
Temporal logics over transitive states

Boris Konev1, Frank Wolter1 and Michael Zakharyaschev2

1 Department of Computer Science
University of Liverpool
Liverpool L69 7ZF, U.K.

{b.konev,frank@csc.liv.ac.uk}
2 Department of Computer Science

King’s College London,
Strand, London WC2R 2LS, UK

mz@dcs.kcl.ac.uk

Abstract. We investigate the computational behaviour of ‘two-dimen-
sional’ propositional temporal logics over (N, <) (with and without the

next-time operator L) that are capable of reasoning about states with
transitive relations. Such logics are known to be undecidable (and even
Π1

1 -complete) if the domains of states are assumed to be constant. Mo-
tivated by applications in the areas of temporal description logic and
specification and verification of hybrid systems, in this paper we analyse
the computational impact of allowing the domains of states to expand.
We show that over finite expanding domains (with an arbitrary, tree-
like, quasi-order, or linear transitive relation) the logics are recursively
enumerable, but undecidable. If these finite domains eventually become
constant then the resulting L-free logics are decidable (but not in prim-

itive recursive time); on the other hand, when equipped with L they are
not even recursively enumerable. Finally, we show that temporal logics
over infinite expanding domains as above are undecidable even for the
language with the sole temporal operator ‘eventually.’ The proofs are
based on Kruskal’s tree theorem and reductions of reachability problems
for lossy channel systems.

1 Introduction

Temporal logics are used in computer science and artificial intelligence to model
states (of soft or hardware, data or knowledge bases, spatial regions, multi-
agent systems, etc.) changing over time. For uniformity, we can think of such
states as first- or higher-order structures of some fixed signature. Perhaps the
best known example is LTL, the propositional linear temporal logic of infinite
sequences σ0σ1 . . . of states, equipped with temporal operators like �F ‘always
in the future’ orL ‘at the next state.’ LTL is decidable in PSPACE [29], reasoning
with this logic can be mechanised using tableaux [31] or resolution [6], with the
existing provers performing reasonably well [16, 28].

However, being propositional, LTL is only capable of reasoning about states of
some fixed finite size which must be known in advance. This restriction seriously

limits the scope of applications of LTL in areas where infinite or arbitrarily finite

states are required. Typical examples of such applications are:

– verification and specification of ‘infinite state systems’ such as real-time sys-
tems, hybrid (dynamical) systems, broadcast protocols, and channel systems;

– spatio-temporal representation and reasoning in artificial intelligence (where
the states modelling space are usually either unbounded or infinite);

– temporal data or knowledge bases, e.g., ‘dynamic’ ontologies or temporal
entity relationship models (where states are finite, but one cannot impose a

priory any upper bound on their size);
– distributed multi-agent systems.

The obvious idea to cope with unbounded states by means of ‘upgrading’ propo-
sitional temporal logic to first-order one is extremely expensive: first-order LTL is
not recursively enumerable (in fact, Π1

1 -hard; see, e.g., [7, 8]), and so we cannot
even have a semi-decision procedure.

The attempts to ‘tame’ first-order temporal logic in the fields of temporal
data and knowledge bases, multi-agent systems and spatio-temporal representa-
tion and reasoning have led to semi-decidable and decidable fragments that can
be obtained by imposing certain independence and locality restrictions.

The monodic fragment of first-order LTL allows applications of temporal op-
erators to formulas with at most one free variable [15]. Thus, in the framework of
this fragment we can only control the temporal change of properties—i.e., unary
predicates—of states, while binary, ternary, etc. relations can change arbitrarily.
The full monodic fragment turns out to be semi-decidable [33], and if we restrict
the first-order part to a decidable fragment (for example, to the two-variable or
guarded fragments), then the resulting monodic fragment is usually decidable as
well. The simplest interesting fragment of this sort is the one-variable first-order
LTL (Sistla and German [30] considered it in the context of verification). Vari-
ous spatio-temporal logics based on spatial formalisms like RCC-8, BRCC-8, etc.
can be encoded in the one-variable first-order temporal logic [8, 9] and therefore
inherit its good computational properties. Monodic fragments of this kind are
usually decidable in elementary time [8], and both tableau- and resolution-based
provers have been developed and implemented for monodic temporal logics [20,
18, 17].

The idea of monodicity is based on two conditions: the ‘positive’

Mono+: temporal constraints can be imposed on unary predicates

and the ‘negative’

Dya−: no temporal constraints can be imposed on n-nary predicates for n ≥ 2.

Having in mind possible applications of temporal logic mentioned above, con-
dition Dya− appears too restrictive. In fact, in temporal knowledge bases (say,
temporal description logics), more sophisticated spatio-temporal formalisms, in
particular dynamic topological logics (designed for reasoning about safety and

liveness properties of hybrid systems), or infinite state systems we do need to
control binary relations, for instance, to ensure that some of them do not change
in time or can only expand.

Thus, we are facing the problem of weakening Dya− without compromising
too much the good computational behaviour of the monodic fragment.

Some limits for such a weakening are well-known. For example, one can-
not simply replace Dya− with Dya+, for n = 2, because even the monadic
two-variable fragment of first-order temporal logic with one constant binary re-

lation is not recursively enumerable. So it seems that without imposing extra
constraints on the language no weakening of Dya− can result in new and inter-
esting decidable temporal logics.

Mono+ and locality. The strongest existing decidable temporal logics that are
capable of controlling binary relations of unbounded states replace Dya− with
some locality conditions which can be characterised as follows:

(1) over time, binary relations can be constant or expanding, or can change
arbitrarily,

(2) within states, these binary relations can satisfy some local constraints like
reflexivity, symmetry, the triangle inequality (for metric), but not transitiv-
ity,

(3) the language referring to binary relations is local in the sense that we are
only allowed to quantify along these relations like in modal or description
logic.

Basically, conditions (2)–(3) mean that every satisfiable formula ϕ of our lan-
guage can be satisfied in a model where the length of any strict path of the form
x0Rx1 . . . Rxn is bounded by an elementary function depending on ϕ.

The resulting formalisms can be regarded as extensions of propositional LTL
with propositional modal-like (or description logic) operators over states. Typ-
ical examples are temporal description logics [26, 32] (where the states are de-
scribed by the standard ALC and its extensions), temporal epistemic logics [13,
8] (with state languages like S5m), and a number of temporal metric logics [19].
The satisfiability problem for such logics is often non-elementary (but primitive
recursive).

It is worth noting that by adding to the language a non-local state operator
(such as the universal modality) we immediately obtain an undecidable logic.

Transitive states. The most important example of a non-local constraint on
binary relations is transitivity which occurs naturally in almost all the examples
mentioned above: words in the channel of a channel system are linearly ordered
(and therefore based on a transitive structure), expressive description logics allow
transitive relations to model, e.g., the part-of relation, quasi-order structures
representing topological spaces are transitive, common knowledge operators in
epistemic logics are interpreted by transitive relations.

Unfortunately, even a single transitive relation which does not change over
time (and interprets the ‘modal’ operator from (3) in the standard way) leads

to an undecidable (even Π1
1 -complete) temporal logic [8, 11]. This also holds

true if we impose on the transitive relation some extra conditions like linearity,
reflexivity, being a tree etc. Undecidability strikes even for the language with
sole temporal operator `F (without next-time or until) and even if we are only
interested in safety properties (that is, interpret the language not over N but
over arbitrary finite initial segments of N).

The proofs of these ‘negative’ results heavily use the constant domain as-

sumption (according to which the domains of all states coincide) and that,
therefore, if uRv holds in some state (where R is the transitive relation and
u, v are some state elements) then uRv must hold in all states. Notice, how-
ever, that this natural assumption becomes inadequate for some applications. In
temporal data and knowledge bases new objects may be created which gives us
states with expanding domains : that uRv holds in some state σ only means that
it also holds in all subsequent states, while before σ elements u and v may not
exist. Similarly, topological dynamic systems with continuous functions give rise
to states with expanding domains [22, 19]. And constructive logics like first-order
intuitionistic logic can only be interpreted in models with expanding domains.

It is known that logics with expanding domains are reducible to logics with
constant domains; see, e.g., [8]. A major open problem was whether the former
can have better computational properties than the latter. A partial affirmative
answer (for logics with finite flows of time) was obtained in [10]. Here we inves-
tigate this problem in full generality.

We show that over finite expanding domains (with an arbitrary, tree-like,
quasi-order, or linear transitive relation) the logics are recursively enumerable,
but undecidable. If these finite domains eventually become constant then the
resulting L-free logics are decidable (but not in primitive recursive time); on

the other hand, when equipped with L they are not even recursively enumer-
able. (Decidability can also be recovered for full LTL if we consider only safety
properties, that is models with finite flows of time [10].) Finally, we show that
temporal logics over infinite expanding domains as above are undecidable even
for the language with the sole temporal operator ‘eventually.’ The proofs are
based on Kruskal’s tree theorem and reductions of reachability problems for
lossy channel systems.

2 Temporal models with expanding domains

We begin by introducing the intended semantics for our temporal language dis-
cussed above. The only flow of time we deal with in this paper is (N, <). States
are first-order structures with one transitive binary relation and countably many
unary predicates. More precisely, let S be a function which associates with every
x ∈ N a structure

S(x) = (Wx, Rx, P
1
x , P

2
x , . . .) (1)

where Wx is a nonempty set, Rx ⊆ Wx ×Wx, and P
i
x ⊆ Wx for all i. We will

call S a temporal model with expanding domains, or an e-model, for short, if it
satisfies the following conditions: whenever x < y then

– Wx ⊆Wy and
– for all u, v ∈ Wx, we have uRxv iff uRyv.

(see Fig. 1).

❝ ❝ ❝✲ ✲

r r r

r rr r

r r

r

❅
❅❅■

❅
❅❅■

�
��✒

�
��✒

✟✟✟✟✟✯ ✻

✻■ ■

. . .

✓
✒

✏
✑

✬

✫

✩

✪

✬

✫

✩

✪
S(0)

S(1) S(2)

0 1 2

Fig. 1. An e-model S.

We consider two propositional languages T L and T L
L

for speaking about

e-models. The former contains the temporal operator `F (and its dual �F), the

modal diamond h (and its dual box H) interpreted over the binary relations
in the states, as well as state variables (unary predicates) p1, p2, . . . and the

Booleans. T L
L

extends this language with the next-time operator L. Thus, the
formulas ϕ of T L

L

can be defined by taking

ϕ ::= pi | ¬ϕ | ϕ1 ∧ ϕ2 | hϕ | `Fϕ | Lϕ

To simplify inductive proofs, we do not include in the language T L
L

the ‘until’
operator U . As there is a satisfiability preserving reduction of formulas with U
to T L

L

-formulas (see, e.g., [5] or Section 7 below), all our results for T L
L

hold
for the language with U as well.

Given an e-model S of the form (1), x ∈ N and u ∈ Wx, we define the
truth relation S, (x, u) |= ϕ (or simply (x, u) |= ϕ, if understood) inductively as
follows:

– (x, u) |= pi iff u ∈ P i
x,

– (x, u) |= hψ iff there exists v ∈Wx such that uRxv and (x, v) |= ψ,

– (x, u) |= `Fψ iff there exists y ∈ N such that x < y and (y, u) |= ψ,

– (x, u) |= Lψ iff (x+ 1, u) |= ψ,

plus the standard clauses for the Boolean connectives.

We say that ϕ is satisfied in S if (x, u) |= ϕ for some x ∈ N and u ∈ Wx; ϕ
is valid in S (S |= ϕ, in symbols) if (x, u) |= ϕ holds for every pair (x, u) with
u ∈Wx. If all formulas from a set Σ ⊆ L

L

are valid in S then we write S |= Σ.
In this paper, we consider the following classes of e-models S of the form (1):

– A, the class of all e-models,
– QO, the class of e-models with quasi-ordered states, that is, each Rx is

transitive and reflexive,
– T , the class of e-models S where each (Wx, Rx) is a tree,
– L, the class of e-models S where each (Wx, Rx) is a strict linear order.
– the subclasses Afin, QOfin, Tfin, Lfin of the classes above that only have finite

states,
– the subclasses Cc of the above classes C containing only models with even-

tually constant domains in the sense that there exists n ∈ N such that
(Wx, Rx) = (Wn, Rn) for all x ≥ n.

Let C be one of the classes of e-models defined above. Our goal is to investigate
the computational properties of the logics

LogC = {ϕ ∈ T L | ∀S ∈ C S |= ϕ}

and
Log

L

C = {ϕ ∈ T L
L

| ∀S ∈ C S |= ϕ}.

Our starting point is the results from [12, 8] according to which the corre-
sponding logics under the constant domain assumption are not recursively enu-
merable, with some of them being actually Π1

1 -complete. By allowing models
with expanding domains, we hope to obtain more positive results.

Our hopes are not groundless. We will use Kruskal’s tree theorem to prove
the following:

Theorem 1. Let C ∈ {Afin,QOfin, Tfin,Lfin}. Then Log
L

C (and therefore LogC)
is recursively enumerable.

It remains an open problem whether the same can be proved for the corre-
sponding classes of models with not necessarily finite states. However, none of
these logics is decidable:

Theorem 2. Let C ∈ {A,QO, T ,L,Afin,QOfin, Tfin,Lfin}. Then LogC (and there-

fore Log
L

C) is undecidable.

This result is proved by encoding the undecidable ω-reachability problem for
lossy channel systems (see below for definitions).

Consider now the impact of the assumption that eventually the states are
constant. In this case we reveal a crucial difference between full LTL and LTL

with sole temporal operator `F :

Theorem 3. Let C ∈ {Ac

fin
,QOc

fin
, T c

fin
,Lc

fin
}. Then

(i) LogC is decidable (but not in primitive recursive time), while
(ii) Log

L

C is not recursively enumerable.

The proofs are based on Kruskal’s tree theorem, a reduction of the non-
primitive recursive reachability problem for lossy channel systems, and a reduc-
tion of the undecidable Post correspondence problem (PCP).

Below we only present the proofs of these theorems for the class Lfin of finite
strict linear orders. It is not completely trivial to extend these proofs to arbitrary
transitive structures or quasi-orders. For instance, to deal with branching and/or
reflexive states, constructions from [10] should be combined with the techniques
introduced in the present paper. Also, applications of Higman’s lemma [14] have
to be replaced by the corresponding applications of Kruskal’s tree theorem [23].
To prove Theorem 3 (ii) in full generality, the undecidable ‘master problem’ used
in this paper (reachability for non-lossy channel systems) should be replaced by
PCP as in [8, 19].

3 Recursive enumerability

In this section we prove the following:

Theorem 4. Log
L

Lfin is recursively enumerable.

Given a T L
L

-formula ϕ, let subϕ be the set of all subformulas of ϕ and their
negations. Denote by Tϕ the set of Boolean types t over subϕ, where

– ¬ψ ∈ t iff ψ /∈ t, for every ¬ψ ∈ subϕ, and
– χ ∧ ψ ∈ t iff χ ∈ t and ψ ∈ t, for every χ ∧ ψ ∈ subϕ.

A Tϕ-word T = 〈T,<, l〉 is a finite strict linear order 〈T,<〉 with a labelling

function l which assigns to every u ∈ T a type l(u) ∈ Tϕ. A Tϕ-word T = 〈T,<, l〉

is said to be coherent if, for every hψ ∈ subϕ and every u ∈ T , we have
hψ ∈ l(u) iff there exists a v ∈ T such that u < v and ψ ∈ l(v).

Consider a function f associating with every natural number x a coherent
Tϕ-word f(x) = 〈Tx, <x, lx〉. A run r through f is a function with the domain

dom r = {k ∈ N | k ≥ m},

for some m ∈ N, such that r(x) ∈ Tx for all x ∈ dom r and

– for every x ∈ dom r and every `Fψ ∈ subϕ, we have `Fψ ∈ r(x) iff there
exists y > x such that ψ ∈ r(y);

– for all x ∈ dom r and all Lψ ∈ subϕ, we have Lψ ∈ r(x) iff ψ ∈ r(x + 1).

If n is the minimal number of dom r then we say that r starts at n.
For a set R of runs through f, we say that the pair (f,R) is a quasimodel for

ϕ if the following conditions are satisfied:

(q0) ϕ ∈ l0(w) for the minimal w in T0,

(q1) for all x ∈ N and w ∈ Tx, there is a unique run r ∈ R such that r(x) = w.

(q2) for all r, r′ ∈ R and all x, y ∈ dom r∩dom r′, r(x) <x r
′(x) iff r(y) <y r

′(y).

Lemma 1. A T L
L

-formula ϕ is satisfiable in an e-model from Lfin iff there

exists a quasimodel for ϕ.

Proof. We only show the implication (⇐) and leave the (basically trivial) other
direction to the reader.

Given a quasimodel (f,R) for ϕ, define

S(x) = (Wx, Rx, P
1
x , P

2
x , . . .)

by taking, for x ∈ N,

– Wx = {r ∈ R | x ∈ dom r},
– rRxr

′ iff r(x) <x r
′(x), whenever x ∈ dom r ∩ dom r′,

– P i
x = {r ∈ R | x ∈ dom r, pi ∈ lx(r(x))}.

Clearly, S is an e-model from Lfin. By a straightforward induction on the con-
struction of ψ ∈ subϕ one can show that (x, r) |= ψ iff ψ ∈ r(x). The claim of
the lemma follows now from (q0).

Of course, the unsurprising Lemma 1 simply reformulates the notion of satis-
fiability in Lfin into the language of quasimodels. However, this language will be
convenient for showing that actually we can effectively enumerate those formulas
that do not have quasimodels.

Suppose we are given a quasimodel (f,R) for ϕ as above. Formulas of the form

`Fψ that occur in some lx(w), x ∈ N, will be called eventualities in f(x). We say

that an eventuality `Fψ ∈ lx(w) is realised at y > x if y is the minimal number
such that ψ ∈ ly(r(y)), where r is that unique run in R for which r(x) = w. An
eventuality is realised until z (or in the interval (n,m)) if it is realised at some
y < z (at some y ∈ (n,m), respectively).

We say that f(y) = 〈Ty, <y, ly〉 is embeddable into f(z) = 〈Tz, <z, lz〉, where
y < z, if there exists an injective map g : Ty → Tz such that, for all u, v ∈ Ty,

– u <y v iff g(u) <z g(v),
– lz(g(u)) = ly(u).

If x < y < z and f(y) is embeddable into f(z) by a map g respecting the runs
through f(x) in the sense that g(r(y)) = r(z) whenever x ∈ dom r then we say
that f(y) is x-embeddable into f(z)

Let ℓ(ϕ) be the length of ϕ, say, ℓ(ϕ) = |subϕ| and let s(n, ϕ) = (ℓ(ϕ)+1)n+1.

Lemma 2. A T L
L

-formula ϕ is satisfiable in an e-model from Lfin iff there is

a quasimodel (f,R) for ϕ such that

(A) |Tn| ≤ s(n, ϕ), where f(n) = 〈Tn, <n, ln〉, n ∈ N, and

(B) for the sequence 0 = k0 < k1 < k2 < . . . of minimal numbers such that all

eventualities in f(ki) are realised until ki+1, if ki < n < m < ki+1 and f(n)
is ki-embeddable into f(m), then some eventuality from f(ki) is realised in

the interval (n,m).

Proof. Suppose that a quasimodel (h,Q) for ϕ is given, with h(n) = 〈Tn, <n, ln〉,
n ∈ N. Define two operations shrink and delete on (h,Q).

Shrink makes Tn of size ≤ s(n, ϕ) provided that |Tn−1| ≤ s(n−1, ϕ) or n = 0.
If n = 0, then set T = {w}, where w is minimal in 〈T0, <0〉. If n > 0, then let
T ⊆ Tn be the set of points w ∈ Tn such that there exists a run r ∈ Q with
r(n) = w and n− 1 ∈ dom r.

Define T ′
n ⊆ Tn by adding to T the set of all <n-maximal points u ∈ Tn such

that there is some w ∈ T , w <n u, with hψ ∈ ln(w) and ψ ∈ l(u). It should be
clear that the size of T ′

n is as required. Denote by <′
n and l′n the restrictions of

<n and ln to T ′
n, respectively. Clearly, 〈T

′
n, <

′
n, l

′
n〉 is coherent. Now define h′ by

taking, for m ∈ N,

h′(m) =

{

h(m) if m 6= n,
〈T ′

n, <
′
n, l

′
n〉 if m = n.

Finally, define a set Q′ of runs as follows: we put r to Q′ if r ∈ R and n /∈ dom r,
or if n ∈ dom r and r(n) ∈ T ′

n; and if n ∈ dom r but r(n) /∈ T ′
n then we put to Q′

the restriction of r to {n+ 1, . . . }. It is easy to see that (h′,Q′) is a quasimodel
for ϕ.

Delete removes a part of the quasimodel between h(n) and h(m), n < m, if
the former is embeddable in the latter. More precisely, let x < n < m and h(n) is
x-embeddable in h(m) by some injection g. Construct a new quasimodel (h′,Q′)
as follows. First we set

h′(k) =

{

h(k) if k < n,
h(k +m− n) if k ≥ n

(that is we ‘cut off’ the words h(n), . . . , h(m− 1) from the original quasimodel).
And then we construct Q′ by putting into it runs r′ defined by taking

– if r ∈ R starts at k ∈ [n,m] then r′ starts as n and r′(n + y) = r(m + y),
y ≥ 0;

– if r ∈ R starts at k > m then r′ starts at n+ k−m and r′(n+ k−m+ y) =
r(k + y), y ≥ 0;

– if r ∈ R starts at k < n then there is r1 ∈ R such that g(r(n)) = r1(m), and
we set

r′(k) =

{

r(k) if k < n,
r1(k +m− n) if k ≥ n.

It is not hard to check that (h′,Q′) is still a quasimodel for ϕ.

Using these two operations we can transform any given quasimodel (h,Q) for
ϕ into a quasimodel (f,R) for ϕ satisfying the conditions of the lemma. We begin
by shrinking h(0) and finding the minimal k1 such that all eventualities in the
resulting h(0) are realised until k1. Then we shrink the h(i), for 0 < i ≤ k1, and
delete a part of the quasimodel (if such a part exists) between h(n) and h(m),
0 < n < m < k1, such that h(m) is 0-embeddable into h(n) and no eventuality
from h(0) is realised in the interval (n,m). Note that, due to 0-embeddability of

h(n) into h(m), in the resulting quasimodel every eventuality from h(0) is realised
until some k′1 ≤ k1. Then, we repeat the procedure. After finitely many iterations
we end up with a quasimodel for ϕ with the first segment [0, k1] satisfying the
conditions of the lemma. We then proceed with considering the word k1, etc.

Now, to conclude the proof of Theorem 4, it is enough to show that there is
an algorithm which, when applied to a T L

L

-formula ϕ, eventually stops iff ϕ is
not satisfiable. The existence of such an algorithm can be proved using Lemma 2,
Higman’s lemma [14] and König’s lemma.

The algorithm explores all possible ways of constructing a quasimodel for a
given ϕ satisfying the conditions of Lemma 2. By condition (A), the choice of
Tϕ-words for the nth position in such a quasimodel is bounded by some recursive
function s′(n, ϕ). We claim that all possible ways of constructing a first segment
[0, k1] satisfying the conditions of Lemma 2 must come to an end (exhaust all
possible choices) after some step N1. Indeed, suppose otherwise, i.e., for every
n ∈ N, we can have a sequence of Tϕ-words f(0), . . . , f(n) satisfying (A), (B)
and such that not all eventualities in f(0) are realised until n. Then, by (A) and
König’s lemma, there exists an infinite sequence such that condition (A) holds,
at least one of the eventualities from f(0) is not satisfied, and if n < m and
f(n) is 0-embeddable into f(m) then some eventuality from f(0) is realised in
the interval (n,m). Let m be the smallest number such that all eventualities in
f(0) realised in this sequence are actually realised until m (such a number exists
because there are only finitely many such eventualities). But then, by Higman’s
lemma, we must have some i, j, for m < i < j, such that f(i) is 0-embeddable in
f(j), contrary to condition (B).

If we fail to construct at least one first segment satisfying Lemma 2, then ϕ
is not satisfiable. Otherwise we try to extend successful first segments to realise
the eventualities of their last word, again complying with conditions (A) and
(B), and so forth. Clearly, ϕ is not satisfiable iff this algorithm eventually stops.

4 Decidability

We now show that if we consider satisfiability in models with eventually constant
finite domains then we can obtain a decidable logic, provided that its language
does not contain the next-time operator.

Theorem 5. LogLc

fin
is decidable, but not in primitive recursive time.

The crucial difference between LogLc

fin
and LogLfinis revealed by the following:

Lemma 3. A T L-formula ϕ is satisfiable in an e-model from Lc

fin
iff there is a

quasimodel (f,R) for ϕ such that, for some N ∈ N,

(a) |Tn| ≤ s(n, ϕ), where f(n) = 〈Tn, <n, ln〉 and n < N ,
(b) there are no n < m < N such that f(n) is embeddable into f(m),
(c) for all n ≥ N , |Tn| = |TN | and there are some N = n1 < · · · < nk such that

the set Ai = {m ≥ N | f(ni) = f(m)} is infinite for each ni, and every f(n),
for n ≥ N , belongs to some Ai.

Proof. Since e-models in Lc

fin
have finite states with eventually constant domains,

we may assume that ϕ is satisfied in a quasimodel (h,Q) satisfying condition
(c) for some N ∈ N. By applying operations shrink and delete from the proof of
Lemma 2 (with plain ‘embeddable’ instead of ‘x-embeddable’) to the Tϕ-words
from the segment h(0), . . . , h(N − 1) as many times as possible (the number N
will become smaller after each application of delete), we will eventually construct
a quasimodel as required.

Now, using the same argument as in the previous section (involving Higman’s
and König’s lemmas), we can effectively construct finitely many initial segments
f(0), . . . , f(n), satisfying (a) and (b) above, of possible quasimodels for ϕ. For
each such segment, take the final state f(n) = (Tn, <n, ln) and suppose that
w0 <n · · · <n wm are all elements of Tn. Consider the formula

χf = l̄n(w0) ∧h
(

l̄n(w1) ∧h
(

l̄n(w2) ∧h(· · ·hl̄n(wm) · · ·)
)

)

,

where l̄n(w) =
∧

{ψ | ψ ∈ ln(w)}. It should be clear that ϕ is satisfiable iff, for at
least one of the constructed segments f(0), . . . , f(n), the formula χf is satisfiable in
a quasimodel f(n+1), f(n+2), . . . (with some set R of runs) satisfying condition
(c) of Lemma 3.

Observe now that the temporal operators �F and `F in such quasimodels
behave like S5 modalities: for all m > n and all w ∈ Tm, we have `Fψ ∈ lm(w)
iff there is k > n such that ψ ∈ lk(r(k)), where r(m) = w. Thus, we can complete
the decidability part of the proof of Theorem 5 if we can prove the following.

Let C be the class of bimodal models of the form
(

W,R, (Vx | x ∈ V)
)

, where
V 6= ∅, (W,R) is a finite strict linear order, and Vx, for x ∈ V , is a valuation
in W (i.e., a map from the set of propositional variables into the set of subsets
of W). In other words, we have |V | (not necessarily distinct) models based on
(W,R). Define the truth relation (x, u) |= ϕ for T L-formulas in such a model by
taking for x ∈ V and u ∈W :

– (x, u) |= pi iff u ∈ Vx(pi),

– (x, u) |= `Fψ iff there exists y ∈ V such that (y, u) |= ψ,

– (x, u) |= hψ iff there exists v ∈W such that uRv and (x, v) |= ψ,

plus the standard clauses for the Booleans. (In fact, we have defined bimodal
models based on product frames of the form (V, V × V) × (W,R); see [8] for
details.)

Proposition 1. The satisfiability problem for T L-formulas in models from C
is decidable. (Moreover, if a formula is satisfiable, then it satisfiable in a finite

model from C).

This proposition can be proved using the quasimodel technique from [8]. The
second half of Theorem 5 can be proved in the same way as in [10] using a
reduction of a non-primitive recursive problem for lossy channel systems from
[27].

In the next section we will show that the addition of the ‘next-time’ operator
L results in a logic for Lc

fin
that is not even recursively enumerable. Notice that

the decidability proof given above breaks down for L when we observe that ‘on
the tail’ the temporal operators behave like S5 modalities: this is not the case
for L. Lemma 3, however, still holds for the language with L.

5 Undecidable problems for channel systems

Our proofs of undecidability and non-recursive enumerability (Theorems 2 and
3) proceed by reduction of suitable reachability problems for channel systems.
We briefly discuss the required problems in this section; for further information
on channel systems the reader is referred to [2, 4, 27].

A single channel system is a triple S = 〈Q,Σ,∆〉, where Q = {q1, . . . , qn} is
a finite set of control states, Σ = {a, b, . . .} is a finite alphabet of messages, and
∆ ⊆ Q× {?, !} ×Σ ×Q is a finite set of transitions.

A configuration of S is a pair γ = 〈q,w〉, where q ∈ Q and w ∈ Σ∗. Say
that a configuration γ′ = 〈q′,w′〉 is the result of a perfect transition of S from
γ = 〈q,w〉 and write γ →p γ

′ if

– there is (q, !, u, q′) ∈ ∆ such that w′ = uw, or
– there is (q, ?, u, q′) ∈ ∆ such that w = w

′u.

The reachability problem for channel systems is formulated as follows: given a
channel system S and two states q0 and qf , decide whether there is a computation
starting from 〈q0, ǫ〉 and reaching qf , where ǫ is the empty word. This reachability
problem is obviously recursively enumerable. However, similarly to the halting
problem for Turing machines we have the following result that was proved in [2]:

Theorem 6. The reachability problem for channel systems is undecidable.

We say that γ′ is a result of a lossy transition from γ and write γ →ℓ γ
′ if

γ ⊒ γ1 →p γ2 ⊒ γ′

for some γ1 and γ2, where 〈q,w〉 ⊒ 〈q′,w′〉 iff w
′ is a subword of w and q = q′.

The ω-reachability problem for (lossy) channel systems is formulated as fol-
lows: given a channel system S and two states q0 and qf , decide whether for every
n ∈ N there exists a lossy computation of S starting with 〈q0, ǫ〉 and reaching
qf at least n times. The proof of the next theorem was kindly suggested by
Ph. Schnoebelen.

Lemma 4. The ω-reachability problem for lossy channel systems is undecidable.

Proof. We prove this lemma by reduction of the undecidable boundedness prob-

lem [25]: given a channel system S, determine whether the set of configurations
of S that are reachable from 〈q0, ǫ〉 is finite.

Given a channel system S, we construct a system S′ in such a way that S
is bounded, that is, has only finitely many configurations reachable from 〈q0, ǫ〉,

iff S′ has the ω-reachability property. The set of states of S′ extends that of S
with one new additional state qrec, and the set of transitions of S′ is that of S
plus non-deterministic transitions from every state of S into qrec. Being in qrec,
the system reads one symbol from the channel and stays in qrec. It should be
clear now that there exists a (lossy) computation of S′ starting with 〈q0, ǫ〉 and
reaching qrec arbitrary many times iff S is unbounded.

6 Non-recursive enumerability

Here we show that the addition of the next-time operator to T L immediately
destroys the decidability result of Theorem 5 for LogLc

fin
.

Theorem 7. Log
L

Lc

fin
is not recursively enumerable.

Proof. Given a channel system S, conrol states q0 and qf , we construct a T L
L

-
formula ϕS,q0,qf which is satisfiable in a model from Lc

fin
iff a computation started

from 〈q0, ǫ〉 reaches qf . Since the reachability problem for channel systems is
undecidable, but recursively enumerable, this will show that the set Log

L

Lc

fin

cannot be recursively enumerable.
With a slight abuse of notation, we use the propositional variables

– δ, for every instruction δ ∈ ∆,
– a, for every a ∈ Σ,
– q, for every q ∈ Q,
– m, a marker,
– end, a marker for ‘end of word’ or ‘empty word.’

Let w stand for
∨

a∈Σ a, and let �+

Fψ = ψ ∧ �Fψ, H
+ψ = ψ ∧ Hψ, and

`

+

Fψ = ψ ∨`Fψ, h
+ψ = ψ ∨hψ.

Intuitively, our encoding of the reachability problem works as follows. First
we ‘mark’ infinitely many states by making marker m true everywhere in these
states (and false in all others).

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

q0q0q0 qfqfqf

initial
fragment

. . .

mm m m

Fig. 2. Encoding of the perfect channel reachability problem.

This can be achieved by using the formulas:

�

+

F`
+

Fm (2)

�

+

F

(

(m → Hm) ∧ (¬m → H¬m)
)

(3)

PSfrag

u
ww

ww

ww

ww

ww

ww

ww

ww

t+ 1

δ

t

q′ q

end

end

a)

computation
step

u

w w

w w

w w

w w

w w

w w

w w

w w

t+ 1

δ

t

q′ q

endend

b)

computation
step

Fig. 3. Encoding one transition of a channel system. a) δ = (q, ?, u, q′): symbol u is read
from the end of the channel; b) δ = (q, !, u, q′): symbol u is written at the beginning of
the channel.

Between any two markers, we simulate from right to left (that is, from future to
past) a computation of the channel system S starting with 〈q0, ǫ〉 and reaching
control state qf ; see Fig. 2. At every moment x we write the contents of the
channel on the linear order (Wx, <x) as a word without ‘gaps.’ We mark its end
with end, and if the word is empty then end will hold somewhere:

�

+

F

(

h

+end ∧H+(end → H¬end)
)

(4)

�

+

FH
+
(

(w ∧H¬w) → end
)

(5)

�

+

FH
+¬

(

w ∧h(¬w ∧hw)
)

(6)

At every marked state, the system is in control state q0 and the channel is empty.
Moreover, this initial configuration is not obtained from any previous state by
any instruction δ:

�

+

FH
+
(

m → (q0 ∧ ¬w ∧
∧

δ∈∆

¬δ)
)

(7)

At every non-marked state the system is in a certain control state q which results
from the previous state by means of an application of some instruction δ:

�

+

FH
+
(

∨

q∈Q

q ∧
∧

q 6=q′

(q → ¬q′) ∧
∧

q∈Q

(q → Hq)
)

(8)

�

+

FH
+

(

¬m →
(

∨

δ∈∆

δ ∧
∧

δ 6=δ′

(δ → ¬δ′) ∧
∧

δ∈∆

(δ → Hδ)
)

)

(9)

The following formula ensures that words are encoded properly and that the
contents of channels does not change arbitrarily:

�

+

FH
+

(

∧

a∈Σ

(

a→ L(w → a)
)

∧
∧

a 6=a′

(a→ ¬a′)
)

(10)

Finally, we encode the effect of instructions δ; see Fig. 3. For every instruction
δ = (q, !, u, q′), take

�

+

F (δ → Lq) (11)

�

+

F

(

δ → q′ ∧h+(u ∧ ¬Lw) ∧H+
(

w → H(w ↔ Lw)
)

)

(12)

This formula says that we add u to the beginning of the word encoded at the next
moment of time and that nothing else changes. Similarly, for every instruction
δ = (q, ?, u, q′), take

�

+

F

(

δ → L

(

q ∧h(u ∧ end)
)

)

(13)

�

+

F

(

δ →
(

q′ ∧h+(end ∧L(hend ∧HH¬end)) ∧

H

+(w → Lw) ∧H+(L(w ∧ ¬end) → w)
)

)

(14)

This formula says that we delete u from the end of the word encoded at the next
moment of time and that nothing else changes. To make sure that the final state
of the computations is qf , we need one more formula

�

+

F (m → Lqf) (15)

Note that (15) together with (7) and (8) also ensure that there cannot be two
marked adjacent states.

Let ϕS,q0,qf be the conjunction of formulas (2)–(15). It is not difficult to show
that if there exists a computation of S starting from 〈q0, ǫ〉 and reaching qf , then
ϕS,q0,qf is satisfied in a model with constant domains such that between any two
markers the computation of S is simulated. Conversely, suppose that ϕS,q0,qf is
satisfied in a model from Lc

fin
. Take two successive marked states n1 and n2 such

that Wn1
=Wn2

(i.e., the domain does not change between n1 and n2). Then a
computation of S starting with q0 and reaching qf is simulated between n2 and
n1.

This completes the proof of Theorem 7.

7 Undecidability

The encoding of perfect channel systems in the previous section was only possible
because we were considering models with eventually constant domains. In models
with expanding domains we can only simulate lossy computations of channel
systems. Actually, a very simple modification of the formula ϕS,q0,qf above is

enough to prove that Log
L

Lfin is undecidable. We begin by showing how to do

this, and after that explain how to remove L in order to prove undecidability of
LogLfin.

Proposition 2. For any channel system S and states q0 and qf , one can con-

struct a T L
L

-formula ϕS,q0,qf which is satisfiable in a model from Lfin iff, for

every n ∈ N, there exists a lossy computation of S starting with 〈q0, ǫ〉 and

reaching qf at least n times.

Proof. As above we use markers m that are true in infinitely many states and
simulate a lossy computation between any two marked states. However, instead
of forcing these computations to reach qf , now we ensure that, for every n, there
exist two marked states such that a computation between them reaches qf at
least n times. This will be enforced by the formula ψω-rec which replaces the
conjunct (15) in ϕS,q0,qf . The formula ψω-rec is defined as the conjunction of
(16)–(19) below.

First we introduce an auxiliary variable s that cannot be true on two different
elements of Wx

�

+

FH
+(s → H¬s), (16)

and if s is true on some u ∈Wx, then qf is also true there

�

+

FH
+(s → qf) (17)

The variable s is used for ‘counting.’ Whenever marker m is true, we can guar-
antee that at the next moment of time there exists a new domain point where s
is true:

�

+

FH
+
(

m → H(H ⊥→ Lhs)
)

(18)

(Here we use the fact that the domains can expand.) The next formula together
with (18) ensure that if s is true n times in some interval between two markers,
then in the next interval it must be true at least n+ 1 times:

�

+

FH
+

(

s → �F

(

m → (¬mUs)
)

)

(19)

Using the standard technique (see, e.g., [5]) formula (19), containing the ‘until’
operator U , can be replaced with the following T L

L

-formula which is satisfiable
iff (19) is satisfiable:

�

+

FH
+
(

s → �F (m → Lp ∧`F s)
)

∧�+

FH
+
(

(p→ ¬m ∨ s) ∧
(

p→ L(p ∨ s))
)

where p is a fresh variable.

We are now in a position to prove the following:

Theorem 8. LogLfin is undecidable.

Proof. Given a channel system S and states q0, qf , we construct, by modifying
the formula ϕS,q0,qf above, a T L-formula ψS,q0,qf which is satisfiable in a model
from Lfin iff, for every n ∈ N, there exists a lossy computation of S starting with
〈q0, ǫ〉 and reaching qf at least n times.

Although the language T L does not contain the next-time operator, we can
simulate ‘locally’ some of its properties. Let vi be a fresh propositional variable.
Then we have (x, u) |= `Fvi ∧�F�F¬vi iff

– (x+ 1, u) |= vi,

– (y, u) 6|= vi for all y > x+ 1.

Thus, at point (x, u) we can refer to the next point (x+1, u) along the time axis.
However, this can be done only once for given u and vi. We denote the resulting
‘one-off’ next-time operator by Li. More precisely, we replace every occurrence
of Liϕ with (`Fvi ∧�F�F¬vi) and add a conjunct �+

FH
+(vi → ϕ).

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
��������������������� �������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

q0q0 qf qfqfqf qf qf

initial
fragment

mm m

m

. . .

Fig. 4. Encoding of the lossy channel ω-reachability problem.

The T L-encoding of the ω-reachability problem for lossy channels is done in
almost the same way as in Theorem 7 and Proposition 2. In every next interval
between two occurrences of the markerm, we model a computation of the channel
system S visiting the state qf at least one time more than in the previous interval,
and the contents of the channel is written on the linear order as a word without
gaps. Note, however, that if some point u ∈Wx is used for writing a word at time
point x, it will never be used again for encoding words in other intervals—simply
because our ‘surrogate’ next-time operators cannot be reused. Fortunately, this
is not a real problem: by expanding the domain we can always find the required
‘fresh’ points; see Fig. 4.

The modification ψS,q0,qf of ϕS,q0,qf we need keeps conjuncts (2)–(9) intact.
We add the conjunct

�

+

FH
+¬

(

w ∧`F (¬w ∧`Fw)
)

(20)

saying that for any given domain point the set of time points with a symbol
from Σ written on it is a (possibly empty) interval. In particular, symbols from
Σ cannot be written on the same domain points in different intervals between
markers. Further, replace (10)–(13) with the following formulas (21)–(25):

�

+

FH
+

(

∧

a∈Σ

(

a→ �F (w → a)
)

∧
∧

a 6=a′

(a→ ¬a′)
)

(21)

For every instruction δ = (q, !, u, q′),

�

+

F (δ → h

+
L1q) (22)

�

+

F

(

δ → q′ ∧h+(u ∧�F¬w) ∧H
+
(

w → H(w ↔ `Fw)
)

)

(23)

and for every instruction δ = (q, ?, u, q′),

�

+

F

(

δ → h

+
L2

(

q ∧h(u ∧ end)
)

)

(24)

�

+

F

(

δ → q′ ∧h+(end ∧�Fhend) ∧H+(w → `Fw)
)

(25)

Note that formulas (22) and (24) may force introduction of new domain points.
We also have to replace formulas (16)–(19) with some other formulas express-

ing the same property of m and qf : the number of occurrences of qf between

adjacent markers m is growing in time. In formulas (26)–(27) below, p ∧�F¬p
plays the same role as the variable s in (16)–(17):

�

+

FH
+
(

(p ∧�F¬p) → H¬(p ∧�F¬p)
)

(26)

�

+

FH
+
(

(p ∧�F¬p) → qf
)

(27)

The following formulas (28)–(32) guarantee that for every N ∈ N, there are
adjacent marked t1 < t2 such that the number of time points t ∈ (t1, t2) for

which (t, u) |= p ∧�F¬p, for some u ∈Wt, is ≥ N :

�

+

FH
+
(

m ∧ p → �F (m → ¬p)
)

(28)

�

+

FH
+(¬p → �F¬p) (29)

�

+

FH
+
(

p ∧�F¬p → H

+(H ⊥→ L3hp)
)

(30)

�

+

FH
+
(

m → H

+(H ⊥→ L4hp)
)

(31)

�

+

FH
+(p ∧�F¬p → ¬m) (32)

This claim is proved by induction on N . We only show the basis of induction
N = 1 and indicate how to extend it to the inductive step.

Let t0 be the first marked time point. By (31), there is u ∈Wt0+1 such that

(t0 + 1, u) |= p. Two cases are possible now. First, if (t, u) |= p ∧ �F¬p holds
for some t > t0 before the next marked point, then we are done. Otherwise,
(t1, u) |= p for the next marked time point t1. Let t2 be the first marked point
after t1. Then, by (28) and (29), (t, u) |= ¬p for all t ≥ t2. It follows that for

some t with t1 ≤ t < t2 we must have (t, u) |= p∧�F¬p. In view of (32), t 6= t1.
For the inductive step we use (30) to ensure that the number of points with

p ∧ �F¬p in the next interval between two marked points is at least the same
as in the previous one, while (31) adds one more point of this kind.

8 An application to dynamic topological logic

Dynamic topological logic was introduced in 1997 (see, e.g., [21, 1, 22]) as a log-
ical formalism for describing the behaviour of dynamical systems, e.g., in order
to specify liveness and safety properties of hybrid systems [3]. Roughly, (some
aspects of) the behaviour of such systems are modelled by means of a topology

T on a space ∆ and a continuous function f acting on ∆. What we are inter-
ested in is the asymptotic behaviour of iterations of f , in particular, the orbits
w, f(w), f2(w), . . . of states w ∈ ∆. Then, the language T L

L

provides a nat-
ural formalism for speaking about such iterations with propositional variables
interpreted as subsets of ∆, the modal operatorh interpreted as the topological
closure operator C , and the temporal operators �F , L interpreted as iterations
of the function f .

More formally, by a dynamic topological model we understand a structure

M = (∆,T, f, P 1, P 2, . . .),

where ∆ is a space with topology T, f : ∆ → ∆ is a continuous function with
respect to this topology, and P i ⊆ ∆ for all i. For a T L

L

-formula ϕ and w ∈ ∆,
the truth relation M, w |= ϕ is defined as follows:

M, w |= pi iff w ∈ P i,

M, w |= hϕ iff w ∈ C {v ∈ ∆ | M, v |= ϕ},

M, w |= Lϕ iff M, f(w) |= ϕ,

M, w |= `Fϕ iff M, fn(w) |= ϕ for some n ∈ N .

A formula ϕ is valid in M if M, w |= ϕ for every w ∈ ∆.
Every quasi-order (∆,R) gives rise to a topological space with the interior

operator I defined as I(X) = {x ∈ X | ∀y ∈ ∆ (xRy → y ∈ X)} (as usual,
C (X) = X \ I(∆\X)). Such spaces are known as Aleksandrov spaces. For Alek-

sandrov spaces the operator h can be defined in a more familiar way:

M, w |=hϕ iff M, v |= ϕ for some v ∈ ∆ such that wRv.

Moreover, it is easy to see that a function g is continuous with respect to this
topology iff ∀w, v ∈ ∆ (wRv → g(w)Rg(v)).

The dynamic topological logic of Aleksandrov spaces is the set of T L
L

-formulas
that are valid in all dynamic topological model based on Aleksandrov spaces.

Theorem 9. The dynamic topological logic of Aleksandrov spaces is undecid-

able.

Proof. Using the techniques developed in [10], one can show that every T L
L

-
formula ϕ is satisfiable in an e-model from QO iff ϕ has a dynamic topological
model based on an Aleksandrov space.

A lot of problems related to dynamic topological logics remain open. For
example, is the dynamic topological logic of Alexandrov spaces recursively enu-
merable? Is it finitely axiomatisable? Is the dynamic topological logic of arbitrary
topological spaces decidable?

9 Conclusion

Being a very attractive and powerful formalism for representation of and reason-
ing about systems with changing states, first-order temporal logic is notorious
for its bad computational behaviour. This applies, in particular, to first-order
temporal logics which can represent non-local constraints on relations such as
transitivity. The present paper makes one more step in the search for funda-
mental reasons that could explain this phenomenon and thereby help in finding
maximal ‘well-behaved’ fragments. Here we investigate the potential computa-
tional impact of relaxing the standard constant domain assumption by allowing
states to expand over time. We consider the standard propositional temporal
logic LTL equipped with an additional ‘modal’ operator for speaking about tran-
sitive relations over states. This fragment of first-order temporal logic comes
from temporal description logic, specification and verification of hybrid systems
and some other areas. The main results of our research, given by Theorems 1–3
above, show that by allowing expanding domains we can indeed end up with
logics having better computational properties. The logics still remain extremely
complex, but sometimes they become recursively enumerable or even decidable,
which makes them a subject for various theorem proving techniques.

It is worth noting that the same results can be proved for the language
containing additionally a modal operator interpreted by the converse R−1

x of Rx

in each state x. Also, as this language interpreted over strict linear orders is
expressively complete for the two-variable fragment of first-order logic [24], we
can reformulate our results as decidability/undecidability results for the monodic
fragment of the two-variable first-order temporal logic over e-models based on
finite or arbitrary strict linear orders.

Acknowledgements We are grateful to Ph. Schnoebelen, A. Bovykin, and the
members of the London Logic Forum for stimulating discussions, comments and
suggestions.

The work on this paper was partially supported by U.K. EPSRC grants no.
GR/R42474/01, GR/S63175/01, GR/S61973/01/01, and GR/S63182/01.

References

1. S. Artemov, J. Davoren, and A. Nerode. Modal logics and topological semantics
for hybrid systems. Technical Report MSI 97-05, Cornell University, 1997.

2. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of
the ACM, 30:323–342, 1983.

3. J. Davoren and A. Nerode. Logics for hybrid systems. Proceedings of the IEEE,
88:985–1010, 2000.

4. A. Finkel. Decidability of the termination problem for completely specified proto-
cols. Distributed Computing, 7:129–135, 1994.

5. M. Fisher. A resolution method for temporal logic. In J. Myopoulos and R. Reiter,
editors, Proceedings of IJCAI’91, pages 99–104. Morgan Kaufman, 1991.

6. M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Transactions
on Computational Logic (TOCL), 2(1):12–56, 2001.

7. D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic, volume 1. Oxford
University Press, 1994.

8. D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional
Modal Logics: Theory and Applications, volume 148 of Studies in Logic. Elsevier,
2003.

9. D. Gabelaia, R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev. Com-
bining spatial and temporal logics: expressiveness vs. complexity. Journal of Arti-
ficial Intelligence Research, 23:167–243, 2005.

10. D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev. Non-primitive recursive
decidability of products of modal logics with expanding domains. Manuscript.
Available at http://www.dcs.kcl.ac.uk/staff/mz, 2004.

11. D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev.
Products of ‘transitive’ modal logics. Submitted; available at
http://dcs.kcl.ac.uk/staff/kuag/publi/prod.ps, 2005.

12. D. Gabelaia, A. Kurucz, F. Wolter, and M. Zakharyaschev. Products of ‘tran-
sitive’ modal logics. Journal of Symbolic Logic, 2005. In print. Available at
http://www.dcs.kcl.ac.uk/staff/mz.

13. J. Halpern and M. Vardi. The complexity of reasoning about knowledge and time
I: lower bounds. Journal of Computer and System Sciences, 38:195–237, 1989.

14. G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society, 2:326–336, 1952.

15. I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments of first-order
temporal logics. Annals of Pure and Applied Logic, 106:85–134, 2000.

16. U. Hustadt and B. Konev. TRP++ 2.0: A temporal resolution prover. In F. Baader,
editor, Automated Deduction. Proceedings of the 19th International Conference
on Automated Deduction (CADE-19), volume 2741 of Lecture Notes in Computer
Science, pages 274–278. Springer, 2003.

17. U. Hustadt, B. Konev, A. Riazanov, and A. Voronkov. TeMP: A temporal
monodic prover. In Proceedings IJCAR 2004, volume 3097 of LNAI, pages 326–330.
Springer, 2004.

18. B. Konev, A. Degtyarev, C. Dixon, M. Fisher, and U. Hustadt. Towards the imple-
mentation of first-order temporal resolution: the expanding domain case. Informa-
tion and Computation, 2005. In print. Available as Technical Report ULCS-03-005,
The University of Liverpool, Department of Computer Science.

19. B. Konev, R.. Kontchakov, F. Wolter, and M. Zakharyaschev. On
dynamic topological and metric logics. Manuscript. Available at
http://www.dcs.kcl.ac.uk/staff/mz, 2004.

20. R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev. Temporalising
tableaux. Studia Logica, 76:91–134, 2004.

21. P. Kremer and Mints. Dynamic topological logic. Bulletin of Symbolic Logic,
3:371–372, 1997.

22. P. Kremer and G Mints. Dynamic topological logic. Annals of Pure and Applied
Logic, 131:133–158, 2005.

23. J.B. Kruskal. Well-quasi-orderings, the tree theorem, and Vázsonyi’s conjecture.
Transactions of the American Mathematical Society, 95:210–225, 1960.

24. C. Lutz, U. Sattler, and F. Wolter. Modal logic and the two-variable fragment. In
Proceedings of Computer Science Logic (CSL 2001), pages 262–276. Lecture Notes
in Computer Science 2141, Springer, 2001.

25. R. Mayr. Undecidable problems in unreliable computations. Theoretical Computer
Science, 297:337–354, 2003.

26. K. Schild. Combining terminological logics with tense logic. In Proceedings of the
6th Portuguese Conference on Artificial Intelligence, pages 105–120, Porto, 1993.

27. Ph. Schnoebelen. Verifying lossy channel systems has nonprimitive recursive com-
plexity. Information Processing Letters, 83:251–261, 2002.

28. S. Schwendimann. Aspects of Computational Logic. PhD thesis, Universität Bern,
Switzerland, 1998.

29. A. Sistla and E. Clarke. The complexity of propositional linear temporal logics.
Journal of the Association for Computing Machinery, 32:733–749, 1985.

30. A. Sistla and S. German. Reasoning with many processes. In Proceedings of the
Second IEEE Symposium on Logic in Computer Science, pages 138–153, 1987.

31. P. Wolper. The tableau method for temporal logic: An overview. Logique et
Analyse, 28:119–152, 1985.

32. F. Wolter and M. Zakharyaschev. Temporalizing description logics. In D. Gabbay
and M. de Rijke, editors, Frontiers of Combining Systems II, pages 379–401. Studies
Press/Wiley, 2000.

33. F. Wolter and M. Zakharyaschev. Axiomatizing the monodic fragment of first-order
temporal logic. Annals of Pure and Applied Logic, 118:133–145, 2002.

