, and T2, we may assume that AI = ¬CI
for all I ∈ I. Thus, all interpretations in I are models of T . Moreover, no

18

interpretation I ∈ I is a model of T2, thus C 6= ∆I which implies AI 6= ∅.
Since Î is finite, we find an I ∈ I such that AI is minimal, i.e., there is no
I ′ ∈ I with AI

′ (AI . It can be verified that there is no model I ′′ of T with
I ′ <M,F I (any such model would have to be in I and contradict the choice
of I). Hence, I witnesses that A is satisfiable w.r.t. CircM,F (T).

We now establish a matching lower bound. It applies to acyclic ALC-
TBoxes, and even to the case where the union of the input TBoxes T1 and
T2 is acyclic. Note that this need not be the case even if T1 and T2 are both
acyclic by themselves. Acyclicity of T1 ∪ T2 will play a role in the proof of
Theorem 33 below.

Theorem 10. Given acyclic ALC-TBoxes T1 and T2 and a concept signa-
ture Σ, it is coNExpNP-hard to decide whether T1 ≡Σ T2. This is even true
when T1 ∪ T2 is acyclic.

Proof. We only treat general ALC-TBoxes here. The proof for T1∪T2 acyclic
is significantly more technical and deferred to the appendix.

By Lemma 3, it is sufficient to give a polynomial reduction of con-
cept satisfiability w.r.t. circumscribed ALC-TBoxes to the complement of
Σ-entailment. Assume that we want to decide whether an ALC-concept C
is satisfiable w.r.t. a circumscribed TBox CircM,F (T), where T is also formu-
lated in ALC. Let

T1 = T ∪ {> v ∃aux.C},

with aux a fresh role name. Note that C is satisfiable w.r.t. the non-circum-
scribed TBox T iff T1 has a model. We shall introduce a second TBox
T2 and inseparability-signature Σ to simulate circumscription, i.e., we want
to achieve that T1 6|=Σ T2 iff T1 is satisfiable in a model that is minimal
w.r.t. <M,F . Set Σ = M ∪ F . To construct T2, introduce for each symbol
X ∈ sig(T) ∪M ∪ F a primed copy X ′ of X and denote by T ′ the TBox
resulting from T when every occurrence of X is replaced with X ′. Take a
fresh role name aux′ and define T2 by taking the union of

• T ∪ T ′

• A′ v A, for every A ∈M ;

• A′ ≡ A, for every A ∈ F ;

19

• > v ∃aux′.
⊔
A∈M(A u ¬A′).

Claim. C is satisfiable w.r.t. CircM,F (T) iff T1 does not Σ-entail T2.

Proof of Claim. Assume that C is satisfiable w.r.t. CircM,F (T) and let I be
a model of CircM,F (T) with CI 6= ∅. By setting auxI = ∆I × ∆I , we may
assume that I is a model of T1. We prove that there is no model J of T2

with J |Σ = I|Σ. Assume to the contrary that there is such a J . Let J ′ be
obtained from J by setting XJ

′
= (X ′)J , for all X ∈ sig(T) ∪M ∪ F . We

show that J ′ <M,F I:

(i) For A ∈ M , we have AJ
′

= (A′)J ⊆ AJ = AI , with the inclusion due to
A′ v A ∈ T2 and the last equation due to J |Σ = I|Σ and A ∈ Σ.

(ii) For A ∈ F , we have AJ
′
= (A′)J = AJ = AI .

(iii) There is an A ∈M with AJ
′ (AI since > v ∃aux′.

⊔
A∈M(Au¬A′) ∈ T2.

In summary, J ′ <M,F I. Moreover, J ′ is a model of T since J is a
model of T ′. We have thus obtained a contradiction to I being a model
of CircM,F (T).

Conversely, assume that T1 6|=Σ T2. Take a model I of T1 such that there is
no model J of T2 with J |Σ = I|Σ. Then CI 6= ∅. To show that C is satisfiable
w.r.t. CircM,F (T), it thus suffices to show that there is no model J of T with
J <M,F I. Assume to the contrary that there is such a J . Consider the
interpretation J ′ defined by setting XJ

′
= XI and (X ′)J

′
= XJ , for every

X ∈ sig(T) ∪M ∪ F . It can be checked that J ′ is a model of T2 such that
J |Σ = I|Σ, in contradiction to the non-existence of such a model.

4.3. Concept Signatures and the Empty TBox

We now consider deciding whether T ≡Σ ∅ for a concept signature Σ and
an ALC- or ALCI-TBox T . As mentioned before, this problem corresponds
to deciding safety of T w.r.t. Σ. It turns out that T ≡Σ ∅ is equivalent to the
property that, for every interpretation I of cardinality one, there is a model J
of T with J |Σ = I|Σ. This suggests a Πp

2-upper bound for deciding T ≡Σ ∅,
which turns out to be tight. Both the characterisation of inseparability in
terms of interpretations of cardinality one and the Πp

2-completeness carry
over to FO-TBoxes whose classes of models are closed under disjoint unions.

We start with introducing some preliminaries. A one-point interpretation
is an interpretation I with |∆I | = 1. A model of T is a one-point-model if
it is a one-point interpretation. Let Ii, i ∈ I be a family of interpretations.
The disjoint union I =

⊎
i∈I Ii of Ii, i ∈ I, is defined as

20

• ∆I =
⋃
i∈I{i} ×∆Ii ;

• AI =
⋃
i∈I{i} × AIi , for all A ∈ NC;

• rI =
⋃
i∈I{((i, x), (i, y)) | (x, y) ∈ rIi}, for all r ∈ NR.

A TBox T is preserved under disjoint unions if the disjoint union of any
family of models of T is again a model of T . A description logic L is preserved
under disjoint unions if all L-TBoxes are preserved under disjoint unions.
The following is well known (see for example [32]) and even applies to much
more expressive DLs such as SHIQ.

Lemma 11. ALCI is preserved under disjoint unions.

The following lemma states the announced characterisation of inseparabil-
ity from the empty TBox w.r.t. concept signatures in terms of one-point
interpretations.

Lemma 12 (One-Point Criterion). Let T be an FO-TBox preserved under
disjoint unions and Σ a concept signature. Then T ≡Σ ∅ iff for every one-
point interpretation I there exists a model J of T such that J |Σ = I|Σ.

Proof. The implication from left to right is trivial. For the converse direction,
assume that for every one-point interpretation I there exists a model J of
T such that J |Σ = I|Σ. We have to show that, then, the same holds for any
interpretation I. This can be done as follows. For every d ∈ ∆I , let Id be the
restriction of I to the singleton domain {d}: ∆Id = {d}, AId = {d | d ∈ AI}
for all A ∈ NC and rId = {(d, d) | (d, d) ∈ rI} for all r ∈ NR. For every
d ∈ ∆I , by assumption there is a model Jd of T with Jd|Σ = Id|Σ. Let
J =

⊎
d∈∆I Jd. By preservation under disjoint unions J is a model of T .

We have I|Σ = J |Σ because Σ consists of concept names only.

Note that Lemma 12 fails if Σ contains a role name or we want to check
inseparability from unrestricted TBoxes rather than from the empty one.
The former is illustrated by the following example.

Example 13. Consider the EL-TBox T = {∃r.A v A} and Σ = {A, r}.
For every one-point interpretation I we have I |= T . However, for the
interpretation J with ∆J = {d1, d2}, rJ = {(d1, d2)} and AJ = {d2}, we
have J 6|= T . Since T does not contain any non-Σ symbols, there is no J ′
such that J |Σ = J ′|Σ and J ′ |= T .

21

Lemma 12 suggests a straightforward alternating procedure for deciding
T ≡Σ ∅ that yields a Πp

2-upper bound; note that when I is a singleton
and J |Σ = I|Σ, then J must also be a singleton, so all quantification in
Lemma 12 is over objects of polynomial size. A matching lower bound can
be established by reduction of ∀∃-QBF, i.e., the validity of QBF formulas
of the form ∀~q∃~pϕ, which is well-known to be Πp

2-complete. In the proof of
the following theorem, we actually show the upper bound by reduction to
∀∃-QBF instead of by an alternating procedure. This paves the way to using
highly optimised QBF solvers [33] for deciding T ≡Σ ∅.

Theorem 14. Given an ALCI-TBox T and a concept signature Σ, it is in
Πp

2 to decide T ≡Σ ∅. The same problem is Πp
2-hard for acyclic ALC-TBoxes.

Proof. We start with the upper bound. Assume we want to decide T ≡Σ ∅
with T an ALCI-TBox and Σ a concept signature. Take a propositional
variables pA for each concept name A ∈ Σ and a (distinct) propositional
variable qX for each symbol X ∈ sig(T) \ Σ. Translate concepts D in the
signature sig(T) into propositional formulas D† by setting

A† = pA for all A ∈ Σ ∩ NC

A† = qA for all A ∈ (sig(T) \ Σ) ∩ NC

(D1 uD2)† = D†1 ∧D
†
2

(¬D)† = ¬D†

(∃r.D)† = qr ∧D† for all r ∈ sig(T) ∩ NR

(∃r−.D)† = qr ∧D† for all r ∈ sig(T) ∩ NR

Note that if I is a one-point interpretation with ∆I = {d} and v is a propo-
sitional truth assignment such that

• d ∈ AI iff v(pA) = 1, for all A ∈ sig(T) ∩ Σ ∩ NC,

• d ∈ AI iff v(qA) = 1, for all A ∈ (sig(T) ∩ NC) \ Σ, and

• (d, d) ∈ rI iff v(qr) = 1, for all r ∈ (sig(T) ∩ NC),

then d ∈ DI iff v(D†) = 1 holds for all ALCI-concepts D over sig(T). Now
let

T † =
∧

CvD∈T

C† → D† ∧
∧

C≡D∈T

C† ↔ D†

22

and let ~p denote the sequence of variables pA, A ∈ Σ, and ~q denote the
sequence of variables qX , X ∈ sig(T) \ Σ. Then it can be verified that the
QBF ϕT := ∀~p∃~qT † is valid iff for every one-point interpretation I, there is
a model J of T such that I|Σ = J |Σ, as required.

For the lower bound, we first reduce ∀∃-QBF to the following problem:

(‡) Given a finite set M of propositional formulas, is χP =
∧
ϕ∈P ϕ ∧∧

ϕ∈M\P ¬ϕ satisfiable for all P ⊆M?

For the reduction, let ψ = ∀p1 · · · ∀pn∃q1 · · · ∃qmϕ be a ∀∃-QBF. Then ψ
is valid iff (‡) holds for M = {p1, . . . , pn, ϕ ∧ p} with p a fresh propositional
variable. To prove this assume that ψ is not valid and let v(pi) ∈ {0, 1}
for 1 ≤ i ≤ n be a truth assignment such that there does not exist any
truth assignment extending v and satisfying ϕ. Then χP is not satisfiable for
P = {pi | v(pi) = 1} ∪ {p∧ϕ}. Conversely, assume that χP is not satisfiable
for some P ⊆ M . Then P contains ϕ ∧ p. Let v(pi) = 1 iff pi ∈ P , for
1 ≤ i ≤ n. Then there does not exist any extension of v satisfying ϕ and so
ψ is not valid.

Now we reduce (‡) to T ≡Σ ∅. Assume M = {ϕ1, . . . , ϕn} is given. We
can regard each ϕi as an ALC-concept Cϕi

by replacing each propositional
variable p with a concept name Ap. Let A1, . . . , An be fresh concept names
and set Σ = {A1, . . . , An} and T = {Ai ≡ Cϕi

| 1 ≤ i ≤ n}. Then,
χP =

∧
ϕi∈P ϕi ∧

∧
ϕi∈M\P ¬ϕi is satisfiable for every P ⊆ M iff T ≡Σ ∅.

To prove this, assume that χP is not satisfiable for some P ⊆ M . Let I
be the interpretation with domain ∆I = {d} and d ∈ AIi iff ϕi ∈ P . Then
there does not exist any model J of T with I|Σ = J |Σ. Conversely, assume
that I is a model of T such that there does not exist any model J of T
with I|Σ = J |Σ. We may assume that I is a one-point interpretation with
domain ∆I = {d}. But then χP is not satisfiable for P = {ϕi | d ∈ AIi }.

Note that the reductions in the proof of Theorem 14 are quite robust
under modifications to the description logic used. For example, the Πp

2-lower
bound already holds for acyclic ALC-TBoxes without role names and the
Πp

2-upper bound still holds for very expressive DLs such as SHIQ and even
for FO-TBoxes preserved under disjoint unions.

23

5. Inseparability in EL and ELI

We switch from the description logics ALC and ALCI to the less ex-
pressive variants EL and ELI that lack negation, disjunction, and univer-
sal quantification. Our first results are that inseparability of EL-TBoxes
from the empty TBoxes w.r.t. unrestricted signatures is still undecidable
and inseparability of EL- and ELI-TBoxes w.r.t. concept signatures is still
coNExpNP-complete, showing that in these cases the reduction of expres-
sive power does not seem to pay off in terms of reduced complexity. One
difference, however, is that in the EL-case, our lower bounds only apply to
general TBoxes while they work even for acyclic TBoxes in the ALC-case.
We then show that there is a complexity reduction for inseparability from
the empty TBox when only concept signatures or only acyclic TBoxes are
allowed. In the first case, the complexity drops from Πp

2 to PTime and in the
second case from undecidable to PTime. Both PTime upper bounds apply
to ELI-TBoxes and thus, in all analysed cases, the complexity coincides for
EL and ELI. This is remarkable since the standard reasoning problem of
concept subsumption w.r.t. TBoxes is in PTime for EL, while it is Exp-
Time-complete for general ELI-TBoxes and PSpace-complete for acyclic
ELI-TBoxes [15].

5.1. The General Case and Concept Signatures

We start with the announced undecidability result. Note that, in con-
trast to the case of ALC, the undecidability result for EL applies only to
general TBoxes, but not to acyclic ones. In fact, we leave it open whether
inseparability of acyclic EL-TBoxes is decidable.

Theorem 15. Given an EL-TBox T and signature Σ, it is undecidable
whether T ≡Σ ∅.

The proof of Theorem 15 is by reduction of the word problem for semigroups
and somewhat technical. Details are given in the appendix.

We now consider inseparability w.r.t. concept signatures and show that
there is no gain in complexity when replacing ALC/ALCI with EL/ELI as
far as general TBoxes are concerned. Again, the case of acyclic TBoxes is
left open.

Theorem 16. Given EL- or ELI-TBoxes T1 and T2 and concept signa-
tures Σ, it is coNExpNP-complete to decide T1 ≡Σ T2.

24

The upper bound in Theorem 16 is immediate from Theorem 9. The lower
bound is proved by a reduction of (a slight variation of) inseparability of
ALC-TBoxes w.r.t. concept signatures. The technical details of this reduc-
tion are given in the appendix.

5.2. Concept Signatures and the Empty TBox

By Theorem 15, inseparability of EL-TBoxes is still undecidable when one
of the TBoxes must be empty. Like in ALC/ALCI, the situation improves
when we allow only concept signatures. In contrast to ALC/ALCI, we can
also attain decidability by replacing general TBoxes with acyclic ones. In
both cases, we even obtain PTime complexity. The next theorem analyses
the case of concept signatures.

Theorem 17. Given an ELI-TBox T and a concept signature Σ, it is in
PTime to decide T ≡Σ ∅.

Proof. Let T be an ELI-TBox and Σ a concept signature. Consider the
∀∃-QBF ϕT constructed in the proof of Theorem 14. As proved there, we
have T ≡Σ ∅ iff ϕT = ∀~p∃~qT † is valid. It is easy to check that, when T is
an ELI-TBox, then T † is a conjunction of propositional Horn formulas, i.e.,
formulas of the form w1 ∧ · · · ∧ wk → v1 ∧ · · · ∧ vl where the wi and vi are
propositional variables. It remains to recall that the validity of quantified
Boolean Horn formulas can be decided in PTime [34].

5.3. Acyclic TBoxes and the Empty TBox

We now explore the second way of overcoming undecidability of insepa-
rability of EL- and ELI-TBoxes from the empty TBox: restrict the input to
acyclic TBoxes. Note that, in this case, we do not limit ourselves to concept
signatures. As in the previous section, we obtain a PTime upper bound,
though with a different and more subtle approach. The approach is based
on a characterisation of T ≡Σ ∅ in terms of certain syntactic and semantic
dependencies that will also play a central role when we deal with modules
and module extraction in Sections 6 and 7.

We start with introducing syntactic dependencies. The following example
shows two cases of how an acyclic EL-TBox can fail to be Σ-inseparable from
the empty TBox. These two cases will then give rise to two types of syntactic
dependencies.

25

Example 18. (a) Let T = {A v ∃r.B} and Σ = {A,B}. Then T 6≡Σ ∅:
for the interpretation I with ∆I = {d}, AI = {d}, and BI = ∅, there is no
model J of T with J |Σ = I|Σ.

(b) Let T = {A1 v ∃r.B1, A2 v ∃r.B2, A ≡ B1uB2} and Σ = {A1, A2, A}.
Then T 6≡Σ ∅: for the interpretation I with ∆I = {d}, AI1 = AI2 = {d}, and
AI = ∅, there is no model J of T with J |Σ = I|Σ.

Intuitively, in part (a) of Example 18, the reason for separability from the
empty TBox is that one Σ-symbol occurs in the definition of another one; in
part (b), this is not the case, but there are interacting definitions of different
Σ-concept names. To generalise these examples, we introduce some notation.
For an acyclic TBox T ,

• Lhs(T) denotes the set of concept names A such that there is a state-
ment A ./ C ∈ T ;

• Def(T) denotes the set of concept names such that there is a definition
A ≡ C ∈ T ;

• depend≡T (A) is defined exactly as dependT (A) (introduced in Section 2),
except that only concept definitions A ≡ C are considered while con-
cept inclusions A v C are disregarded.

Definition 19. Let T be an acyclic ELI-TBox, Σ a signature, and A ∈ Σ.
We say that

• A has a direct Σ-dependency in T if dependT (A) ∩ Σ 6= ∅.

• A has an indirect Σ-dependency in T if A ∈ Def(T) ∩Σ and there are
A1, . . . , An ∈ Lhs(T) ∩ Σ such that A /∈ {A1, . . . , An} and

depend≡T (A) \ Def(T) ⊆
⋃

1≤i≤n

dependT (Ai).

We say that T contains an (in)direct Σ-dependency when there is an A ∈ Σ
that has an (in)direct Σ-dependency in T .

26

To understand the “\Def(T)”-part in indirect Σ-dependencies, reconsider
part (b) of Example 18, replace A ≡ B1 u B2 with A ≡ B1 u B′1 u B2 and
B′1 ≡ B1, and observe that T 6≡Σ ∅ still holds. Note that many A that have
a direct Σ-dependency also have an indirect Σ-dependency. The following
lemma can be proved by a straightforward generalisation of the arguments
in Example 18 and shows that, as expected, syntactic dependencies result in
separability from the empty TBox.

Lemma 20. Let T be an acyclic ELI-TBox and Σ a signature. If T contains
a direct or indirect syntactic Σ-dependency, then T 6≡Σ ∅.

In the remainder of this section, we show that the converse of Lemma 20
is also true and then use this observation to devise the announced PTime
decision procedure.

To prove the converse of Lemma 20 (and also to prepare for the use of
Σ-dependencies in the context of acyclic ALCI-TBoxes in Section 6), it is
convenient to replace indirect Σ-dependencies with the following semantic
condition.

Definition 21. Let T be an acyclic ELI-TBox, Σ a signature. We say that
T contains a Boolean Σ-constraint if there is a P ⊆ Lhs(T) ∩ Σ such that
the concept

CP =
l

A∈P

A u
l

A∈(Lhs(T)∩Σ)\P

¬A

is not satisfiable in a one-point model of T .

It can be seen that Boolean Σ-constraints are actually not an equivalent
replacement of indirect Σ-dependencies. There are direct Σ-dependencies
that give rise to Boolean Σ-constraints but do not give rise to indirect Σ-
dependencies.

Example 22. Let T = {A v ∃r.B,B v B′} and Σ = {A,B}. Then T
contains a direct Σ-dependency since B ∈ dependT (A) and T contains a
Boolean Σ-constraint since A u ¬B is not satisfiable in any one-point model
of T . However, T contains no indirect Σ-dependency since T contains no
concept equations.

27

However, we have the following (joint) equivalence.

Lemma 23. Let T be an acyclic ELI-TBox and Σ a signature. Then the
following are equivalent:

(a) T contains neither a direct nor an indirect Σ-dependency;

(b) T contains neither a direct Σ-dependency nor a Boolean Σ-constraint.

Proof. “(a) ⇒ (b)”. Assume that T contains neither a direct nor an indi-
rect Σ-dependency. We have to show that T does not contain a Boolean
Σ-constraint, i.e., that for every P ⊆ Lhs(T) ∩ Σ the concept CP from Defi-
nition 21 is satisfiable in a one-point model of T . Assume P ⊆ Lhs(T)∩Σ is
given. We construct a one-point model I of T satisfying CP as follows. Set
∆I = {d} and for all r ∈ NR,

rI =

{
{(d, d)} : r ∈

⋃
B∈P dependT (B)

∅ : otherwise

The extension AI of concept names A is defined by induction on the defini-
torial depth dT (A) of A in T : if A ∈ NC with dT (A) = 0, then set

AI =

{
{d} : A ∈

⋃
B∈P dependT (B)

∅ : otherwise

Now let A ∈ NC such that dT (A) > 0 and assume that BI has already been
defined for all concept names B with dT (B) < dT (A). Then define AI as
follows:

(1) if A ∈ P ∪
⋃
B∈P dependT (B), then set AI = {d};

(2) otherwise,

(2.1) if A /∈ Def(T), then set AI = ∅;
(2.2) if A ∈ Def(T), then set AI = CI for the unique C such that

A ≡ C ∈ T .

Note that CI is defined in (2.2) since dT (B) < dT (A) for all concept names
B in C. This finishes the definition of I. We show that I is a model of T
and satisfies CP .

Claim 1. I satisfies T .

To prove Claim 1, let A ./ C ∈ T . We distinguish the following cases:

28

• A ∈ P ∪
⋃
B∈P dependT (B).

By definition of AI and rI , we have AI = {d}, rI = {(d, d)} for
all r ∈ dependT (A), and BI = {d} for all B ∈ dependT (A). Thus
CI = {d} and A ./ C is satisfied in I.

• A 6∈ P ∪
⋃
B∈P dependT (B).

If ./ = v, then A /∈ Def(T). By (2.1), AI = ∅ and so I satisfies A v C.
If ./ = ≡, then AI = CI by (2.2), and so I satisfies A ≡ C.

Claim 2. d ∈ CIP .

Recall that CP =
d
A∈P A u

d
A∈(Lhs(T)∩Σ)\P ¬A. Since P ⊆ Lhs(T) we

have dT (A) > 0 for all A ∈ P . Thus AI is defined in (1) for all A ∈ P .
It follows that AI = {d} for all A ∈ P . Thus, d ∈ (

d
A∈P A)I . To show

that d ∈ (
d
A∈(Lhs(T)∩Σ)\P ¬A)I , let A ∈ (Lhs(T) ∩ Σ) \ P . We have to

show that AI = ∅. Since T does not contain direct Σ-dependencies, A /∈
P ∪

⋃
B∈P dependT (B). Hence Case (2) of the inductive definition of AI

applies. If Case (2.1) applies then AI = ∅, as required. If Case (2.2) applies
then let A ≡ C ∈ T and P = {A1, . . . , An}. Since T does not contain
indirect Σ-dependencies, there is a B ∈ depend≡T (A) \ Def(T) such that B /∈⋃

1≤i≤n dependT (Ai). Since T does not contain direct Σ-dependencies and
A ∈ (Lhs(T) ∩ Σ), we have B /∈ Σ. Thus B /∈ P since P ⊆ Σ. We thus
obtain that B /∈ P ∪

⋃
B′∈P dependT (B′) and so BI = ∅ follows from the

definition of I. Since I is a model of T , this yields AI = ∅, as required.

“(b) ⇒ (a)”. Assume T contains neither a direct Σ-dependency nor a
Boolean Σ-constraint. We have to show that T does not contain an indirect
Σ-dependency. Assume to the contrary that there are A1, . . . , An ∈ Lhs(T)∩
Σ and A ∈ Def(T) ∩ Σ such that A /∈ {A1, . . . , An} and

depend≡T (A) \ Def(T) ⊆
⋃

1≤i≤n

dependT (Ai). (∗)

We show that the concept CP = A1 u · · · u An u ¬A is not satisfiable in a
one-point model I of T , in contradiction to the fact that T does not contain
a Boolean Σ-constraint. We first note the following observation, which is
easy to prove by induction on the definitorial depth of A in T .

Claim 3. For an acyclic ELI-TBox T , one-point model I of T and A ∈

29

Def(T) with AI = ∅, we have BI = ∅ for some B ∈ depend≡T (A) \ Def(T).

Now assume that there is a one-point model I of T with ∆I = {d} and
d ∈ CIP . We show that this leads to a contradiction. From d ∈ CIP we
obtain AI = ∅. By Claim 3 there exists B ∈ depend≡T (A) \Def(T) such that
BI = ∅. By (∗), we have B ∈

⋃
1≤i≤n dependT (Ai). On the other hand, from

the condition that I is a model of T with d ∈ AIi for 1 ≤ i ≤ n we obtain
d ∈ EI for all E ∈

⋃
1≤i≤n dependT (Ai). We have derived a contradiction.

We are now ready to establish the converse of Lemma 20. Since we will
use direct Σ-dependencies and Boolean Σ-constraints also in the context of
acyclic ALCI-TBoxes in Section 6, we formulate the result for this more
general type of TBox.

Lemma 24. Let T be an acyclic ALCI-TBox and Σ a signature. If T con-
tains no direct Σ-dependencies and no Boolean Σ-constraints, then T ≡Σ ∅.

Proof. Let T be an acyclic ALCI-TBox containing no direct Σ-dependencies
and no Boolean Σ-constraints. We show that T ≡Σ ∅. Let I be an interpre-
tation. We have to show that there is a model J of T with J |Σ = I|Σ. For
each d ∈ ∆I , let

Pd = {A ∈ Lhs(T) ∩ Σ | d ∈ AI}
and let CPd

be the concept defined in Definition 21. Since T does not contain
any Boolean Σ-constraints, for each d ∈ ∆I there is a one-point model Id
of T satisfying CPd

. We may assume that ∆Id = {d} and so d ∈ CIdPd
, for

all d ∈ ∆I . The construction of J uses both the interpretation I and the
one-point interpretations Id for d ∈ ∆I . In detail, J is defined as follows.
Set ∆J = ∆I and define for each symbol X ∈ (NC \ Lhs(T)) ∪ NR,

XJ =

{
XI if X ∈ Σ⋃
d∈∆I X

Id otherwise

It remains to define the extension AJ for all concept names A ∈ Lhs(T).
The definition is by induction on the definitorial depth dT (A) of A in T .
Note that AJ has been defined already for all A with dT (A) = 0 (since then
A 6∈ Lhs(T)). Now let A ∈ Lhs(T) and assume that BJ has already been
defined for all concept names B with dT (B) < dT (A). Let A ./ C be the
definition of A in T and set

AJ =

{ ⋃
d∈∆I A

Id if A ∈ Σ ∪
⋃
B∈Lhs(T)∩Σ dependT (B)

CJ otherwise

30

Note that AJ is well-defined since if A ./ C ∈ T then CJ is defined before
AJ . We first show that J |Σ = I|Σ. By definition, XI = XJ for all symbols
X ∈ Σ with X ∈ (NC \ Lhs(T)) ∪ NR. It thus remains to consider the
concept names A ∈ Lhs(T) ∩ Σ. By definition of the interpretations Id, we
have AI =

⋃
d∈∆I A

Id . By definition of J , we have AJ =
⋃
d∈∆I A

Id . Thus
AI = AJ , as required.

We now show that J is a model of T . Let A ./ C ∈ T . We distinguish
two cases:

• A ∈ Σ ∪
⋃
B∈Lhs(T)∩Σ dependT (B).

By definition of J , we have AJ =
⋃
d∈∆I A

Id . Since T does not contain
a direct Σ-dependency, dependT (A) does not contain any Σ-symbols.
Observe that XJ =

⋃
d∈∆I X

Id for all symbols X ∈ dependT (A): if
X ∈ (NC \ Lhs(T)) ∪ NR, then this follows from X 6∈ Σ and the
definition of J . If X ∈ Lhs(T), then X ∈ dependT (A) yields X ∈⋃
B∈Lhs(T)∩Σ dependT (B) and so XJ =

⋃
d∈∆I X

Id by definition of J .

By the semantics of ALCI-concepts, it follows that CJ =
⋃
d∈∆I C

Id .
Since every Id is a model of T , J satisfies A ./ C.

• A 6∈ Σ ∪
⋃
B∈Lhs(T)∩Σ dependT (B).

Then AJ = CJ by definition of J . Thus J satisfies A ./ C.

This finishes the proof since we have shown that for every interpretation I
there exists a model J of T with J |Σ = I|Σ.

We now prove the main result of this section.

Theorem 25. (1) For every acyclic ELI-TBox T and signature Σ, T ≡Σ ∅
iff T has no direct nor indirect Σ-dependencies.

(2) For acyclic ELI-TBoxes T and signatures Σ, it is in PTime to decide
whether T ≡Σ ∅.

Proof. (1) follows from Lemmas 20, 23, and 24. To show (2), it is sufficient
to prove that the presence of direct and indirect Σ-dependencies in an acyclic
ELI-TBox can be decided in PTime. First note that for each concept name
A, the set dependT (A) and depend≡T (A) can be computed by a straightfor-
ward reachability analysis. Thus, the existence of direct Σ-dependencies can
be checked in polynomial time. For indirect Σ-dependencies, the same is

31

true because if a concept name A ∈ Σ has an indirect Σ-dependency in T
induced by concept names A1, . . . , An ∈ Lhs(T) ∩ Σ, then A has an indirect
Σ-dependency in T induced by the set of concept names (Lhs(T)∩Σ) \ {A}.
Thus, to check wether T contains an indirect Σ-dependency it is sufficient to
check whether there is A ∈ Def(T) ∩ Σ such that

depend≡T (A) \ Def(T) ⊆
⋃

(Lhs(T)∩Σ)\{A}

dependT (Ai),

which is in polynomial time.

6. Ontology Modules

We employ Σ-inseparability to define different notions of a module in a
TBox, analyse their relationship and properties, and determine the complex-
ity of checking whether a given subset T ′ ⊆ T is a module (from now on
called module checking). Each notion of a module is parameterised with a
signature Σ of interest. This is motivated by the main applications of mod-
ules such as replacing the original TBox in an application that uses only
a certain subsignature Σ or summarising what a given TBox says about a
given signature Σ. The signature Σ is also important for module extraction
studied in Section 7.

Arguably, the most direct way to define a Σ-module M in a TBox T is
thus to demand that M ⊆ T and M ≡Σ T . By Theorem 4, we then have
that M and T entail the same SO-sentences over Σ, and by Theorem 5,
this even holds in the context of other ontologies used together with M
and T . From now on, we call this kind of module a plain Σ-module. Note
that it might clearly happen that a plain Σ-module M must contain also
non-Σ-symbols, simply because they occur together with Σ-symbols in the
same statement in T . However, according to its definition,M does not need
to be inseparable from T regarding these additional symbols, which might
be regarded as M being incomplete. Moreover, a plain Σ-module M does
not need to contain all non-tautological statements from T that concern
Σ because those statements might be implied by other statements that are
contained inM. Again, this might be viewed as a kind of incompleteness of
M.

To address these issues, we define two additional kinds of modules: self-
contained Σ-modules M that must be inseparable from T not only regard-
ing Σ, but regarding Σ ∪ sig(M); and depleting Σ-modules M for which we

32

require that T \ M is inseparable from the empty TBox, again regarding
Σ ∪ sig(M).

Definition 26. Let M⊆ T be TBoxes and Σ a signature. Then M is a

• plain Σ-module of T if M≡Σ T ;

• self-contained Σ-module of T if M≡Σ∪sig(M) T ;

• depleting Σ-module of T if T \M ≡Σ∪sig(M) ∅.

A (plain, self-contained, depleting) Σ-module of T is minimal if no N (M
is such a Σ-module of T .

Plain and depleting Σ-modules were introduced in [18], where they are called
weak and strong Σ-modules. Self-contained and depleting Σ-modules are
implicit in [16] and were first explicitly studied in [35, 14]. Note that if M
is a depleting Σ-module, then T \M is safe for sig(M) and so the module
M can be maintained separately outside of T without the risk of unintended
interactions with the rest of T . Also note that checking depleting Σ-modules
is exactly the same problem as deciding Σ-inseparability from the empty
TBox. The relationship between the different kinds of modules is as follows,
as first observed in [35].

Proposition 27.

1. If M is a self-contained Σ-module of T , then it is a plain Σ-module.

2. IfM is a depleting Σ-module of T , then it is a self-contained Σ-module.

Proof. Point 1 follows from the monotonicity of inseparability, and Point 2
follows from robustness under replacement: assume M ⊆ T and let Σ′ =
Σ ∪ sig(M). If T \M ≡Σ′ ∅, then (T \M) ∪M ≡Σ′ M and so T ≡Σ′ M,
as required.

In this paper, we concentrate on self-contained and depleting modules,
and do not further consider plain modules. One reason is that we do not
have much positive to say about the latter. For example, the basic task of
module checking is equivalent to deciding Σ-inseparability in the case of plain
modules. As can be seen in Table 1, this problem is undecidable in all cases
that we were able to solve, the only open case being acyclic EL- and ELI-
TBoxes. Another reason for preferring self-contained and depleting modules

33

is that, as first observed in [16], these types of modules are very useful for
module extraction, as studied in Section 7. The following examples show
that depleting modules and self-contained modules are not the same notion.

Example 28. (1) Let T = {A v B uA1, A v B uA2},M = {A v B uA1},
and Σ = {A,B}. M is a self-contained Σ-module of T , but not a depleting
Σ-module of T .

(2) The difference between depleting and self-contained modules is ‘felt’
even by acyclic EL-TBoxes. Take T = {B v A,A ≡ >}, M = {A ≡ >},
and Σ = {A,B}. Then M is a self-contained Σ-module of T , but not a
depleting one. We will see below that no such example exists if concept
definitions the form A ≡ > u · · · u > are disallowed.

6.1. Modules in acyclic EL/ELI
We consider module checking in acyclic EL- and ELI- TBoxes. Note

that, by Theorem 25, depleting modules can be checked in PTime. Our
main result is that, for acyclic ELI-TBoxes that do not contain trivial con-
cept definitions of the form A ≡ >u· · ·u>, self-contained Σ-modules coincide
with depleting Σ-modules. Note that, in applications, such concept defini-
tions are rather exotic and it should always be possible to remove them by
replacing A with > throughout T . In summary, depleting and (equivalently)
self-contained modules can be checked in PTime for acyclic EL- and ELI-
TBoxes. As we mentioned before, it is interesting to contrast this with the
PSpace-completeness of subsumption in acyclic ELI-TBoxes [15].

Theorem 29. Let T be an acyclic ELI-TBox, M ⊆ T , and Σ a signa-
ture. If T does not contain trivial concept definitions, then the following are
equivalent:

1. M is a depleting Σ-module of T ;

2. M is a self-contained Σ-module of T .

Proof. The implication from Point 1 to Point 2 follows from Theorem 27.
Consider the implication from Point 2 to Point 1. Assume that M is a self-
contained Σ-module of T . Let Σ′ = Σ ∪ sig(M). We have to show that
T \M ≡Σ′ ∅. By Lemma 24, it is sufficient to show

(a) T \M does not contain a Boolean Σ′-constraint;

34

(b) T \M does not contain a direct Σ′-dependency.

We start with Point (a). For a proof by contradiction, assume that (a) does
not hold. Then there is a set P ⊆ Lhs(T \M) ∩ Σ′ such that

CP =
l

A∈P

A u
l

A∈(Lhs(T \M)∩Σ′)\P

¬A

is not satisfiable in a one-point model of T \M. We construct a one-point
interpretation I with ∆I = {d} satisfying M and CP . Set rI = ∅, for all
r ∈ NR. The interpretation of concept names A is defined by induction on
the definitorial depth dM(A) of A inM. For every A ∈ NC with dM(A) = 0,
let

AI =

{
{d} if A ∈ P
∅ otherwise

Note that dM(A) = 0 for all A ∈ Lhs(T \ M) and so we have already
defined the interpretation of all concept names A in CP in such a way that
I satisfies CP . It remains to complete the definition of I for concept names
of positive definitorial depth in M and ensure that M is satisfied. This is
straightforward, however: assume that A ./ C ∈ M and that BI has been
defined for all B in C. Then set AI = CI . The resulting interpretation I is
a model of M with d ∈ CIP .

As sig(CP) ⊆ Σ′, we have that CP is satisfied in any interpretation J
with I|Σ′ = J |Σ′ . Thus, since we assume that CP is not satisfiable in any
one-point model of T \M and sig(M) ⊆ Σ′, there is no model J of T with
I|Σ′ = J |Σ′ . This contradicts the assumption that M is a self-contained
Σ-module of T .

We prove Point (b). For a proof by contradiction, assume that Point (b)
does not hold. There is anA ∈ Lhs(T \M)∩Σ′ such thatX ∈ dependT \M(A)∩
Σ′, for some symbol X ∈ Σ′. We construct a one-point model I of M with
XI = ∅ and AI 6= ∅. Let ∆I = {d} and set rI = ∅, for all r ∈ NR. The
interpretation of concept names is defined by induction over the definitorial
depth in M. Observe that dM(A) = 0 and set AI = {d} and BI = ∅ for
all B ∈ NC \ {A} with dM(B) = 0. We complete this interpretation in the
obvious way: assume that B ./ C ∈M and that EI has been defined for all
E in C. Then set BI = CI .

By construction, I is a model of M. Since M does not contain trivial
concept definitions, BI = ∅ for all concept names B distinct from A with

35

A 6∈ dependM(B). It follows that XI = ∅: if X is a role name, then this
follows from the definition of I. If X is a concept name, then note that
A 6∈ dependM(X) since T is acyclic and so XI = ∅, as required.

Since AI = {d}, XI = ∅ and X ∈ dependT \M(A)∩Σ′ there is no model J
of T with I|Σ′ = J |Σ′ . This contradicts the assumption that M is a self-
contained Σ-module of T .

The following result now follows with Theorem 25.

Theorem 30. Checking depleting and (equivalently) self-contained Σ-modules
in acyclic ELI-TBoxes is in PTime.

6.2. Modules in acyclic ALC/ALCI
For module checking in acyclic ALC- and ALCI-TBoxes, we cannot hope

to obtain general positive results that parallel those obtained for EL and ELI
in the previous section: by Theorem 8, checking depleting modules in acyclic
ALC-TBoxes is undecidable, and the same is true for checking self-contained
modules since inseparability from the empty TBox can be reduced to checking
self-contained modules by observing that a TBox T is Σ-inseparable from the
empty TBox iff the empty TBox is a self-contained Σ-module of T . Interest-
ingly, though, the direct Σ-dependencies used for EL and ELI in Sections 5.3
and 6.1 still turn out to be useful also in the context ofALC andALCI (while
indirect ones appear to be less relevant). In particular, we identify two syn-
tactic conditions that both result in checking depleting and self-contained
modules in ALC- and ALCI-TBoxes to become decidable: one requires that
the TBox T \ M is free of direct Σ ∪ sig(M)-dependencies and the other
is a relaxation of this condition. We actually start with the latter condition
and show that checking self-contained modules is coNExpNP-complete while
checking depleting modules is Πp

2-complete. Under the first mentioned con-
dition, checking depleting and self-contained modules is both Πp

2-complete,
and the two kinds of module coincide.

We believe that the syntactic restrictions considered in this section are
very natural from an application perspective, i.e., the question whether
M⊆ T is a Σ-module of T should arise only if T \ M contains no direct
Σ-dependencies. This is illustrated by the following example.

Example 31. Let T = {A v B t ¬B} ∪ M with M = {E v A u B},
and let Σ = {A,B,E} = sig(M). Note that T \ M contains a direct Σ-
dependency since B ∈ dependT \M(A). If T was an acyclic EL-TBox, this

36

would immediately imply thatM is not a depleting Σ-module of T . However,
for the acyclic ALC-TBox T given above, we clearly have T \M ≡Σ ∅ (even
T \M ≡ ∅), so M is a depleting Σ-module of T . The example can clearly
be generalised by replacing B t ¬B with any concept C that is valid (i.e.,
CI = ∆I in every model I) and contains a Σ-symbol. However, the example
relies on the fact that the TBox statements in T \M define the meaning of one
Σ-symbol by employing another Σ-symbol without asserting any non-trivial
semantic relationship between the two Σ-symbols. This seems to be rather
untypical for real-world ontologies and most likely indicates a modelling error.

As announced, we start with a syntactic condition that is weaker than T \M
not containing a direct Σ∪ sig(M)-dependency, but turns out to be sufficient
to regain decidability of module checking.

Definition 32. Let T be an acyclic ALCI-TBox and Σ a signature. We
say that T contains a direct Σ-dependency between concept and role names
if there exists A ∈ Σ ∩ NC and r ∈ Σ ∩ NR such that r ∈ dependT (A).

Now, the weaker condition is that T \M does not contain a direct Σ∪sig(M)-
dependency between concept and role names. Interestingly, self-contained
and depleting modules turn out to not coincide under the weaker condition,
while they do under the stronger one. In fact, for the weaker condition, check-
ing self-contained and depleting modules is of rather different complexity. It
is also interesting that, as shown by the proof of the following theorem, hav-
ing no direct Σ-dependencies between concept and role names is very closely
related to dealing with a concept signature Σ.

Theorem 33. Given an acyclic ALC or ALCI-TBox T , a signature Σ, and
a subset M⊆ T such that T \M contains no direct Σ∪ sig(M)-dependency
between concept and role names, it is

1. Πp
2-complete to decide whether M is a depleting Σ-module of T ;

2. coNExpNP-complete to decide whetherM is a self-contained Σ-module
of T .

Proof. The lower bound for Point 1 is a consequence of Theorem 14, which
states Πp

2-hardness for Σ-inseparability of acyclicALC-TBoxes from the empty
TBox. It suffices to observe that (i) for all TBoxes T and signatures Σ, we

37

have T ≡Σ ∅ iff T \M ≡Σ ∅ withM := ∅ and (ii) T \M = T does not con-
tain direct Σ ∪ sig(M)-dependencies between concept and role names since
Σ is a concept signature.

Now for the lower bound for Point 2. By Theorem 10 and Lemma 3,
Σ-entailment between acyclic ALC-TBoxes is coNExpNP-hard when Σ is a
concept signature. It thus remains to note that we can use a small variation
of the reduction from Σ-entailment to Σ-inseparability given in the proof of
Lemma 3, replacing Σ-inseparability with checking self-contained modules.
In detail, let T1, T2 be acyclic TBoxes and Σ a concept signature. By our
strengthened formulation of Theorem 10 (see comment before that theorem),
we can assume that T1∪T2 is acyclic. We show that we can also assume that
Σ = sig(T1)∩ sig(T2). First, as in the proof of Lemma 3, we can assume that
Σ ⊇ sig(T1)∩ sig(T2). Now, since we can also add fresh inclusions of the form
A0 v A for A ∈ Σ∩NC (and with A0 fresh) to T1 and T2 we can assume that
Σ = sig(T1) ∩ sig(T2). Set M = T1, T = T1 ∪ T2, and Σ′ = sig(T1). Then
T \M contains no direct Σ′ ∪ sig(M)-dependency between concept and role
names since Σ is a concept signature. Now it can be verified that T1 |=Σ T2

iff T1 ≡sig(T1) T1 ∪ T2 iff M≡Σ′∪sig(M) T iff M is a self-contained Σ′-module.
In fact, the only interesting equivalence is the first one, where we exploit that
Σ = sig(T1) ∩ sig(T2).

The upper bound proofs are by reduction to Σ-inseparability with Σ a
concept signature, for which corresponding upper bounds have been estab-
lished in Theorems 14 and 9. We start with identifying the part of an acyclic
TBox T that is ‘relevant’ for deciding Σ-inseparability from T . For an acyclic
TBox T and signature Σ, let

LhsΣ(T) = {A ./ C ∈ T | A ∈ Σ or ∃X ∈ Σ (A ∈ dependT (X))}.

Intuitively, LhsΣ(T) is the set of all inclusions in T that are influenced by
symbols from Σ. The following claim makes this observation precise. It
shows that, as far as Σ-inseparability is concerned, T can be equivalently
replaced with LhsΣ(T).

Claim. For every interpretation I, the following conditions are equivalent:

(a) there is a model J of T with J |Σ = I|Σ;
(b) there is a model J of LhsΣ(T) with J |Σ = I|Σ.

The implication “(a) ⇒ (b)” is immediate, and “(b) ⇒ (a)” is shown in the
appendix. The main reason for replacing certain TBoxes T with LhsΣ(T) in
the remaining proof is the following property:

38

(∗) if a TBox T contains no direct Σ-dependency between concept and role
names, then LhsΣ(T) does not contain a role name from Σ.

Clearly, this is not true for T itself. We now present the announced reduc-
tions.

To prove the upper bound for Point 1, we have to show that it is in
Πp

2 to decide whether T \ M ≡Σ′ ∅, with Σ′ = Σ ∪ sig(M). By the
claim, T \M ≡Σ′ ∅ iff LhsΣ′(T \ M) ≡Σ′ ∅. By (∗), LhsΣ′(T \ M) does
not contain a role name from Σ′. Thus, we have LhsΣ′(T \ M) ≡Σ′ ∅ iff
LhsΣ′(T \M) ≡Σ′∩NC

∅. By Theorem 14, the latter can be decided in Πp
2.

To prove the upper bound for Point 2, we have to show that it is in
coNExpNP to decide whether M ≡Σ′ T , with Σ′ = Σ ∪ sig(M). Clearly,
M≡Σ′ T iffM |=Σ′ T \M iffM |=Σ′ LhsΣ′(T \M). By (∗), LhsΣ′(T \M)
does not contain a role name from Σ′. Thus, M |=Σ′ LhsΣ′(T \ M) iff
M |=Σ′∩NC

LhsΣ′(T \ M). By Theorem 9, the latter can be decided in
coNExpNP.

We now consider the stronger syntactic condition that T \M does not
contain a direct Σ-dependency in the original sense of Definition 19. We prove
that, in this case, there is no difference between depleting and self-contained
modules, and that module checking is Πp

2-complete.

Theorem 34. For all acyclic ALCI-TBox T , signatures Σ, and subsets
M ⊆ T such that T \M contains no direct Σ ∪ sig(M)-dependencies, the
following are equivalent:

1. M is a depleting Σ-module of T .

2. M is a self-contained Σ-module of T ;

Given T , Σ, and M as above, it is Πp
2-complete to decide whether M is a

self-contained/depleting Σ-module of T .

Proof. The proof of the equivalence of Points 1 and 2 is similar to the proof
of Theorem 29. The implication “Point 1⇒ Point 2” again follows from The-
orem 27. The proof of “Point 2 ⇒ Point 1” is identical to the proof of The-
orem 29 with the only exception that the absence of direct Σ-dependencies
(Point (b) in the proof of Theorem 29) is stated explicitly in the conditions
of Theorem 34 rather than deduced from the assumption that M is a self-
contained Σ-module of T . Note that here we need that Lemma 24 applies

39

not only to ELI-TBoxes, but also to ALCI-TBoxes (see comment before
that lemma).

Now for the complexity. The Πp
2-upper bound is inherited from Theo-

rem 33. The lower bound can be established by an analysis of the proof of
Theorem 14, where we show that Σ-inseparability of acyclic ALCI-TBoxes
from the empty TBox is Πp

2-hard. We have already noted that this problem is
equivalent to checking depleting modules, and the TBoxes used in the proof
do obviously not contain direct Σ-dependencies.

7. Module Extraction

In this section we consider the problem to compute, given a TBox T
and a signature Σ, a subset M of T that is a minimal self-contained or
depleting Σ-module of T . We call this problem the module extraction prob-
lem. We present algorithms for module extraction from acyclic ELI-TBoxes
and from acyclic ALCI-TBoxes, building on the results for module check-
ing obtained in the previous section (Theorems 30 and 34). For acyclic
ELI-TBoxes, we extract the unique minimal depleting Σ-module and for
acyclic ALCI-TBoxes we extract the unique minimal depleting Σ-module
whose complement contains no direct Σ ∪ sig(M)-dependency. Note that
self-contained Σ-modules and depleting Σ-modules coincide in these cases
(if there are no trivial concept definitions). For brevity, we will from now
on only speak about depleting Σ-modules. All presented algorithms run in
polynomial time when module checking is available as an oracle. For acyclic
ELI-TBoxes, by Theorem 30 we thus obtain overall polynomial runtime.

We first consider the black box approach from [14], where module checking
is used as an oracle in a generic module extraction algorithm. Together
with Theorems 30 and 34, this approach yields polynomial algorithms for
module extraction in both of the ELI- and the ALCI-case mentioned above,
modulo the oracle. We complement this approach by presenting a white box
approach for module extraction from acyclic ELI-TBoxes which also runs in
polynomial time, but more tightly integrates the module checking into the
module extraction and can be expected to be more efficient in practice.

7.1. Black Box Approach

The black box approach to module extraction described in [14] is based
on the algorithm shown in Figure 2. Notice that W is used to find a TBox
statement α ∈ T \ M such that α is contained in some minimal subset S

40

Input: TBox T and signature Σ.
M := ∅;
W := ∅;
while (T \M) 6=W do

choose α ∈ (T \M) \W
W :=W ∪ {α};
if W 6≡(Σ∪sig(M)) ∅ then
M :=M∪ {α};
W := ∅

endif
end while
output M

Figure 2: Extracting depleting Σ-modules

of T \M with S 6≡Σ ∅. This subset S is contained in W , but need not be
identical to it. It is proved in [14] that for any TBox T formulated in first-
order logic and signature Σ, there is a unique minimal depleting Σ-module
of T , and that this module is the output of the algorithm when started
on T and Σ.5 The runtime of the algorithm is O((|T | + |Σ|)2 × Tc(T ,Σ)),
where Tc(T ,Σ) is the time needed to check for a TBox T and signature Σ
whether T ≡Σ ∅ (which is equivalent to checking depleting Σ-modules). As
announced, by Theorem 30 we thus obtain an algorithm that runs in overall
polynomial time. It also follows that minimal depleting Σ-modules of ELI-
TBoxes and of ALCI-TBoxes are unique. We summarise this in the following
theorem.

Theorem 35. For any ALCI-TBox and signature Σ, there is a unique min-
imal depleting Σ-module of T . For ELI-TBoxes, these unique minimal mod-
ules can be extracted in polynomial time using the algorithm in Figure 2.

Since checking depleting Σ-modules is undecidable for ALCI, the generic
algorithm in Figure 2 cannot be applied directly to acyclic ALCI-TBoxes.
However, as observed in Theorem 34, decidability is regained when the re-
maining TBox T \ M (respectively the set W in the algorithm) does not

5These results are actually shown for a whole class of inseparability relations, of which
“≡Σ” can easily be verified to be a member. In particular, we have already seen that
“≡Σ” satisfies robustness under replacements).

41

Input: acyclic ELI-TBox T and signature Σ.
Initialise: M = ∅.
Apply Rules 1 and 2 exhaustively, preferring Rule 1.
Output: M.

(R1) if A ∈ Σ ∪ sig(M) has a direct Σ ∪ sig(M)-dependency in T \M
then set M :=M∪ {A ./ C} for A ./ C ∈ T \M.

(R2) if A ∈ Σ ∪ sig(M) has an indirect Σ ∪ sig(M)-dependency in T \M
then set M :=M∪ {A ≡ C} for A ≡ C ∈ T \M.

Figure 3: Module extraction in ELI

contain a direct Σ-dependency. This suggests a variation of the algorithm
in Figure 2 that is capable of extracting, from an acyclic ALCI-TBox T , a
depleting Σ-moduleM⊆ T that is not minimal in general, but minimal with
the property that T \M does not contain a direct Σ ∪ sig(M)-dependency.
The following is proved in the appendix.

Theorem 36. Let T be an acyclic ALCI-TBox and Σ a signature. Modify
the algorithm in Figure 2 by replacing the condition “W 6≡Σ∪sig(M) ∅” with

“W contains a direct Σ∪ sig(M)-dependency or W 6≡Σ∪sig(M) ∅”.

The resulting algorithm computes the unique minimal depleting Σ-moduleM
of T such that T \M contains no direct Σ ∪ sig(M)-dependency.

A central step in the proof of Theorem 36 is to show that if W ⊆ T is
minimal such that W contains a direct Σ ∪ sig(M)-dependency, then all of
W must be contained inM. Note that this justifies including α inM in the
modified algorithm.

7.2. White Box Approach

The algorithm used for module extraction in the previous section uses the
Σ-inseparability check in a black box manner. In the case of acyclic ELI-
TBoxes, it is possible to integrate the Σ-inseparability check described in
the proof of Theorem 25 more tightly into the module extraction algorithm,
which results in an algorithm that is more transparent and should be expected
to be more efficient in practical cases. This algorithm is given in Figure 3.

42

Theorem 37. Let T be an acyclic ELI-TBox and Σ a signature. The output
M of the algorithm in Figure 3 is the unique minimal depleting Σ-module
of T .

Proof. Let M be the output of the algorithm in Figure 3. Then Rules (R1)
and (R2) are not applicable and so T \ M does not contain any direct or
indirect Σ ∪ sig(M)-dependency. By Lemmas 20, 23, and 24, it follows that
T \M ≡Σ∪sig(M) ∅, as required.

It remains to prove that M is a minimal depleting Σ-module of T , and
that it is unique with this property.6 To this end, let M0 be a depleting
Σ-module of T . We prove by induction on the number of rule applications
that, at every iteration of the algorithm, we have M ⊆M0. It follows that
the output M of the algorithm is contained in every depleting Σ-module of
T and, therefore, M is the unique minimal depleting Σ-module of T .

The induction start is trivial sinceM = ∅ ⊆ M0. For the induction step,
assume that, by induction hypothesis,M⊆M0. We make a case distinction
according to which rule is applied.

Rule (R1) is applied. Then there is an A ∈ Σ ∪ sig(M) that has a direct
Σ∪sig(M)-dependency in T \M and A ./ C ∈ T \M is added toM. Assume
for a proof by contradiction that A ./ C /∈ M0. Let X ∈ dependT \M(A) ∩
(Σ ∪ sig(M)) (here and in what follows, M refers to the state before the
addition of A ./ C). We make a case distinction as follows.

Case 1. X ∈ dependT \M0
(A). We have A ./ C ∈ T \M0. As M⊆M0 and

so {A,X} ⊆ Σ∪sig(M0), we conclude that T \M0 has a direct Σ∪sig(M0)-
dependency. By Lemma 20, this contradicts the assumption that M0 is a
depleting Σ-module of T .

Case 2. X /∈ dependT \M0
(A). Let A = Y1, . . . , Yn = B be such that Yi ≺T \M

Yi+1, that is, Yi ./ Ci ∈ (T \M), for some Ci, and Yi+1 occurs in Ci. We have
Y1 = A and C1 = C, thus Y1 ./ C1 ∈ T \M0. Let i be the smallest index such
that Yi ./ Ci /∈ T \M0. Then Yi ./ Ci ∈ M0 and thus Yi ∈ sig(M0). Then
we have A ≺+

T \M0
Yi, that is, T \M0 has a direct Σ ∪ sig(M0)-dependency,

which again yields a contradiction.

6We already know the latter from Theorem 35. However, the natural proof of minimal-
ity of M given here yields uniqueness of minimal depleting Σ-modules as a by-product.

43

Rule (R2) is applied. Then there is an A ∈ Σ ∪ sig(M) that has an indirect
Σ∪ sig(M)-dependency in T \M, and A ≡ C ∈ T \M is added toM. We
have

depend≡T \M(A) \ Def(T \M) ⊆
⋃

1≤i≤n

dependT \M(Ai), (1)

for some set {A1, . . . , An} ⊆ Lhs(T \ M) ∩ (Σ ∪ sig(M)) not containing A
(where, again, M generally refers to the state before the addition). Assume
for a proof by contradiction that A ≡ C /∈ M0. We show that M0 contains
an indirect Σ ∪ Sig(M0)-dependency, i.e.,

depend≡T \M0
(A) \ Def(T \M0) ⊆

⋃
B∈(Σ∪sig(M0))\{A}

dependT \M0
(B). (2)

This establishes a contradiction to Lemma 20 and the assumption that it is
a depleting Σ ∪ sig(M0)-module of T . We first show that the left-hand side
of Inclusion (1) is contained in that of Inclusion (2), i.e.,

depend≡T \M0
(A) \ Def(T \M0) ⊆ depend≡T \M(A) \ Def(T \M) (3)

As M ⊆ M0, we have (T \ M0) ⊆ (T \ M) and so depend≡T \M0
(A) ⊆

depend≡T \M(A). Suppose there exists X ∈ depend≡T \M0
(A) \ Def(T \ M0)

such that X ∈ Def(T \M). Then M0 \ M contains a definition X ≡ C ′,
for some C ′. Thus X ∈ sig(M0) and so T \M0 has a direct Σ ∪ sig(M0)-
dependency in contradiction with M0 being a depleting Σ-module. This
finishes the proof of Inclusion (3).

To prove Inclusion (2), let X ∈ depend≡T \M0
(A) \ Def(T \M0). We have

to show the following.

Claim 1. X ∈ dependT \M0
(B) for some B ∈ (Σ ∪ sig(M0)) \ {A}.

It follows from Inclusion (3) that X ∈ depend≡T \M(A) \ Def(T \M). We
have X /∈ Σ ∪ sig(M0) since M0 does not contain a direct Σ ∪ sig(M0)-
dependency.

By Inclusion (1), there is an Ai ∈ (Σ ∪ sig(M)) \ {A} such that X ∈
dependT \M(Ai). Let Z1, . . . , Zn be such that Ai = Z1 ≺T \M · · · ≺T \M Zn =
X. If X ∈ dependT \M0

(Ai), then Claim 1 is established by choosing B = Ai.
Thus assume X /∈ dependT \M0

(Ai). Since X /∈ (Σ ∪ sig(M0)), we have
Zn−1 ≺T \M0 Zn = X. Let j be the largest index such that for all j < i < n,
we have Zi ≺T \M0 Zi+1 and Zj 6≺T \M0 Zj+1. Then Zj ./ C

′′ ∈ M0 for some

44

C ′′ and Zj+1 ∈ sig(C ′′) ⊆ sig(M0). Thus Claim 1 is established by choosing
B = Zj+1 since X ∈ dependT \M0

(Zj+1) and Zj+1 ∈ sig(M0). Note that we
require Zj+1 6= A which is the case since otherwise A ∈ dependT \M(Ai) and
so Rule (R1) would have been applied to Ai first.

Note that preference of (R1) over (R2) is necessary to ensure correctness of
the module extraction algorithm. To see this, consider T = {A v B,B ≡ E}
and Σ = {A,B}. We can apply Rule (R2) to B ≡ E since B ∈ Def(T)
and depend(B) ⊆ depend(A). Afterwards, we can apply Rule (R1) to A
and obtain M = T as the extracted module. This module is not minimal,
however. By applying Rule (R1) first to A v B, one obtains the module
{A v B} which is a minimal depleting Σ-module of T .

8. Case Study

We perform a case study by extracting minimal depleting (equivalently:
self-contained) Σ-modules from the medical ontology Snomed ct [11], using
(a variation of) the algorithm in Figure 3. The purpose of the case study is
twofold: first, we want to find out whether the extraction algorithm scales to
very large real-world TBoxes with several hundred thousand concepts, and
second we are interested in the typical size of the extracted modules. In
particular, we compare the size of modules extracted by our approach with
the size of modules extracted using the locality-based approach from [16, 17],
concentrating on the >⊥∗-version of those modules which from now on we
call STAR-modules for easier pronunciation. We use the implementation of
the STAR-module extraction algorithm available as part of OWL API [36]
Release 3.2.4. Locality-based module extraction computes an approximation
of the minimal depleting Σ-module: the STAR-module for Σ is always a
depleting Σ-module and, therefore, contains the minimal one extracted by
our approach. In general, this inclusion is proper and so the STAR-module for
Σ can be properly larger than the minimal depleting Σ-module. The following
result determines an important class of acyclic ELI-TBoxes in which they
coincide.7

7We thank C. Del Vescovo, P. Klinov, B. Parsia, U. Sattler, T. Schneider, and
D. Tsarkov for helful discussions about the relationship between STAR-modules and min-
imal depleting Σ-modules. Additional experiments comparing the two module extraction
approaches based on ontologies different from Snomed ct can be found in [37].

45

Proposition 38. Let T be an acyclic ELI-TBox containing no concept def-
initions. Then the STAR-module of T w.r.t. Σ coincides with the minimal
depleting Σ-module of T , for every signature Σ.

Note that, though not always minimal, the STAR-modules have the ad-
vantage of being efficiently computable also for TBoxes formulated in very
expressive description logics. We do not include any other module extrac-
tion approach in the comparison as all currently available algorithms that
are applicable to Snomed ct extract modules which are at least as large as
STAR-modules; this applies, for example, to the algorithm from [38].

Snomed ct is an acyclic EL-TBox, extended with role inclusion state-
ments of the form r v s and one right-identity statement of the form r◦s v r.
To take into account the role inclusions, we extend the module extraction
algorithm from Figure 3 to acyclic ELI-TBoxes with role inclusions, which
we treat using a ⊥-local approximation (see [16, 17]). The extracted modules
are depleting and self-contained Σ-modules but are, because of the approx-
imation approach to role inclusions, not necessarily minimal. Details of the
modified algorithm and a correctness proof can be found in in the appendix.
The algorithm was implemented in the MEX system, which is written in
OCaml. All experiments were carried out on a PC with Intel Core2 CPU
running at 2.13 Ghz and with 3GB of RAM.

We start with comparing MEX-modules with STAR-modules for signa-
tures Σ that are Snomed ct subsets. Such subsets are sets of concept names
that are appropriate to deployment or use of Snomed ct for a particular
language, dialect, country, speciality, organisation, user or context. They
usually represent groups of concepts or other content which share specific
characteristics.8 For the experiments, we extracted modules from version
July 2009 of Snomed ct, which has 245 476 concept inclusions, 62 217 con-
cept equations, 12 role inclusions, 307 694 concept names, and 62 role names.
To facilitate the comparison, we added all role names from Snomed ct to
the subsets. For 83 out of 159 cases, the STAR-module coincides with the
MEX-module. Table 2 presents the sizes of STAR and MEX-modules for the
remaining 76 signatures, where the size is measured as the number of con-
cept definitions and inclusions in the module. For all shown signatures, the
MEX-modules are smaller than the STAR-modules, with the column labelled

8For this and more information about Snomed ct subsets see http://www.

connectingforhealth.nhs.uk/systemsandservices/data/uktc/snomed/subsets.

46

Signature STAR MEX Diff. Signature STAR MEX Diff.

Admin 6682 6073 609 Epnot.5b 120 85 35
Adminmed 189 144 45 Epnovt.2 124 123 1
Adminpr. 3158 2774 384 Epor.2a1 1489 1403 86
Advreap. 19 17 2 Epora.2b 84 52 32
Allereve 34 22 12 Eporal.1 4903 4865 38
Allerpr. 38 27 11 Epsche.6 359 323 36
Cdaenct. 326 292 34 Epsup.10 390 335 55
Childbe. 487 374 113 Eptop.5a 366 355 11
Childrf. 108 97 11 Eptop.5b 55 53 2
Crcaren. 6769 3662 3107 Famhist 3299 1547 1752
Crcarer. 5402 2808 2594 Finding 185409 180089 5320
Devicet. 3635 3605 30 Foodadr. 2712 2706 6
Diagimg 11288 4135 7153 Gf 43 18 25
Diagnos. 96593 87564 9029 Invest 35098 21604 13494
Encodis. 711 693 18 Labcoll. 591 274 317
Enctyp 31 11 20 Labinve. 6835 6093 742
Endosfi. 1897 807 1090 Labinvm. 8628 6437 2191
Endospr. 1145 403 742 Labmorph 4568 4546 22
Epcona.4 231 217 14 Labspec 5191 2998 2193
Epcre.6a 1302 1192 110 Lifesty. 20320 16017 4303
Epcre.6b 52 48 4 Manumat 9786 9573 213
Epen.11b 40 24 16 Nonhuman 11813 5124 6689
Epene.7a 76 58 18 Nrel 29 26 3
Epene.7b 26 16 10 Pbcl 6869 5686 1183
Epeyee.4 733 687 46 Pbhllng 3896 1639 2257
Epfoa.28 46 33 13 Perpref 89 86 3
Epgra.9a 52 28 24 Pf 324 322 2
Epgra.9b 156 98 58 Provadv 2647 1944 703
Epin.22a 2417 2410 7 Rapa 85 82 3
Epin.22b 255 215 40 Sf 1552 1524 28
Epinha.3 449 384 65 Socperc. 6568 6488 80
Epinj.20 2802 2765 37 Specmat. 14070 8668 5402
Epin.29a 46 36 10 Srvcarp. 89 78 11
Epins.21 63 57 6 Supply 26 25 1
Epmult.1 1883 1745 138 Supreq 17 14 3
Epne.13a 126 100 26 Treatme. 70980 54975 16005
Epneve.3 93 86 7 Vmp 10076 9871 205
Epnot.5a 99 74 25 Vtm 6400 5859 541

Table 2: Comparison of module sizes computed by STAR and MEX.

47

Figure 4: Sizes of STAR modules and MEX modules

‘Diff’ showing how much smaller.
Most of the cases in which there is no difference between the STAR-

module and the MEX-module can be explained by Proposition 38. In the
experiments above, only 89 out of 159 STAR-modules contain concept def-
initions. In all remaining cases the STAR-module coincides with the MEX-
module simply because the extraction algorithm processes no concept defi-
nitions. Thus, there are only 13 cases in which the STAR-module coincides
with the MEX-module and in which the module contains concept definitions.

For further experiments based on randomly generated signatures, we have
used a more recent version of Snomed ct from 2012, which has 227 962 con-
cept inclusions, 66 507 concept equations, 12 role inclusions, 294 470 concept
names, and 62 role names. The experiments are based on randomly selected
signatures of size between 100 and 1 000 concept names and 20 role names
and they were carried out for 1 000 different signatures of each size. The spe-
cial role name RoleGroup, which is used for an encoding trick, was included
in every signature.

Figure 4 shows the maximal, minimal, and average module sizes depend-
ing on the size of the signature. Figure 5 shows the frequency distribution of
the MEX-modules and STAR-modules. In each chart, there are five different
histograms, one for each of the signature sizes ranging over 100, 250, 500, 750,
and 1 000. Each of these histograms displays the distribution of the module

48

(a) STAR modules

(b) MEX modules

Figure 5: Size distribution of modules extracted from Snomed ct 2012

sizes of 1 000 extracted Snomed ct modules for randomly selected signa-
tures of a certain size. For instance, the histogram labelled with STAR100
in Figure 5 shows the distribution of the size of 1 000 STAR modules for the
signature size 100 extracted from Snomed ct.

In the random experiments, for every signature size the largest MEX-
module is smaller than the smallest STAR-module and the average size of
MEX-modules is up to 3.5 times smaller than the average size of STAR-
modules. These figures do not match the outcome of the experiments with
non-random subsets of signatures of Snomed ct and demand an explana-
tion. By Proposition 38, both extraction methods will show little difference
in the output when the TBox contains very few concept definitions. As men-
tioned above already, only 89 out of 159 STAR-modules for the non-random

49

subset signatures contain concept definitions. This suggests that the sub-
set signatures are highly non-random and can ‘hit’ the part of Snomed ct
where terms are not fully defined. On the other hand, since roughly one
fifth of Snomed ct statements are concept definitions, it is very likely that
sufficiently large random signatures ’hit’ enough concept definitions to cause
significant differences in the module sizes.

Finally, we report on the resource consumption by both methods. The
maximum time and space consumed by MEX when extracting a module for
10 000 symbols is 1.35 seconds and 105.3 MByte. For 100 000 symbols (which
is rather unrealistic), it is 4.48 seconds and 122.6 MByte. For STAR-modules
the maximum time and space consumed when extracting a module for 10 000
symbols is 5.2 seconds and 552.9 MByte. When extracting a module for
100 000 symbols is 8.64 seconds and 556.4 MByte. (In both cases, we do
not include the time needed to read the ontology.) The signficantly higher
memory requirements of the STAR-module computation is due to the fact
that the OWL API is capable of handling TBoxes in expressive description
logics, which requires some overhead in the data structures compared with
MEX.

In summary, MEX thus scales extremely well to large TBoxes and rather
often extracts significantly smaller modules than the best locality-based ap-
proach available.

9. Related Work

Modularity is currently a very active research topic in description logics
and in ontologies in general, and a large number of articles have been pub-
lished on the subject. For this reason, it is not possible to provide a fully
comprehensive literature survey in this section. Instead, we focus on work
that is closely related to the material presented in this paper and refer the
reader to [39] for a recent collection of articles on modular ontologies, and
to the proceedings of the workshop on modular ontologies (WoMO) which
is held annually since 2006. We start by discussing related work on insep-
arability and conservative extensions and then proceed to modules, module
extraction, and ontology decomposition.

A distinguishing feature of the notion of inseparability used in this paper
is its model-theoretic nature. An important alternative is to define a de-
ductive version of inseparability based on logical consequence within a lan-
guages. For example, one might call two ALC-TBoxes T1 and T2 deductively

50

Σ-inseparable if for all Σ-concept inclusions C v D formulated in ALC, we
have T1 |= C v D iff T2 |= C v D. Note that deductive inseparability is
language dependent in the sense that the description logic language in which
the logical consequences C v D are formulated has to be fixed and can be
varied. For instance, two ALC-TBoxes T1 and T2 may be Σ-inseparable w.r.t.
EL-consequences, but not w.r.t. ALC-consequences. In contrast, there is no
such language dependency in the notion of model-theoretic inseparability.
In the following, we discuss both model-theoretic and deductive inseparabil-
ity, as well as the closely related notion of (Σ-)conservative extension, i.e.,
Σ-inseparability of two TBoxes T1 and T2 with T1 ⊆ T2. Just like insepara-
bility, conservative extensions can be defined in a model-theoretic way and
in a deductive way.

To the best of our knowledge, a model-theoretic notion of inseparability
was first considered in a description logic context in [40], where it is shown
that deciding model-theoretic conservative extensions is undecidable for gen-
eral ALC-TBoxes. Model-theoretic inseparability was then studied in more
depth in [18], of which this paper is an extended version. Moreover, model-
theoretic inseparability was considered in [14] in the context of the DL-Lite
family of description logics, where it is shown that for TBoxes formulated in
DL-LiteNbool and DL-LiteNhorn, model-theoretic inseparability is decidable and
coNExp-hard. The precise complexity remains open.

In the context of ontologies formulated in first-order logic, model-theoretic
notions of conservative extension have been proposed in [41] and used to
modularise consistency proofs for ontologies in [22]. This line of research
in modularity is partly based on ideas from modular software specification
and verification, where conservative extensions and inseparability have been
used since more than twenty years. For more details, we refer the reader
to [42, 43, 44, 45, 46] where, in particular, the distinction between model-
theoretic and deductive versions of conservative extensions and inseparability
is introduced and discussed.

In description logic research, deductive notions of conservative extension
and inseparability are investigated in [47, 40, 12, 14, 48, 49]. In contrast
to model-theoretic inseparability, deductive inseparability is typically de-
cidable; for example, it is ExpTime-complete for general EL-TBoxes and
2ExpTime-complete for general ALC and ALCI-TBoxes. In contrast, de-
ductive conservative extensions turn out to be undecidable for the extension
of ALC with nominals [50, 40].

We now discuss related work on modules and module extraction. As

51

already mentioned in Section 8, the locality-based modules of [50] can be
viewed as an approximation of model-theoretic modules and have the ad-
vantage that they can be efficiently computed also for TBoxes formulated in
expressive description logics. Deductive inseparability-based module extrac-
tion algorithms are presented and discussed in [17, 35, 14, 49]. This work
is based on the algorithm presented in Figure 2 and uses algorithms decid-
ing deductive inseparability as an oracle. To the best of our knowledge the
module extraction algorithms presented in this paper are the first work so
far based on model-theoretic inseparability. A significant amount of work
on modules and module extraction for ontologies is based on the syntactic
structure of ontologies rather than on their interpretation as logical theories.
We mention [51, 52, 53, 54] and refer also to the references therein.

Other related lines of research are the computation of uniform inter-
polants for ontologies and the automatic decomposition of ontologies into
a set of modules. When computing uniform interpolants, one is interested in
producing, for a given TBox T and signature Σ, a new TBox T ′ that uses
only symbols in Σ and is Σ-inseparable from T . Note that, in contrast to
module extraction, (i) the TBox T ′ need not be a subset of T , and (ii) the re-
sulting TBox T ′ is not allowed to include any non-Σ-symbols at all. Unlike a
module, the uniform interpolant T ′ asked for need in general not exist. Since
uniform interpolants based on model-theoretic Σ-inseparability are typically
not computable, research has mostly concentrated on deductive conservative
extensions, see [55, 56] for the case of ALC-TBoxes, [57, 58, 59] for the case
of EL-TBoxes, and [60, 14] for the case of DL-Lite TBoxes. A combination
of uniform interpolation and module extraction has been studied in [61].

In ontology decomposition, the goal is to provide a partitioning of the
ontology into independent modules, or of the ontology signature into inde-
pendent subsignatures. Note that, in contrast to the kind of module ex-
traction studied in this paper, the signatures of the desired modules are not
given by the user; to the contrary, it is a main purpose of automatic ontology
decomposition to reveal the symbols in the ontologies signature that ‘belong
together’ and those that do not. Relevant work in this area can, for example,
be found in [62, 63, 64, 65, 66].

10. Conclusion and Future Work

We have introduced a model-theoretic notion of inseparability for de-
scription logic TBoxes, analysed the complexity of deciding inseparability in

52

various cases, and explored several forms of modules based on inseparability.
This has led to module extraction algorithms for acyclic ALCI-TBoxes and
acyclic ELI-TBoxes. Experiments for the ELI case show that our algorithm
often extracts modules of significantly smaller size than other state-of-the-art
techniques, and that our algorithms scale very well to large TBoxes such as
SNOMED CT.

There are two main conclusions one can draw from this investigation:
firstly, deciding model-theoretic inseparability for DLs that contain ALC
is undecidable or of very high computational complexity, even for acyclic
TBoxes and even if one TBox is empty. For such expressive DLs, practical
tools for checking inseparability and extracting modules should thus be based
on approximations of model-theoretic inseparability. One important known
methodology for approximations is based on locality. The results in this
paper suggest to consider, in addition, approximations based on syntactic
dependencies.

Secondly, for the description logics EL and its extension ELI, model-
theoretic inseparability becomes tractable in important cases and can be
deployed in practical applications without resorting to approximations. In
addition, the tractability results for checking inseparability of ELI-TBoxes
from the empty TBox show that the complexity of standard reasoning (sub-
sumption) can be significantly higher than the complexity of model-theoretic
inseparability.

As future research, it would be interesting to fill the gaps in Table 1 by
determining the decidability/complexity of inseparability of acyclic EL and
ELI-TBoxes in the general case. From an application perspective, it would
also be relevant to study inseparability of acyclic TBoxes formulated in mild
extensions of EL and ELI-TBoxes, such as with role inclusions, transitive
roles, range restrictions, and nominals. In addition, it is of interest to inves-
tigate model-theoretic inseparability for DL-Lite dialects introduced in [67]
and for which inseparability has not been investigated in [14]. Examples
include DL-Litecore and DL-Litecore with role inclusions.

From a practical viewpoint, it would be interesting to implement the mod-
ule extraction algorithm for acyclic ALCI-TBoxes. We are optimistic that
the straightforward implementation using off-the-shelf QBF solvers can be
applied to large scale acyclic non-ELI-TBoxes such as the NCI thesaurus. A
further extension to practical minimal module extraction with mild syntactic
restrictions seems to be in reach even for acyclic SHIQ-TBoxes.

53

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments
and suggestions for improvement of the submitted version. Boris Konev
and Frank Wolter were supported by EPSRC grant EP/E065279/1. Carsten
Lutz was supported by the DFG-funded SFB/TR8 “Spatial Cognition”. Dirk
Walther was supported by the MICINN project TIN2009-14562-CO5.

References

[1] G. Antoniou, F. van Harmelen, Web ontology language: OWL, in:
Handbook on Ontologies, International Handbooks on Information Sys-
tems, Springer, 2004, pp. 67–92.

[2] The WWW Consortium, OWL 2 web ontology language: Profiles, Tech.
rep., available from http://www.w3.org/TR/owl2-profiles/.

[3] D. Tsarkov, I. Horrocks, FaCT++ description logic reasoner: System
description, in: Proceedings of the 3rd International Joint Conference
on Automated Reasoning, IJCAR 2006, Vol. 4130 of Lecture Notes in
Artificial Intelligence, Springer, Berlin, Heidelberg, 2006, pp. 292–297.

[4] V. Haarslev, K. Hidde, R. Möller, M. Wessel, The RacerPro knowledge
representation and reasoning system, Semantic Web 3 (3) (2012) 267–
277.

[5] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, Y. Katz, Pellet:
A practical OWL-DL reasoner, Journal of Web Semantics 5 (2) (2007)
51–53.

[6] R. Shearer, B. Motik, I. Horrocks, HermiT: A highly-efficient OWL rea-
soner, in: Proceedings of the 5th Workshop on OWL: Experiences and
Directions, OWLED 2008, Vol. 432 of CEUR Workshop Proceedings,
CEUR-WS.org, 2008.

[7] H. Knublauch, M. Musen, A. Rector, Editing description logic ontologies
with the Protégé OWL plugin., in: Proceedings of the 17th international
workshop on description logic, DL 2004, Vol. 104 of CEUR Workshop
Proceedings, CEUR-WS.org, 2004.

54

[8] A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca Grau, J. Hendler, SWOOP:
a web ontology editing browser, Journal of Web Semantics 4 (2) (2006)
144–153.

[9] J. Golbeck, G. Fragoso, F. Hartel, J. Hendler, J. Oberthaler, B. Parsia,
The national cancer institute’s thesaurus and ontology, Web Semantics:
Science, Services and Agents on the World Wide Web 1 (1) (2011) 75–80.

[10] The Gene Ontology Consortium, The gene ontology: enhancements for
2011, Nucleic Acids Research 40 (D1) (2012) D559–D564.

[11] R. Cornet, N. de Keizer, Forty years of SNOMED: a literature review,
BMC Medical Informatics and Decision Making 8 (Suppl 1) (2008) 1–6.

[12] B. Cuenca Grau, I. Horrocks, Y. Kazakov, U. Sattler, Modular reuse
of ontologies: theory and practice, Journal of Artificial Intelligence Re-
search (JAIR) 31 (2008) 273–318.

[13] B. Konev, C. Lutz, D. Walther, F. Wolter, Formal properties of modu-
larisation, in: Modular Ontologies: Concepts, Theories and Techniques
for Knowledge Modularization, Vol. 5445 of Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg, 2009, pp. 25–66.

[14] R. Kontchakov, F. Wolter, M. Zakharyaschev, Logic-based ontology
comparison and module extraction, with an application to DL-Lite, Ar-
tificial Intelligence 174 (15) (2010) 1093–1141.

[15] C. Haase, C. Lutz, Complexity of subsumption in the EL family of
description logics: Acyclic and cyclic TBoxes, in: Proceedings of the
18th European Conference on Artificial Intelligence, ECAI 2008, Vol.
178 of Frontiers in Artificial Intelligence and Applications, IOS Press,
Amsterdam, Netherlands, 2008, pp. 25–29.

[16] B. Cuenca Grau, I. Horrocks, Y. Kazakov, U. Sattler, Just the right
amount: extracting modules from ontologies, in: Proceedings of the 16th
International Conference on World Wide Web, WWW 2007, Alberta,
Canada, 2007, pp. 717–726.

[17] U. Sattler, T. Schneider, M. Zakharyaschev, Which kind of module
should I extract?, in: Proceedings of the 22nd International Workshop

55

on Description Logics, DL 2009, Vol. 477 of CEUR Workshop Proceed-
ings, CEUR-WS.org, 2009.

[18] B. Konev, C. Lutz, D. Walther, F. Wolter, Semantic modularity and
module extraction in description logics, in: Proceedings of the 8th Eu-
ropean Conference on Artificial Intelligence, ECAI 2008, IOS Press, Am-
sterdam, Netherlands, 2008, pp. 55–59.

[19] F. Baader, D. Calvanes, D. McGuiness, D. Nardi, P. Patel-Schneider,
The Description Logic Handbook: Theory, implementation and appli-
cations, Cambridge University Press, Cambridge, UK, 2003.

[20] F. Baader, S. Brandt, C. Lutz, Pushing the EL envelope further, in:
Proceedings of the 4th Workshop on OWL: Experiences and Directions,
OWLED 2008 DC, Washington, USA, 2008.

[21] F. Baader, S. Brandt, C. Lutz, Pushing the EL envelope, in: Proceed-
ings of the 19th International Joint Conference on Artificial Intelligence,
IJCAI 2005, Edinburgh, UK, 2005, pp. 364–369.

[22] O. Kutz, T. Mossakowski, A modular consistency proof for DOLCE,
in: Proceedings of the 25th AAAI Conference on Artificial Intelligence,
AAAI 2011, AAAI Press, Menlo Park, CA, USA, 2011, pp. 227–234.

[23] D. Tsarkov, I. Palmisano, Divide et impera: Metareasoning for large
ontologies, in: Proceedings of OWL: Experiences and Directions Work-
shop, OWLED 2012, Vol. 849 of CEUR Workshop Proceedings, CEUR-
WS.org, 2012.

[24] A. Armas Romero, B. Cuenca Grau, I. Horrocks, Modular combination
of reasoners for ontology classification, in: Proceedings of the 2012 Inter-
national Workshop on Description Logics, DL-2012, Vol. 846 of CEUR
Workshop Proceedings, CEUR-WS.org, 2012.

[25] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, DL-
Lite: Tractable description logics for ontologies, in: Proceedings of the
20th National Conference on Artificial Intelligence, AAAI 2005, AAAI
Press / The MIT Press, Menlo Park, CA, USA, 2005, pp. 602–607.

56

[26] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini,
R. Rosati, Linking data to ontologies, J. Data Semantics 10 (2008) 133–
173.

[27] P. Bonatti, C. Lutz, F. Wolter, Description logics with circumscrip-
tion, in: Proceedings of the 10th International Conference on Principles
of Knowledge Representation and Reasoning, KR 2006, AAAI Press,
Menlo Park, CA, USA, 2006, pp. 400–410.

[28] P. Bonatti, C. Lutz, F. Wolter, The complexity of circumscription in
description logic, J. Artificial Intelligence Research (JAIR) 35 (2009)
717–773.

[29] B. Cuenca Grau, B. Motik, Y. Kazakov, Import-by-query: Ontology
reasoning under access limitations, in: Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2009, AAAI
Press, Menlo Park, CA, USA, 2009, pp. 727–732.

[30] B. Cuenca Grau, B. Motik, Pushing the limits of reasoning over ontolo-
gies with hidden content, in: Proceedings of the Twelfth International
Conference on Principles of Knowledge Representation and Reasoning,
KR 2010, AAAI Press, Menlo Park, CA, USA, 2010, pp. 214–224.

[31] F. Wolter, M. Zakharyaschev, Modal decision problems, in: J. van Ben-
them, P. Blackburn, F. Wolter (Eds.), Handbook of Modal Logic, Else-
vier, Amsterdam, Netherlands, 2006.

[32] C. Lutz, R. Piro, F. Wolter, Description logic TBoxes: Model-theoretic
characterizations and rewritability, in: Proceedings of the 22nd Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2011, AAAI
Press, Menlo Park, CA, USA, 2011, pp. 983–988.

[33] C. Peschiera, L. Pulina, A. Tacchella, U. Bubeck, O. Kullmann, I. Lynce,
The seventh QBF solvers evaluation (QBFEVAL’10), in: Proceedings of
Theory and Applications of Satisfiability Testing, SAT 2010, Vol. 6175 of
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2010,
pp. 237–250.

[34] H. Kleine Büning, M. Karpinski, A. Flögel, Resolution for quantified
Boolean formulas, Information and Computation 117 (1) (1995) 12–18.

57

[35] R. Kontchakov, L. Pulina, U. Sattler, T. Schneider, P. Selmer, F. Wolter,
M. Zakharyaschev, Minimal module extraction from DL-Lite ontologies
using QBF solvers, in: Proceedings of the 21st International Joint Con-
ference on Artificial Intelligence, IJCAI 2009, AAAI Press, Menlo Park,
CA, USA, 2009, pp. 836–841.

[36] M. Horridge, S. Bechhofer, The OWL API: A java API for OWL on-
tologies, Semantic Web 2 (1) (2011) 11–21.

[37] C. del Vescovo, P. Klinov, B. Parsia, U. Sattler, T. Schneider,
D. Tsarkov, Empirical study of logic-based modules: Cheap is cheer-
ful, Tech. rep., University of Manchester (2013).

[38] B. Suntisrivaraporn, Module extraction and incremental classification:
A pragmatic approach for ontologies, in: Proceedings of the 5th Euro-
pean Semantic Web Conference, ESWC 2008, Vol. 5021 of Lecture Notes
in Computer Science, Springer, Berlin, Heidelberg, 2008, pp. 230–244.

[39] H. Stuckenschmidt, C. Parent, S. Spaccapietra (Eds.), Modular Ontolo-
gies: Concepts, Theories and Techniques for Knowledge Modularization,
Vol. 5445 of Lecture Notes in Computer Science, Springer, Berlin, Hei-
delberg, 2009.

[40] C. Lutz, D. Walther, F. Wolter, Conservative extensions in expressive
description logics, in: Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence, IJCAI 2007, AAAI Press, Menlo Park,
CA, USA, 2007, pp. 453–458.

[41] O. Kutz, T. Mossakowski, Conservativity in structured ontologies, in:
Proceedings of the 18th European Conference on Artificial Intelligence,
ECAI 2008, IOS Press, Amsterdam, Netherlands, 2008, pp. 89–93.

[42] P. Byers, D. Pitt, Conservative extensions: a cautionary note, Bulletin
of the EATCS 41 (1990) 196–201.

[43] T. Maibaum, Conservative extensions, interpretations between the-
ories and all that!, in: Proceedings of the 7th International Joint
CAAP/FASE Conference on Theory and Practice of Software Develop-
ment, TAPSOFT 1997, Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, 1997, pp. 40–66.

58

[44] P. Veloso, Yet another cautionary note on conservative extensions: a
simple case with a computing flavour, Bulletin of the EATCS (1992)
188–193.

[45] P. Veloso, S. Veloso, Some remarks on conservative extensions. A So-
cratic dialog, Bulletin of the EATCS (1991) 189–198.

[46] J. Goguen, R. Burstall, Institutions: Abstract model theory for specifi-
cation and programming, Journal of the ACM 39 (1) (1992) 95–146.

[47] S. Ghilardi, C. Lutz, F. Wolter, Did I damage my ontology? A case for
conservative extensions in description logic, in: Proceedings of the 10th
International Conference on Principles of Knowledge Representation and
Reasoning, KR 2006), AAAI Press, Menlo Park, CA, USA, 2006, pp.
187–197.

[48] C. Lutz, F. Wolter, Deciding inseparability and conservative extensions
in the description logic EL, Journal of Symbolic Computing 45 (2) (2010)
194–228.

[49] B. Konev, R. Kontchakov, M. Ludwig, T. Schneider, F. Wolter, M. Za-
kharyaschev, Conjunctive query inseparability of OWL 2 QL TBoxes,
in: Proceedings of the 25th Conference on Artificial Intelligence, AAAI
2011, AAAI Press, Menlo Park, CA, USA, 2011, pp. 221–226.

[50] B. Cuenca Grau, I. Horrocks, Y. Kazakov, U. Sattler, Extracting mod-
ules from ontologies: A logic-based approach, in: Modular Ontolo-
gies: Concepts, Theories and Techniques for Knowledge Modularization,
Springer, Berlin, Heidelberg, 2009, pp. 159–186.

[51] J. Seidenberg, A. L. Rector, Web ontology segmentation: analysis, clas-
sification and use, in: Proceedings of the 15th international conference
on World Wide Web, WWW 2006, Edinburgh, UK, 2006, pp. 13–22.

[52] N. Fridman Noy, M. A. Musen, Traversing ontologies to extract views,
in: Modular Ontologies: Concepts, Theories and Techniques for Knowl-
edge Modularization, Vol. 5445 of Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, 2009, pp. 245–260.

[53] P. Doran, V. Tamma, L. Iannone, Ontology module extraction for on-
tology reuse: An ontology engineering perspective, in: Proceedings of

59

the 16th ACM Conference on Information and Knowledge Management,
CIKM 2007, ACM, 2007, pp. 61–70.

[54] I. Palmisano, V. Tamma, T. Payne, P. Doran, Task oriented evaluation
of module extraction techniques, in: Proceedings of the 8th International
Semantic Web Conference, ISWC 2009, Vol. 5823 of Lecture Notes in
Computer Science, Springer, Berlin, Heidelberg, 2009, pp. 130–145.

[55] K. Wang, Z. Wang, R. W. Topor, J. Z. Pan, G. Antoniou, Concept and
role forgetting in ALC ontologies, in: Proceedings of the 8th Interna-
tional Semantic Web Conference, ISWC 2009, Vol. 5823 of Lecture Notes
in Computer Science, Springer, Berlin, Heidelberg, 2009, pp. 666–681.

[56] C. Lutz, F. Wolter, Foundations for uniform interpolation and forget-
ting in expressive description logics, in: Proceedings of the 22nd Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2011, AAAI
Press, Menlo Park, CA, USA, 2011, pp. 989–995.

[57] N. Nikitina, S. Rudolph, ExpExpExplosion: Uniform interpolation in
general EL terminologies, in: Proceedings of the 20th European Con-
ference on Artificial Intelligence, ECAI 2012, IOS Press, Amsterdam,
Netherlands, 2012, pp. 618–623.

[58] C. Lutz, I. Seylan, F. Wolter, An automata-theoretic approach to uni-
form interpolation and approximation in the description logic EL, in:
Proceedings of the 13th International Conference on Principles of Knowl-
edge Representation, KR 2012, AAAI Press, Menlo Park, CA, USA,
2012.

[59] B. Konev, D. Walther, F. Wolter, Forgetting and uniform interpolation
in large-scale description logic terminologies, in: Proceedings of the 21st
International Joint Conference on Artificial Intelligence, IJCAI 2009,
AAAI Press, Menlo Park, CA, USA, 2009, pp. 830–835.

[60] Z. Wang, K. Wang, R. W. Topor, J. Z. Pan, Forgetting for knowl-
edge bases in DL-Lite, Annals of Mathematics and Artificial Intelligence
58 (1-2) (2010) 117–151.

[61] N. Nikitina, B. Glimm, Hitting the sweetspot: Economic rewriting of
knowledge bases, in: Proceedings of the 11th International Semantic

60

Web Conference, ISWC 2012, Vol. 7649 of Lecture Notes in Computer
Science, 2012, pp. 394–409.

[62] H. Stuckenschmidt, M. Klein, Structure-based partitioning of large class
hierarchies, in: Proceedings of the 3rd International Semantic Web Con-
ference, ISWC 2004, Vol. 3298 of Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, 2004, pp. 289–303.

[63] B. Cuenca Grau, B. Parsia, E. Sirin, A. Kalyanpur, Modularity and
web ontologies, in: Proceedings of the 10th International Conference
on Principles of Knowledge Representation and Reasoning, KR 2006,
AAAI Press, Menlo Park, CA, USA, 2006, pp. 198–209.

[64] H. Stuckenschmidt, A. Schlicht, Structure-based partitioning of large
ontologies, in: Modular Ontologies: Concepts, Theories and Techniques
for Knowledge Modularization, Vol. 5445 of Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg, 2009, pp. 187–210.

[65] B. Konev, C. Lutz, D. Ponomaryov, F. Wolter, Decomposing description
logic ontologies, in: Proceedings of the 20th International Conference on
Principles of Knowledge Representation and Reasoning, KR 2010, AAAI
Press, Menlo Park, CA, USA, 2010, pp. 236–246.

[66] C. Del Vescovo, B. Parsia, U. Sattler, T. Schneider, The modular struc-
ture of an ontology: Atomic decomposition, in: Proceedings of the 22nd
International Joint Conference on Artificial Intelligence, IJCAI 2011,
AAAI Press, Menlo Park, CA, USA, 2011, pp. 2232–2237.

[67] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati,
Tractable reasoning and efficient query answering in description log-
ics: The DL-Lite family, Journal of Automated Reasoning 39 (3) (2007)
385–429.

61

Appendix A. Proofs for Section 4

Lemma A.1. Let T1 and T2 be ALCI-TBoxes and Σ a concept signature.
Assume that T1 does not Σ-entail T2. Then there exists a finite model I of
T1 such that there is no model J of T2 which coincides with I on Σ.

Proof. Assume T1 does not Σ-entail T2. Let I be a model of T1 such that there
is no model J of T2 which coincides with I on Σ. Using I, we construct a
finite model as required in the lemma using the standard filtration technique.
Define an equivalence relation ∼ of ∆I by setting for all d1, d2 ∈ ∆I :

• d1 ∼ d2 if, and only if, d1 ∈ DI ⇔ d2 ∈ DI for all D ∈ Σ ∪ sub(T1),
where sub(T1) is the set of subconcepts of concepts in T1.

Let [d] = {d′ ∈ ∆I | d ∼ d′}, for d ∈ ∆I . Now define I ′ as follows

• ∆I
′
= {[d] | d ∈ ∆I};

• for all A ∈ NC, set [d] ∈ AI′ if, and only if, d ∈ AI ;

• for all r ∈ NR, set ([d], [d′]) ∈ rI′ if, and only if, there are e ∈ [d] and
e′ ∈ [d′] such that (e, e′) ∈ rI .

One can show that I ′ is a model of T1. It remains to show that there does
not exist any model J ′ of T2 with J ′|Σ = I ′|Σ. Suppose the contrary. Let
J ′ be a model of T2 such that J ′|Σ = I ′|Σ. We derive a contradiction by
defining a model J of T2 such that J |Σ = I|Σ. In detail, let AJ = AI for all
A ∈ Σ and define

• for all A ∈ NC \ Σ: d ∈ AJ iff [d] ∈ AJ ′ ;

• for all r ∈ NR: (d, d′) ∈ rJ iff ([d], [d′]) ∈ rJ ′ .

J is well-defined since Σ does not contain any role names. By definition,
J |Σ = I|Σ. Moreover, since J ′ is a model of T2, J is a model of T2 as well.
We have derived a contradiction.

Theorem 10. Given acyclic ALC-TBoxes T1 and T2 and a concept signa-
ture Σ, it is coNExpNP-hard to decide whether T1 ≡Σ T2. This is even true
when T1 ∪ T2 is acyclic.

62

Proof. We have to prove the coNExpNP-lower bound under the condition
that T1 ∪ T2 is an acyclic ALC-TBox. The proof is by reduction of the
complement of the concept satisfiability problem w.r.t. singleton concept-
circumscribed ABoxes which is NExpNP-hard (cf. [28] (Theorem 15)).

In detail, the problem we reduce is defined as follows: given an ABox
A = {C(a)} with C an ALC-concept, an ALC-concept C0 and sets M and
F of minimised and fixed concept names, decide whether C0 is satisfiable
w.r.t. CircM,F (A); i.e., whether there exists a model I of CircM,F (A) such
that CI0 6= ∅. Here I is a model of CircM,F (A) iff it is a model of A and there
does not exist any model J of A such that J <M,F I (where we assume that
the interpretation of the individual name a is fixed; i.e., aI = aJ whenever
J <M,F I).

Assume A = {C(a)}, C0, and sets M and F as above are given. We
construct acyclic ALC-TBoxes T1 and T2 with T1∪T2 acyclic and a signature
Σ consisting of concept names only such that T1 Σ-entails T2 if, and only if,
C0 is not satisfiable w.r.t. CircM,F (A).

To construct T1 and T2, introduce for every X ∈M∪F ∪sig(C)∪sig(C0) a
fresh X ′ and denote by C ′ the resulting concept when every X is replaced by
X ′. Take fresh role names aux1, . . . , aux5 and concept names A,B0, B1, B2.
We set

T1 = {B0 v B1u(∃aux1.(AuC)u∃aux2.C0), B2 ≡ ¬(∃aux1.(AuC)u∃aux2.C0)}.

T2 consists of

• B1 v (∃aux3.B2) t (∃aux4.(A u C ′) u ∃aux5.
⊔
B∈M(B u ¬B′)),

• B′ v B, for all B ∈M , and

• B′ ≡ B, for all B ∈ F .

Let
Σ = {A,B0, B1, B2} ∪M ∪ F.

Observe that T1 ∪ T2 is acyclic. It remains to show the following

Claim. C0 is satisfiable w.r.t. CircM,F (A) if, and only if, T1 does not Σ-entail
T2.

Proof of Claim. We start with the direction from left to right. Let I be a
model of CircM,F (A) with CI0 6= ∅. Since aux1, aux2, A,B0, B1, B2 are fresh

63

symbols that do not occur in C0 nor C, we may assume that I is a model
of T1 such that BI0 = BI1 = ∆I and AI = {aI} and BI2 = ∅. We show
that there does not exist any model J of T2 such that J |Σ = I|Σ. For a
proof by contradiction, assume there exists such an interpretation J . We set
aJ = aI . Observe that (∃aux3.B2)J = ∅ since BI2 = ∅ and B2 ∈ Σ. We also
have BJ1 = ∆I since BI1 = ∆I and B1 ∈ Σ. Hence

(∃aux4.(A u C ′) u ∃aux5.
⊔
B∈M

(B u ¬B′))J = ∆I

As A ∈ Σ and AI = {aI}, we have aJ ∈ C ′J and there exists B ∈ M
with B′J (BI . We show that this contradicts the condition that there does
not exist any J ′ <M,F J that is a model of A: such a J ′ is obtained from
J by setting XJ

′
:= X ′J for all symbols X from sig(C) ∪ sig(C0). Then

aJ
′ ∈ CJ ′ since aJ ∈ C ′J and so J ′ is a model of A. We have J ′ <M,F J

since BJ
′ ⊆ BJ for B ∈M (since B′ v B ∈ T2), BJ

′
= BJ for B ∈ F (since

B′ ≡ B ∈ T2) and we have that there exists B ∈ M with BJ
′ (BJ since

there exists B ∈M with B′J (BJ .

Conversely, assume that T1 6|=Σ T2. Take a model I of T1 such that there
does not exist any model J of T2 with I|Σ = J |Σ.

Observe first that BI2 = ∅: if this is not the case then we can satisfy
the inclusions of T2 in a model J with J |Σ = I|Σ by taking some d ∈ BJ2
and set auxJ3 = ∆I × {d} and B′J = BI , for all B ∈ M ∪ F . Then, from
B2 ≡ ¬(∃aux1.(A u C) u ∃aux2.C0) ∈ T1, it follows that (∃aux1.(A u C) u
∃aux2.C0)I 6= ∅. We may assume that aI ∈ (A u C)I . Then I is a model
of A and CI0 6= ∅. It remains to show that there does not exist a model
J of A such that J <M,F I. For a proof by contradiction assume that
J is such a model of A. We show that then there exists a model J ′ of
T2 such that J ′|Σ = I|Σ and thus obtain a contradiction. Define J ′ by
setting X ′J

′
:= XJ , for all X ∈ sig(C) ∪ sig(C0), auxJ

′

4 := ∆I × {aI}, and
auxJ

′

5 = ∆J × {e}, where e ∈ BJ \ BI for some B ∈ M that witnesses that
J <M,F I. It is readily checked that J ′|Σ ≡Σ I|Σ.

Appendix B. Proofs for Section 5

We start with some preliminaries. Let I be an interpretation and D ⊆ ∆I

non-empty. Then the subinterpretation ID of I induced by D is defined as
follows:

64

• ∆ID = D;

• rID = rI ∩ (D ×D), for all r ∈ NR;

• AID = AI ∩D, for all A ∈ NC.

Let Σ be signature. Call a non-empty subset D of ∆I Σ-closed if for all
d, d′ ∈ ∆I and role names r ∈ Σ: if d ∈ D and (d, d′) ∈ rI , then d′ ∈ D.
(Note that the concept names in Σ are not relevant for being Σ-closed.) If
D is Σ-closed, then ID is called a Σ-generated subinterpretation of I. The
following lemma is straightforward.

Lemma B.1. If ID is a Σ-generated subinterpretation of I, then CID =
CI ∩D, for all ALC-concepts C such that sig(C) ⊆ Σ. In particular, if I is
a model of an ALC-TBox T with sig(T) ⊆ Σ, then ID is a model of T .

Let x ∈ ∆I . Then ID is called the (x,Σ)-generated subinterpretation of I
if D is the smallest Σ-closed subset of ∆I containing x. In this case we set
Ix := ID.

Theorem 15. Given an EL-TBox T and signature Σ, it is undecidable
whether T ≡Σ ∅.

Proof. The proof is by reduction of the undecidable word problem for semi-
groups. We use ~r to denote a composition ~r = r1 ◦ r2 ◦ · · · ◦ rk of roles
names, where k ≥ 1 and ri ∈ NR for all i ∈ {1, . . . , k}. The semantics of role
compositions is defined as usual. In detail, the extension ~rI of ~r = r1◦· · ·◦rk
in I is defined by

~rI = {(d, d′) | ∃y0 . . . yk.(y0 = d) ∧
∧
i=1..k

(yi−1, yi) ∈ rIi ∧ (yk = d′)}.

For compositions ~r and ~s, we define

• I |= ~r v ~s iff ~rI ⊆ ~sI ,

• I |= ~r ≡ ~s iff ~rI = ~sI ,

65

and set
{~r1 ≡ ~s1, . . . , ~rn ≡ ~sn} |=d ~r v ~s (B.1)

iff for all interpretations I such that for each r ∈ NR, the domain of rI (that
is, the set {d ∈ ∆I | ∃d′ : (d, d′) ∈ rI}) coincides with ∆I :

(∀i ≤ n : I |= ~ri ≡ si) ⇒ I |= ~r v ~s. (B.2)

Note that {~r1 ≡ ~s1, . . . , ~rn ≡ ~sn} |=d ~r v ~s holds if, and only if, (B.2) holds
for all interpretations I in which each rI , r ∈ NR, is a function. Thus, in
the following proof it will not make any difference whether we work with
interpretations in which each role is interpreted as a function or with inter-
pretations in which the domain of each role coincides with the domain of the
interpretation. The problem whether (B.1) holds coincides with the word
problem for semigroups and is undecidable.

In what follows ∃~r.C stands for the EL-concept ∃r1. · · · ∃rk.C, where ~r =
r1 ◦ · · · ◦ rk.

For the reduction assume that a problem instance {~r1 ≡ ~s1, . . . , ~rn ≡
~sn} and ~r ≡ ~s is given. Let Σ be the set of all roles names that occur in
the problem instance and a fresh concept name A. Additionally, take fresh
concept names Ai, Bi, Ni, E,M and fresh role names u0, ui, for i ∈ {1, . . . , n}.
Let T be the set consisting of all instances of the following inclusions: for all
role names v ∈ Σ and all i ∈ {1, . . . , n},

∃~ri.> u ∃~si.> v ∃ui.(∃~ri.Ai u ∃~si.Bi); (B.3)

Ai uBi v Ni; (B.4)

∃v.Ni v Ni; (B.5)

> v ∃u0.E; (B.6)

E u
l

v∈Σ

∃v.> v M ; (B.7)

∃v.M v M ; (B.8)

∃~r.A uM u
l

1≤j≤n

Nj v ∃~s.A. (B.9)

We show the following

Claim. T ≡Σ ∅ if, and only if, (B.1) holds.

Assume first that T 6≡Σ ∅. We show that (B.1) does not hold. Take
an interpretation I such that there does not exist any model J of T with

66

J |Σ = I|Σ. We first show that I is a model of ~ri ≡ ~si, for 1 ≤ i ≤ n, such
that for all v ∈ Σ the domain of vI coincides with ∆I . Formally:

(a) I |= > v ∃v.>, for all role names v ∈ Σ;

(b) ~rIi = ~sIi , for all i ∈ {1, . . . , n}.

We show both, (a) and (b), by contradiction. Suppose (a) does not hold.
Let J be an interpretation that coincides with I on the symbols in Σ and
that interprets the symbols in sig(T)\Σ as follows. Let x be a point without
v-successor, for some role v ∈ Σ. Set EJ = {x}, MJ = ∅, and, for all
i ∈ {1, . . . , n}, set AJi , B

J
i , N

J
i to ∆J and uJ0 , u

J
i to ∆J ×∆J . It is readily

checked that J satisfies all inclusions in (B.3) to (B.9) and, thus, J is a model
of T . We have derived a contradiction. Now consider (b). Suppose (b) does
not hold, i.e., there is a pair (x, y) ∈ ~rIi such that (x, y) /∈ ~sIi , for some
i ∈ {1, . . . , n}. By (a), there is a point z ∈ ∆I such that (x, z) ∈ ~sIi .
Obtain J from I by interpreting the symbols in sig(T) \ Σ as follows. Set
uJi = {(x′, x) | x′ ∈ ∆J }, AJi = {y}, BJi = {z}, and NJi = ∅. Set
EJ ,MJ , AJj , B

J
j , N

J
j to ∆J and uJ0 , u

J
j to ∆J ×∆J , for all j ∈ {1, . . . , n}

and j 6= i. It is readily checked that J satisfies all inclusions in (B.3) to (B.9).
Thus, J is a model of T . We have derived a contradiction.

We now show that (B.1) does not hold. Since we have (a) and (b) already,
it remains to show that I 6|= ~r v ~s. Obtain J from I by interpreting the
symbols in sig(T)\Σ as follows. Set EJ ,MJ , AJi , B

J
i , N

J
i to ∆J and uJ0 , u

J
i

to ∆J ×∆J , for all i ∈ {1, . . . , n}. It is readily verified that J satisfies the
inclusions in (B.3) to (B.8). As there does not exist any model J ′ of T such
that J ′ ≡Σ I, (B.9) does not hold in J . That is, there is a point x ∈ ∆J

such that x ∈ (∃~r.A)J but x /∈ (∃~s.A)J . Hence, J 6|= ~r v ~s.

Conversely, suppose T ≡Σ ∅. We show (B.1) by contradiction. Sup-
pose (B.1) does not hold. We may assume that there is an interpretation I in
which all role names in Σ are interpreted as functions such that I |= ~ri ≡ ~si,
for all i ∈ {1, . . . , n}, but I 6|= ~r v ~s. There is a pair (x, y) ∈ ~rI such that
(x, y) /∈ ~sI .

We may assume that AI = {y} and, therefore, x ∈ (∃~r.A)I . Let Ix be
the (x,Σ)-generated subinterpretation of I. Since T ≡Σ ∅, there exists a
model J of T that coincides with Ix on Σ. By (B.6) we have EJ 6= ∅.
Therefore, by (B.7), MJ 6= ∅. Every point in MJ is reachable from x by
following a Σ-path: this is the case since J coincides with Ix on Σ and Ix is

67

an (x,Σ)-generated subinterpretation of I. Hence x ∈MJ due to (B.8). Let
i ∈ {1, . . . , n}. We have that (∃~ri.>)J = (∃~si.>)J = ∆J . By (B.3) there
exists a ui-successor di of x from which, by the fact that J |= ~ri ≡ ~si and
the functionality of all v ∈ Σ in J , the role paths ~ri and ~si lead to a common
point d′i with d′i ∈ (Ai uBi)

J . By (B.4), d′i ∈ NJi . As d′i is reachable from x,
we obtain x ∈ NJi due to (B.5). Thus, we have x ∈ (∃~r.A uM u

d
i≤nNi)

J .

Inclusion (B.9) yields that x ∈ (∃~s.A)J . But then (x, y) ∈ ~sJ and we have
derived a contradiction.

Theorem 16. Given EL- or ELI-TBoxes T1 and T2 and concept signa-
tures Σ, it is coNExpNP-complete to decide T1 ≡Σ T2.

Proof. Containment in coNExpNP follows from Theorem 9, which shows
that the problem is in coNExpNP even for ALCI-TBoxes.

Hardness is (essentially) proved by reduction of Σ-entailment for ALC-
TBoxes and concept signatures Σ, which is coNExpNP-hard by Theorem 10.

More precisely, for ALC-TBoxes T1 and T2 and a set Σ of concept names,
we construct EL-TBoxes T ′1 , T ′2 and a signature Σ′ consisting of concept
names only the following two statements are equivalent:

(a) for every model I of T1 of cardinality ≥ 2 there exists a model J of T2

such that J |Σ = I|Σ;

(b) T ′1 |=Σ′ T ′2 .

One can easily show that the proof of Theorem 10 shows that deciding (a) is
coNExpNP-hard.

Let T1 and T2 be ALC-TBoxes and Σ a set of concept names. We may
assume w.l.o.g. that Σ = sig(T1) ∩ sig(T2) (see proof of Lemma 3) and that
both, T1 and T2, consist of inclusions of the form

> v C, A v C, C v A,

where A is a concept name and C is of the form ¬B, B1uB2, or ∃r.B, where
B, B1, B2 are concept names.

We define the EL-TBoxes T ′1 and T ′2 . To simulate negation in EL we
introduce for every concept name B ∈ sig(T1)∪ sig(T2) a fresh concept name
B that stands for ¬B. Denote for C1 v C2 ∈ T1∪T2 by C ′1 v C ′2 the resulting

68

EL-inclusion when all ¬B in C1 v C2 are replaced by B. To enforce the
intended behaviour of B, we require, in addition, fresh concept names V and
V , fresh role names e and f , and for every concept name B ∈ sig(T1)∪sig(T2),
a fresh role name sB. To define T ′i , first replace every C1 v C2 ∈ Ti by the
two inclusions

C ′1 u ∃e.V v C ′2, C ′1 u ∃e.V v C ′2 (†)
and denote the resulting EL-TBoxes by Ci, i = 1, 2. Intuitively, we want V to
behave similarly to ¬V in intended interpretations. Moreover, we want that
if V behaves similarly to ¬V , then all B behave similarly to ¬B. Note that
in an interpretation I with (V tV)I 6= ∆I one can satisfy the inclusions in Ci
in a trivial way by setting eI = ∆I×{d} for some d ∈ ∆I \ (V tV)I . We use
this property to enforce that in intended interpretations I, (V t V)I = ∆I .
In addition, in the intended interpretations we want that (V uV)I = ∅. Since
one cannot enforce this in EL, we instead enforce that the subinterpretation
induced by (V u V)I does not interfere with the subinterpretation induced
by ∆I \ (V u V)I .

To achieve all this, we consider the following set C of EL-inclusions: for
all concept names B ∈ sig(T1 ∪ T2) and role names r ∈ sig(T1) ∪ sig(T2) ∪
{f} ∪ {sB | B ∈ (sig(T1) ∪ sig(T2)) ∩ NC},

B ≡ ∃sB.V ; (B.10)

B ≡ ∃sB.V ; (B.11)

> v ∃sB.>; (B.12)

> v ∃e.>; (B.13)

V v ∃f.V , V v ∃f.V ; (B.14)

B uB ≡ V u V ; (B.15)

∃r.(V u V) v V u V ; (B.16)

Let T ′i = C ∪ Ci, for i = 1, 2 and let

Σ′ = Σ ∪ {V, V } ∪ {B | B ∈ Σ}.

Note that there are no role names in Σ′.

Claim 1. If not (a), then not (b).

Let I1 be a model of T1 of cardinality at least 2 such that there does not
exist a model I2 of T2 with I1|Σ = I2|Σ. Define I ′1 as I1 with the following

69

modifications: let V I
′
1 and V

I′1 form a partition of ∆I1 (this is possible since
∆I1 has at least two elements) and

• set B
I′1 = ∆I1 \BI1 ;

• fix d1 ∈ V I1 and d2 ∈ V
I1

and set

s
I′1
B = {(d, d1) | d ∈ BI1} ∪ {(d, d2) | d ∈ ∆I1 \BI1};

• set eI
′
1 = fI

′
1 = ∆I1 ×∆I1 .

It is readily seen that I ′1 is a model of T ′1 . To show not (b) it is sufficient to
prove that there does not exist a model J of T ′2 such that J |Σ′ = I ′1|Σ′ . For
a proof by contradiction suppose there exists such a J . We show that J is
a model of T2. From this we obtain, since I ′1|Σ = I1|Σ and Σ ⊆ Σ′, that J is
a model of T2 such that J |Σ = I1|Σ. Thus we have derived a contradiction.
To show that J is a model of T2 it is sufficient to prove

• BJ = (¬B)J for all concept names B ∈ sig(T2) and

• (∃e.V)J ∪ (∃e.V)J = ∆J

since then the inclusions in T2 follow from the inclusions in C2. For Point 1,

since J coincides with I ′1 on Σ′, we have B
J

= (¬B)J , for all B ∈ Σ. Let
B ∈ sig(T2)\Σ′. As V, V ∈ Σ′, their interpretation in J is the same as in I ′1,
i.e., they form a partition of ∆J . The concept inclusion in (B.12) yields that

every node has an sB-successor, which is either in V J or in V
J

. Then, due

to the axioms in (B.10) and (B.11), we have that BJ ∪BJ = ∆J . Moreover,

BJ and B
J

are disjoint by disjointness of V J and V
J

together with the fact

that (B u B)J = (V u V)J due to (B.15). It follows that B
J

= (¬B)J , as
required.

Point 2 follows from (B.13) and the fact that V J and V
J

form a partition
of ∆J .

Claim 2. If not (b), then not (a).

Let I1 be a model of T ′1 such that there does not exist a model I2 of T ′2
with I1|Σ′ = I2|Σ′ . We first show that:

(i) V I1 ∪ V I1 = ∆I1 ,

70

(ii) V I1 6= ∅ and V
I1 6= ∅,

(iii) V I1 6= V
I1

, and

(iv) I1 contains two elements d, d′ with d ∈ V I1 \ V I1 and d′ ∈ V I1 \ V I1 .

For (i), suppose V I1 ∪ V I1 6= ∆I1 . As the role name e is not in Σ′, we can
choose an interpretation I2 with I1|Σ′ = I2|Σ′ such that all eI2 = ∆I2 × {d}
for some d 6∈ V I2∪V I2 . Then (∃e.V)I2 = (∃e.V)I2 = ∅ and, thus, I2 trivially
satisfies C2. Moreover, since only the interpretation of e has changed and I1

is a model of C, I2 is a model of C as well since (B.13) is still true and is the
only axiom in C containing e. Hence, I2 is a model of T ′2 ; a contradiction.

Consider (ii). Given (i), at least one of V I1 and V
I1

is non-empty. But then,

the axioms in (B.14) yield that both V I1 and V
I1

are non-empty. To prove

(iii), assume that it does not hold; i.e., V I1 = V
I1

. By (i), we have that

V I1 = V
I1

= ∆I1 . Take the interpretation I2 with ∆I2 = ∆I1 and

• AI2 = ∆I2 for all A ∈ NC;

• rI2 = ∆I2 ×∆I2 , for all r ∈ NR.

Note that I2 satisfies every EL-inclusion. In particular, I2 is a model of
T ′2 . Moreover, I1|Σ′ = I2|Σ′ since by (B.15), all concept names in Σ′ are
interpreted as the full domain ∆I2 . We have derived a contradiction. Finally,
to show (iv), assume that (iv) does not hold. By (i) and (iii), we can assume

w.l.o.g. that V I1 (V
I1

= ∆I1 . Let d ∈ V
I1 \ V I1 . By (B.14), all points

in V
I1

have an f -successor in V I1 . Thus, there exists d′ ∈ V I1 such that

(d, d′) ∈ fI1 . But then d′ ∈ (V u V)I1 . By (B.16), d ∈ V
I1 ∩ V I1 ; a

contradiction.
Note that items (i) to (iv) do not imply that V I1 and V

I1
forms a

partition of ∆I1 , i.e., we can have V I1 ∩ V I1 6= ∅. Set ∆1 = V I1 ∩ V I1

and ∆2 = ∆I1 \ ∆1. Note V I1 and V
I1

form a partition of ∆2. By (iv),
we have that |∆2| ≥ 2. Due to (B.16), the set ∆2 is Γ-closed, where Γ =
sig(T1) ∪ sig(T2) ∪ {f} ∪ {sB | B ∈ (sig(T1) ∪ sig(T2)) ∩ NC}. Since we can
re-define eI1 without changing any of the properties of I1 established above
by setting

eI1 = ∆I1 ×∆2,

71

we can assume that ∆2 is Γ ∪ {e}-closed. It follows from Lemma B.1 that
the subinterpretation of I1 induced by ∆2 satisfies T ′1 . We denote this inter-
pretation by J1.

We now show that J1 is a model of T1. To this end, it is sufficient to
show

• BJ = (¬B)J for all concept names B ∈ sig(T1) and

• (∃e.V)J ∪ (∃e.V)J = ∆J

since then the inclusions in T1 follow from the inclusions in C1. For Point 1,

as V J1 and V
J1

cover ∆2, the concept inclusions in (B.10) to (B.12) yield

BJ1 ∪BJ1
= ∆2. As V J1 and V

J1
are disjoint, we obtain disjointness of BJ1

and B
J1

by (B.15). Point 1 follows. Point 2 follows from (B.13) and the fact

that V J1 and V
J1

cover ∆2.
If there does not exist a model J2 of T2 such that J2|Σ = J1|Σ then

(a) does not hold and we are done. Assume there exists such a model J2.
Based on J2 we construct a model I2 of T ′2 such that I2|Σ′ = I1|Σ′ , thus
contradicting the assumption that no such interpretation I2 exists.

We start by constructing an interpretation J ′2 with domain ∆J2 : all sym-
bols not in sig(T2)\Σ as well as the symbols in {B | B ∈ sig(T2)\Σ)}∪{sB |
B ∈ sig(T2) \ Σ} are interpreted in the same way as in J1. For all concept
names B ∈ sig(T2) \ Σ let

• BJ ′2 := BJ2 ;

• BJ
′
2 := ∆J

′
2 \BJ ′2 ;

• fix d1 ∈ V J2 and d2 ∈ V
J2

and set

s
J ′2
B := {(d, d1) | d ∈ BJ2} ∪ {(d, d2) | d ∈ ∆J2 \BJ2}.

By definition, J ′2 is a model of T ′2 such that J1|Σ′ = J ′2|Σ′ .
Define an interpretation J ′′2 with domain ∆J

′′
= ∆1 by setting

• AI2 = ∆I2 for all A ∈ NC;

• rI2 = ∆I2 ×∆I2 , for all r ∈ NR.

72

As before, J ′′2 satisfies every EL-inclusion and is, therefore, a model of T ′2 .
Let K be the subinterpretation of I1 induced by ∆1. Then K|Σ′ = J ′′2 |Σ′
since V I1 ∩V I1 = ∆1 and, by the inclusions (B.15), AI1 ⊇ ∆1 for all A ∈ Σ′.

Define I2 as the (disjoint) union of J ′2 and J ′′2 . Then I2 is a model of T ′2
since both J ′2 and J ′′2 are models of T ′2 and EL is preserved under disjoint
unions. Moreover, I2|Σ′ = I1|Σ′ , as required.

Appendix C. Proofs for Section 6

We supply the remaining proof step for Theorem 33.

Lemma C.1. Let T be an acyclic ALCI-TBox and Σ a signature. For every
interpretation I, the following conditions are equivalent:

(a) there exists a model J of T such that J |Σ = I|Σ;

(b) there exists a model J of LhsΣ(T) such that J |Σ = I|Σ.

Proof. We prove “(b) ⇒ (a)”. Let J be a model of LhsΣ(T) such that
J |Σ = I|Σ. Let Σ′ = sig(T) \ sig(LhsΣ(T)). Obtain an interpretation J ′
from J by setting ∆J

′
= ∆J and

• XJ ′ = XJ for all X ∈ (NC ∪ NR) \ Σ′;

• rJ ′ = ∅, for all r role names r ∈ Σ′;

• for concept names A ∈ Σ′ the definition of AJ
′

is by induction on the
definitorial depth of A: set AJ

′
= ∅, for all A ∈ Σ′ with dT (A) = 0.

Assume BJ
′

has been defined for all B with dT (B) = n. Let A ∈ Σ′

with dT (A) = n + 1. If A 6∈ Def(T), set AJ
′

= ∅; otherwise there is a
unique concept definition A ≡ C ∈ T such that BJ

′
is defined for all

B ∈ sig(C). Set AJ
′
= CJ

′
.

Observe that J ′|Σ = I|Σ since Σ ∩Σ′ = ∅ and J |Σ = I|Σ. We show that J ′
is a model of T . Since J coincides with J ′ on sig(LhsΣ(T)), J ′ is a model
of LhsΣ(T). Now let A ./ C ∈ T \ LhsΣ(T). By definition of LhsΣ(T), we
have A ∈ sig(T) \ sig(LhsΣ(T)). We distinguish two cases: First, let A ./ C
be of the form A v C. Then AJ

′
= ∅ and so J ′ satisfies A v C. Second, let

A ./ C be of the form A ≡ C. Then AJ
′

= CJ
′

and so J ′ satisfies A ≡ C,
as required.

73

Appendix D. Proofs for Section 7

The following lemma is a straightforward generalisation of a claim from
the proof of Theorem 69 in [14].

Lemma D.1. Let T be an acyclic ALCI-TBox, Σ a signature, and M⊆ T
such that T \M does not contain any direct (Σ ∪ sig(M))-dependency and
T \M ≡(Σ∪sig(M)) ∅. Suppose Σ′ is such that Σ ⊆ Σ′ ⊆ (Σ∪ sig(M)) and let
W ⊆ T be a minimal set such that either W contains a direct Σ′-dependency
or W 6≡Σ′ ∅. Then W ⊆M.

Proof. Suppose the lemma does not hold, i.e., W 6⊆ M. Let X = M∩W .
Then X does not contain direct Σ′-dependencies and X ≡Σ′ ∅ (for otherwise
X is a proper subset ofW such that either X contains a direct Σ′-dependency
or X 6≡Σ′ ∅, contrary to the minimality of W). Notice that (T \M) ∪ X is
an acyclic TBox.

First we prove thatW does not have any direct Σ′-dependency. We show
this by demonstrating that (T \M) ∪ X ⊇ W does not have any direct Σ′-
dependency. If that is not the case, let {A,B} ⊆ Σ′ be such that A ≺+

(T \M)∪X
B. Let A = Y1, . . . , Yn = B be such that Yi ./ Ci ∈ (T \M)∪X , for some Ci,
and Yi+1 occurs in Ci, for all 1 ≤ i < n. Clearly, as (T \M)∪X is an acyclic
TBox, every such Yi ./ Ci either occurs in T \M or in X . As A 6≺+

(T \M) B

and A 6≺+
X B, either there exists X ∈ sig(X) such that A ≺+

T \M X or there

exists Y ∈ sig(X) such that Y ≺+
T \M B or there exists {X, Y } ⊆ sig(X) such

that X ≺+
T \M Y . In either case, as (Σ′ ∪ sig(X)) ⊆ (Σ ∪ sig(M)), T \ M

contains a direct (Σ∪ sig(M))-dependency contradicting the assumptions of
the lemma.

Now we show thatW ≡Σ′ ∅, which together with the fact thatW does not
contain any direct Σ′-dependency, contradicts the assumptions of the lemma.
As T \M ≡(Σ∪sig(M)) ∅, by Theorem 5 (robustness under replacement) we
obtain (T \ M) ∪ X ≡(Σ∪sig(M)) X . Using Σ′ ⊆ (Σ ∪ sig(M)) and the
monotonicity property of inseparability we conclude from X ≡Σ′ ∅ that (T \
M)∪X ≡Σ′ ∅. As ∅ ⊆ W ⊆ (T \M)∪X , we obtainW ≡Σ′ ∅, as required.

For the convenience of the reader, we explicitly present in Figure D.6 the
modification of the algorithm given in Figure 2 and re-state Theorem 36.

Theorem 36. Let T be an acyclic ALCI-TBox and Σ a signature. Then
the algorithm given in Figure D.6 computes the unique minimal depleting

74

Input: TBox T and Σ.
M := ∅;
W := ∅;
while (T \M) 6=W do

choose α ∈ (T \M) \W
W :=W ∪ {α};
if W 6≡(Σ∪sig(M)) ∅ or W contains a direct (Σ ∪ sig(M))-dependency
then
M :=M∪ {α};
W := ∅

endif
end while
output M

Figure D.6: The modified black box algorithm

Σ-module M such that T \ M does not have any direct (Σ ∪ sig(M))-
dependencies.

Proof. By Theorem 34, we can check effectively (in fact in Σp
2) whether W

has a (Σ ∪ sig(M))-dependency or W ≡(Σ∪sig(M)) ∅. Thus, we indeed have
an effective procedure. It partitions T into two sets M and W with W
having no direct (Σ ∪ sig(M))-dependency and W ≡(Σ∪sig(M)) ∅. So, M
is a depleting Σ-module of T such that T \ M does not have any direct
(Σ ∪ sig(M))-dependency.

It remains to show that we obtain the unique minimalM with this prop-
erty. To this end, letM0 ⊆ T be such that T \M0 does not have direct any
(Σ∪ sig(M0))-dependency and T \M0 ≡Σ∪sig(M0) ∅. We prove by induction
on the number of loop iterations that at every loop iteration the set M is
contained in M0.

Initially, M = ∅ ⊆ M0. Now let W and α from the while loop of the
algorithm be such thatW does not have any direct (Σ∪sig(M))-dependency
and W ≡Σ∪sig(M) ∅ but either (W ∪ {α}) contains a direct (Σ ∪ sig(M))-
dependency or (W ∪ {α}) 6≡Σ∪sig(M) ∅. By induction hypothesis, sig(M) ⊆
sig(M0). There must exist a minimal W ′ ⊆ (W ∪ {α}) such that either W ′
contains a direct (Σ ∪ sig(M))-dependency or W ′ 6≡Σ∪sig(M) ∅. It should be
clear that α ∈ W ′. But then we can apply Lemma D.1 (with Σ′ = Σ∪sig(M),

75

Input: acyclic ELI-TBox T and signature Σ.
Initialise: M = ∅.
Apply the rule (Loc) exhaustively.
Output: M.

(Loc) if A v C ∈ T \M is non-x-local w.r.t. (Σ ∪ sig(M)) then
set M :=M∪ {A v C}.

Figure E.7: x-module extraction in ELI

M = M0, and W ′ = W) and conclude W ′ ⊆ M0. Hence α ∈ M0, as
required.

Appendix E. Proofs for Section 8

In this section, we first show Proposition 38 and then develop an algo-
rithm that extracts depleting modules from acyclic ELI-TBoxes with role
inclusions.

We first define locality-based module extraction specialised to acyclic
ELI-TBoxes without concept definitions. Let Σ be a signature. A prim-
itive concept inclusion A v C is called

• non-⊥-local w.r.t. Σ if A ∈ Σ;

• non->-local w.r.t. Σ if sig(C) ∩ Σ 6= ∅.

Let M ⊆ T , where T contains no concept definitions. For x ∈ {>,⊥},
M is the x-module of T w.r.t. Σ if it is the output of the algorithm from
Figure E.7. Consider the sequence M0 ⊇ M1 ⊇ M2 ⊇ · · · where M0 = T
and M2i+1 is the ⊥-module of M2i w.r.t. Σ for all i ≥ 0 and M2i+2 is the
>-module of M2i+1 w.r.t. Σ for all i ≥ 0. Then M is the STAR-module of
T w.r.t. Σ if M = Mi for the minimal i > 0 such that Mi+1 = Mi. It is
straightforward to check that in the case of acyclic ELI-TBoxes containing
no concept definitions the definition of STAR-module given here coincides
with the definition given in [17].
⊥-modules can be characterised in terms of syntactic dependencies. The

following lemma can be proved by induction on the number of rule appli-
cation in the computation of M by the ⊥-module extraction algorithm in
Figure E.7.

76

Lemma E.1. Let T be an acyclic ELI-TBox containing no concept defi-
nitions and Σ a signature. Let M be the ⊥-module of T w.r.t Σ. Then
A v C ∈ M if, and only if, A ∈ Σ or there exists a concept name B ∈ Σ
such that A ∈ dependT (B).

We also note the following properties of minimal depleting Σ-modules.

Lemma E.2. Let T be an acyclic ELI-TBox containing no concept defi-
nitions and Σ a signature. Let M be the minimal depleting Σ-module of
T .

1. Let {A0 v C0, . . . , An v Cn} ⊆ T such that A0 ∈ Σ, sig(Cn) ∩ Σ 6= ∅,
and Ai+1 ∈ sig(Ci) for all i < n. Then Ai v Ci ∈M, for all i ≤ n.

2. The mimimal depleting (Σ ∪ sig(M))-module of T coincides with M.

We are in the position to prove Proposition 38.

Proposition 38. Let T be an acyclic ELI-TBox containing no concept def-
initions. Then the STAR-module of T w.r.t. Σ coincides with the minimal
depleting Σ-module of T , for every signature Σ.

Proof. Let Mmin be the minimal depleting Σ-module of T and let M∗ be
the STAR-module of T w.r.t. Σ. We haveMmin ⊆M∗ since STAR-modules
are depleting modules.

To prove the inclusion M∗ ⊆ Mmin, note that the >-module of M∗

w.r.t. Σ (as well as ⊥-module ofM∗ w.r.t. Σ) coincide withM∗ itself. Thus,
the >-module extraction algorithm in Figure E.7 applied to M∗ and Σ out-
puts M∗ itself. Let ∅ = M∗

0 (M∗
1 (· · · (M∗

n = M∗, for some n ≥ 0,
be the steps in the computation of the >-module of M∗ by the >-module
extraction algorithm in Figure E.7; that is, M∗

i+1, for 0 ≤ i < n, is obtained
fromM∗

i by adding one primitive concept inclusion Ai+1 v Ci+1 ∈M∗ \M∗
i

such that Ai+1 v Ci+1 is non->-local w.r.t. (Σ ∪ sig(M∗
i)). We prove the

following claim by induction on i for every i < n,

Ai+1 v Ci+1 ∈Mmin. (∗)

For i = 0 note that M∗
0 = ∅. Hence A1 v C1 is non->-local w.r.t.

Σ, that is, sig(C1) ∩ Σ 6= ∅. As M∗ itself is the ⊥-module of M∗ w.r.t.
Σ, by Lemma E.1, either A1 ∈ Σ or there exists B ∈ Σ ∩ NC such that

77

A1 ∈ dependM∗(B). As M∗ ⊆ T we have A1 ∈ Σ or A1 ∈ dependT (B). By
Lemma E.2 (1) we obtain A1 v C1 ∈Mmin.

For the induction step, asssume that (∗) is proved for all i < j, for some
j < n. Then M∗

j ⊆ Mmin. Similar to the argument above, either Aj+1 ∈ Σ
or there exists B ∈ Σ∩NC such that Aj+1 ∈ dependT (B). As Aj+1 v Cj+1 is
non->-local w.r.t. (Σ∪ sig(M∗

j)), we have sig(Cj+1)∩ (Σ∪ sig(M∗
j)) 6= ∅. But

then sig(Cj+1) ∩ (Σ ∪ sig(Mmin)) 6= ∅ and, by Lemma E.2 (1), Aj+1 v Cj+1

belongs to the minimal depleting (Σ ∪ sig(Mmin))-module of T . Hence, by
Lemma E.2 (2), Aj+1 v Cj+1 ∈Mmin, as required.

We present a module extraction algorithm for acyclic ELI-TBoxes with
role inclusions. The union C of an acyclic ELI-TBox T and a set R of role
inclusions of the form r v s, where r is a role name and s is a role (a role
name or an inverse role), is called an acyclic ELI-constraint box (CBox). An
interpretation I satisfies r v s if rI ⊆ sI , and I satisfies C if I satisfies T
and every role inclusion from C. Other semantic notions and notions relevant
for modularity introduced above (signature of a role inclusion, depleting and
self-contained module, etc.) are extended to role inclusions and CBoxes in
the obvious way.

In particular, for an acyclic ELI-CBox C = T ∪ R, signature Σ, and
A ∈ Σ,

• set dependC(A) = dependT (A) ∪ {r ∈ NR | ∃r′ ∈ dependT (A) such that
C |= r′ v r or C |= r′ v r−};

• say that A has a direct Σ-dependency in C if dependC(A) ∩ Σ 6= ∅;

• say that A has an indirect Σ-dependency in C if there are A1, . . . , An ∈
Lhs(T) ∩ Σ and A ∈ Def(T) ∩ Σ such that A /∈ {A1, . . . , An} and

depend≡T (A) \ Def(T) ⊆
⋃

1≤i≤n

dependC(Ai);

• and say that C contains a Boolean Σ-constraint if there is a P ⊆
Lhs(T) ∩ Σ such that the concept

CP =
l

A∈P

A u
l

A∈(Lhs(T)∩Σ)\P

¬A

is not satisfiable in a one-point model of C.

78

The relationship between direct and indirect Σ-dependencies and Boolean
Σ-constraints established in Lemma 23 carries over to CBoxes.

Lemma E.3 (CBox version of Lemma 23). Let C = T ∪ R be an acyclic
ELI-CBox and Σ be a signature. If C does not contain neither a direct nor an
indirect Σ-dependency, then C does not contain any Boolean Σ-constraints.

Proof. For every P ⊆ Lhs(T) ∩ Σ we define a one-point interpretation I in
the same way as in the proof of Lemma 23 with the only exception that for
all r ∈ NR, we set

rI =

{
{(d, d)} : r ∈

⋃
B∈P dependC(B)

∅ : otherwise

(The difference is that we consider dependC rather than dependT .) Exactly
the same argument as in the proof of Lemma 23 shows that I is a model of
T and the concept CP is satisfied in I.

To show that I is a model of R let r v s ∈ R and suppose that
(d, d) ∈ rI . Then, by definition of I, r ∈

⋃
B∈P dependC(B). But then

s ∈
⋃
B∈P dependC(B), if s is a role name, and s− ∈

⋃
B∈P dependC(B), if s is

an inverse role. In any case, (d, d) ∈ sI , as required.

Notice that in contrast to our results for acyclic ELI-TBoxes the absence
of direct Σ-dependencies and Boolean Σ-constraints does not imply safety of
acyclic ELI-CBoxes.

Example E.4. Consider C = {r v s, A ≡ ∃s.X} and Σ = {A, r}. Clearly C
does not contain neither a direct nor an indirect Σ-dependency. On the other
hand, for a two-point interpretation I such that ∆I = {d1, d2}, AI = {d1},
rI = ∆I ×∆I, it is easy to see that there exists no model J of C such that
J |Σ = I|Σ: to satisfy the CBox, sJ has to be ∆I ×∆I but then one cannot
have both d1 ∈ (∃s.X)J and d2 /∈ (∃s.X)J .

Thus, without any additional conditions on the modules the module extrac-
tion algorithm developed above for acyclic TBoxes is not sound for acyclic
CBoxes. We now show that being ⊥-local for Σ-role inclusions [12] is a con-
dition on modules that facilitates a sound extension of our module extraction
algorithm.

Definition E.5 (⊥-locality for Σ). Let R be a set of role inclusions and Σ
a signature. We say that R is ⊥-local for Σ if, and only if, there exists no
r v r′ ∈ R with r ∈ Σ.

79

Input: Acyclic ELI-CBox C = T ∪ R and signature Σ.
Initialise: M = ∅.
Apply the Rules 1, 2 and 3 exhaustively, preferring (R1) to (R2) and (R2)
to (R3)
Output: M.

(R1) if r ∈ (Σ∪ sig(M)) and r v r′ ∈ C \M, then setM :=M∪{r v r′}.

(R2) if A ∈ (Σ ∪ sig(M)) has a direct (Σ ∪ sig(M))-dependency in C \M
then set M :=M∪ {A ./ C} for A ./ C ∈ C \M.

(R3) if A ∈ (Σ∪sig(M)) has an indirect (Σ∪sig(M))-dependency in T \M
then set M :=M∪ {A ≡ C} for A ≡ C ∈ T \M.

Figure E.8: Module extraction for ELI-CBoxes

Lemma E.6 (CBox version of Lemma 24). Let C = T ∪ R be an acyclic
ELI-CBox and Σ a signature such that R is ⊥-local for Σ. If C contains no
direct Σ-dependency and no Boolean Σ-constraints then C ≡Σ ∅.

Proof. Let I be an arbitrary interpretation. For each d ∈ ∆I , let

Pd = {A ∈ Lhs(T) ∩ Σ | d ∈ AI}.

Since C does not contain any Boolean Σ-constraints, for each d ∈ ∆I there
is a one-point model Id of C that satisfies CPd

. Let J be defined as in the
proof of Lemma 24. Then I|Σ = J |Σ and J is a model of T . Recall that for
all r ∈ NR

rJ =

{
rI if r ∈ Σ⋃
d∈∆I r

Id otherwise

To prove that J is a model of R let r v s ∈ R. As R is ⊥-local for Σ, r /∈ Σ.
But then rJ =

⋃
d∈∆I r

Id . As every Id is a model of C, we have J |= r v s,
as required.

We obtain the main result of this section.

Theorem E.7 (Soundness of module extraction algorithm). For any acyclic
ELI-CBox C and signature Σ the output of the algorithm in Figure E.8 is a
depleting Σ-module of C.

80

Proof. Let M be the output of the algorithm in Figure E.8. Then C \ M
does not contain neither a direct nor an indirect (Σ ∪ sig(M))-dependency
and the role inclusions of C\M are ⊥-local for (Σ∪sig(M)). By Lemmas E.3
and E.6, M is a depleting Σ-module of T .

Notice that if C does not contain any role inclusions, the output of the
algorithm in Figure E.8 coincides with the output of the algorithm in Fig-
ure 3.

81

