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Abstract
We study anti-unification for the description logic EL and in-
troduce the notion of least general generalisation, which gen-
eralises simultaneously least common subsumer and concept
matching. The idea of generalisation of two concepts is to de-
tect maximal similarities between them, and to abstract over
their differences uniformly. We demonstrate that a finite min-
imal complete set of generalisations for EL concepts always
exists and establish complexity bounds for computing them.
We present an anti-unification algorithm that computes gener-
alisations with a fixed skeleton, study its properties and report
on preliminary experimental evaluation.

Introduction
Description Logics as a knowledge representation formal-
ism gained particular prominence in recent years due to
widespread adoption of the web ontology language OWL as
a W3C web standard (2012). Not only does the strong link
between the direct model theoretic semantics of OWL 2 and
the semantics of description logics provide OWL ontologies
with an unambiguous meaning but it also enables one to har-
vest the power of logical reasoning in various ontology ap-
plication scenarios, see e.g. (Baader et al. 2003; Yu 2014;
Domingue, Fensel, and Hendler 2011) for more details.

Capturing expert knowledge and representing it in the
form of concept descriptions and axioms is a laborious
and time consuming task, which is further hindered by the
fact that domain experts may disagree on basic definitions,
knowledge engineers may choose to describe different con-
cepts at different levels of granularity, different names can
denote semantically equivalent concepts, concept descrip-
tion can be machine learned etc., which leads to the need to
be able to consolidate and unify different concept descrip-
tions into one, best suitable for a particular application.

The notion of a least common subsumer (lcs for short)
has been introduced in (Cohen, Borgida, and Hirsh 1992)
precisely to capture ‘the largest set of commonalities’ be-
tween concepts. An lcs of two concepts is a concept C that
subsumes both of them and such that no other common sub-
sumer of the given concepts is strictly subsumed byC. It can
be seen that while such a concept indeed captures the com-
monalities between the given concepts, it does not highlight
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differences between them nor suggest a way to consolidate
such differences into a new concept description. A survey of
results on lcs can be found in (Baader and Küsters 2006).

The problem of identifying and consolidating differences
between concepts has been addressed in the context of con-
cept matching and concept unification. For example, Baader
and Morawska (2010) give the following example of the
use of unification to eliminate redundancies from ontolo-
gies: concept descriptions HumanuMaleu∃loves.Sports car
and Man u ∃loves.(Car u Fast) intuitively refer to the same
concept of a ‘man loving fast cars’, yet they are clearly not
equivalent. Differences in the representation can be resolved
by treating Man and Sports car as concept variables and
unifying the two concept descriptions with the substitution
{Man 7→ HumanuMale,Sports car 7→ Caru Fast}. While
powerful, this approach requires ontology engineers to iden-
tify which concept names should be treated as constants and
which should be treated as variables, which may not always
be obvious.

In this paper we propose a novel way of identifying
and consolidating differences between concept descriptions
based on the notion of concept generalisation by anti-
unification. Speaking abstractly, a generalisation of two
terms s1 and s2 is a term t such that si can be ‘obtained’
from t by applying some substitution τi to t, i = 1, 2. Notice
that every two terms always have a generalisation t = X ,
whereX is a variable, known as the most general generalisa-
tion. Interesting cases are least general generalisations (lgg
for short), which retain the common parts of the input terms
as much as possible, and abstract with the help of variables
over the differences in the input uniformly. Anti-unification
is a technique that has been successfully used to compute
lggs in various theories, starting from the pioneering works
by Plotkin (1970) and Reynolds (1970).

We study the anti-unification problem for concepts in the
description logic EL, which underpins the OWL 2 EL pro-
file (Baader, Brandt, and Lutz 2005). In the DL context terms
are concepts and the informal notion of ‘obtaining the orig-
inal concepts from the generalisation by substitutions’ can
be specialised in two ways: τi(t) is equivalent to si (gener-
alisation modulo equivalence), or τi(t) subsumes si (gener-
alisation modulo subsumption). These notions are motivated
by matching modulo equivalence and subsumption, respec-
tively (Baader and Küsters 2006).



Note that conjunction is idempotent. Interestingly, it was
shown by Pottier (1989) that anti-unification in equational
theories with two idempotent function symbols is infinitary.
In contrast, we show that generalisation modulo subsump-
tion coincides with the lcs , and a finite minimal complete
set of generalisations modulo equivalence always exists but
can be non-elementary in the size of the given concepts.

In the course of looking for lower complexity variants,
we define fixed-skeleton exact generalisations, where we as-
sume that the underlying tree structure of the generalisation
(its skeleton) is fixed and contains only ‘essential’ nodes,
and the goal it to minimise the ‘variable part’. We design
an algorithm that solves this problem when the homomor-
phisms from the skeleton to the original concepts are also
given, and prove that it is terminating, sound, and complete.

One advantage of our approach is that not only does it
compute generalisations, but also provides information how
the variables can be instantiated to obtain the original con-
cepts. This is given in the form of so called anti-unification
triples (AUTs in short) of the form X : [L1,U1] , [L2,U2].
Such a triple indicates that the original concepts C1 and C2

differ at the nodes whereX occurs and tells us that replacing
X by any concept between (in the sense of subsumption) the
lower bound Li and the upper bound Ui will give the corre-
sponding node in Ci, for i = 1, 2.

Knowledge engineer might find the information provided
by the computed generalisation and the AUTs useful: She
can clearly see (in the generalisation) where the concepts
in question agree, and observe (in the AUTs) how those
concepts differ. Moreover, if an upper bound in an AUT,
e.g., U1, is a concept name, it can be treated as a unifi-
cation variable with a possible instantiation by U2. For in-
stance, in the ‘man loving fast cars’ example above, our al-
gorithm returns the generalisation X u ∃loves.Y and two
AUTs: X : [. . . ,Human u Male] , [. . . ,Man] and Y :

[. . . ,SportsCar] , [. . . ,Car u Fast] (we omit the lower
bounds for brevity). From here one can conclude that if Man
is defined as Human u Male and SportsCar is defined as
Car u Fast, the original concepts become equivalent. Thus,
similarly to the lcs , anti-unification can be used in modelling
of concepts based on available concept variants, but it addi-
tionally provides insights into differences between such vari-
ants.

In our preliminary experiments we have successfully
computed generalisations of 49 675 528 pairs from defini-
tions of fully defined concepts of the EL variant of the
GALEN ontology (Kazakov and Klinov 2015; Rector et al.
2003) revealing commonalities between concepts.

Due to space restriction, some technical proofs are de-
ferred to the full version published as RISC Technical Re-
port, http://www.risc.jku.at/publications/.

Preliminaries
Let NC and NR be countably infinite and disjoint sets of con-
cept names and role names, respectively. In the description
logic EL, concepts C are built according to the syntax rule

C ::= A | ∃r.C |
l

C∈C
C,

where A ranges over NC, r ranges over NR, and the expres-
sion

d
C∈C C is a conjunction over the (multi)set of con-

cepts C, where no C ∈ C is a conjunction in turn. When
C = {C1, . . . , Cn}, for n ≥ 2, we write C1 u · · · uCn. The
conjunction over the empty set is abbreviated as >.

The semantics of concepts is defined by means of in-
terpretations I = (∆I , ·I), where the interpretation do-
main ∆I is a non-empty set, and ·I is a function mapping
each concept name A to a subset AI of ∆I and each role
name r to a binary relation rI ⊆ ∆I × ∆I . The function
·I is inductively extended to arbitrary concepts by setting
(
d
C∈C)

I :=
⋂
C∈C C

I , and (∃r.C)I := {d ∈ ∆I | ∃e ∈
CI : (d, e) ∈ rI}. For > we have >I := ∆I . Concept D
subsumes concept C, in symbols C v D, if for every inter-
pretation I we have CI ⊆ DI . Concept C is equivalent to
concept D, in symbols C ≡ D, if both C v D and D v C.
It is easy to see that thus defined concepts and interpreta-
tions are equivalent to the standard definition with binary
conjunction (Baader, Brandt, and Lutz 2005).

A concept C is a least common subsumer (lcs) of con-
cepts C1 and C2 if Ci v C, for i = 1, 2, and for any other
concept D such that Ci v D, for i = 1, 2, we have C v D.
For a set of concepts S = {C1, . . . , Cn}we define lcs(S) as
lcs(C1, lcs(C2, . . . , Cn) . . . ). It is known that any EL con-
cepts C1, C2 always have a unique least common subsumer,
and lcs is commutative and associative, so lcs(S) is cor-
rectly defined (Baader, Küsters, and Molitor 1999).

EL Anti-Unification
To define the anti-unification problem, we partition the set
of concept names NC into concept constants NCa and con-
cept variables NCv . We say that a concept is ground if it
does not contain any concept variables. A substitution σ is a
mapping from the set of concept variables to the set of EL
concepts such that σ(X) 6= X for finitely many X ∈ NCv .
The expression σ : {X1 7→ C1, . . . Xn 7→ Cn} denotes that
σ(Xi) = Ci, for i = 1, . . . , n and implicitly σ(Y ) = Y for
all Y ∈ NCv \ {X1, . . . , Xn}. Substitutions are extended to
EL concepts in the usual way: σ(A) = A, for A ∈ NCa;
σ(

d
C∈C C) =

d
C∈C σ(C); σ(∃r.C) = ∃r.σ(C).

We say that a concept D is more general than a concept
C modulo equivalence, denoted D �≡ C (more general
modulo subsumption, denoted D �v C) if there exists a
substitution σ such that C ≡ σ(D) (or C v σ(D), respec-
tively). A concept G is a generalisation of concepts C1 and
C2 modulo equivalence (a generalisation modulo subsump-
tion) if it is more general than both C1 and C2, that is, if
there exist substitutions τ1 and τ2 such that Ci ≡ τi(G) (or
Ci v τi(G), respectively), for i = 1, 2. Notice that G is a
generalisation of C1, C2 modulo equivalence (or subsump-
tion) iff there exists matchers (Baader and Küsters 2006) for
the matching problems Ci ≡? G (or Ci v? G, respectively),
for i = 1, 2.

Any concepts C1, C2 always have some generalisation:
considerG = X , whereX ∈ NCv is fresh, and τi(X) = Ci,
for i = 1, 2. Then G is a generalisation of C1, C2 both mod-
ulo equivalence and subsumption. Obviously, such a gener-
alisation is too crude as often less general generalisations



exist. For example, for C1 = A u B and C2 = A u B′ the
generalisation G′ = A u Y is less general than G = X , as
G′ can be obtained from G by substituting A u Y into X .
This leads us to the following definition.

If C �≡ D and D �≡ C then we say that C and D are
equi-general modulo equivalence, denoted C ≈≡ D (equi-
generality modulo subsumption is defined similarly). Then
a generalisation G of concepts C1 and C2 is least general
(abbreviated as lgg) if whenever a generalisation G′ of C1

and C2 is less general than G then G′ is equi-general to G.
It turns out that least general generalisations modulo sub-

sumption coincide with the least common subsumer and so
can be computed in polynomial time.

Proposition 1 For any EL concepts C1 and C2 a least gen-
eral generalisation modulo subsumption always exists and
is equi-general to lcs(C1, C2).

Proof. First notice that lcs(C1, C2) is a generalisation of C1

and C2 modulo subsumption as by definition of the least
common subsumer we have Ci v σid(lcs(C1, C2)), where
σid is the identity substitution.

Let G be an arbitrary generalisation of C1, C2 modulo
subsumption. Then Ci v τi(G), for some τi and i = 1, 2.
But then by (Baader and Küsters 2006) we have Ci v
σ>(G), where σ> is the substitution that replaces every vari-
able in G with >. By the properties of the lcs we have
lcs(C1, C2) v σ>(G). So G �v lcs(C1, C2).

Thus lcs(C1, C2) is a least general generalisation of C1

and C2 and any other least general generalisation of C1 and
C2 is equi-general to lcs(C1, C2). o

In the view of Proposition 1, from now on we only con-
sider generalisations modulo equivalence and use � and
≈ without any indices. Unlike the modulo subsumption
case, there exist incomparable lggs. For example, for C1 =
∃r.(AuB)u∃r(A′uB′) andC2 = ∃r.(AuA′)u∃r(BuB′)
both ∃r.(AuX)u∃r.(B′uY ) and ∃r.(BuX)u∃r.(A′uY )
are (incomparable) lggs.

We say that a set of generalisations S of concepts C1 and
C2 is complete (for C1 and C2) if for any generalisation G′
of C1 and C2 there exists G ∈ S such that G � G′. The set
S is a minimal complete set of generalisations of C1 and C2

(written mcsg(C1, C2)) if it, in addition, satisfies the mini-
mality property: For no two distinct G1, G2 ∈ S, G1 � G2

holds. Hence, the elements of mcsg(C1, C2) are all the lggs
of C1 and C2.

Theorem 2 For every EL concepts C1, C2, a finite minimal
complete set of generalisations exists.

Proof. Let G be a generalisation of C1 and C2. It follows
from Lemma 6.3.1 in (Küsters 2001) that there exist substi-
tutions τ1 and τ2 such that Ci ≡ τi(G), for i = 1, 2, and for
every concept variable X occurring in G its image τi(X)
is equivalent to the conjunction of some elements of sc(Ci),
where sc(C) is the set of subconcepts of a conceptC defined
recursively as: sc(>) = {>}, sc(A) = {>, A}, sc(∃r.C) =
{>} ∪ {∃r.C ′ | C ′ ∈ sc(C)}, sc(C u D) = {C ′ u D′ |
C ′ ∈ sc(C), D′ ∈ sc(D)}. Let N = 2|sc(C1)| × 2|sc(C2)|.

Notice that ifG contains more thanN different concept vari-
ables, then for some X and Y we have τi(X) ≡ τi(Y ), for
i = 1, 2. Then a substitution σ : X 7→ Y maps G into a
generalisation G′ containing fewer variables than G.

Let S be the set of all generalisations of C1, C2 such that
everyG ∈ S contains at mostN different concept variables.
We can assume w.l.o.g. for every G ∈ S that G only uses
variable from {X1, . . . , XN} (this can be achieved by re-
naming variables). It should be obvious that the role depth
of every generalisation of C1, C2 does not exceed the max-
imal role depth of C1, C2. But then the number of different,
up to equivalence, concepts in S is finite.

So, one can select a finite subset S ′ ∈ S such that for
every generalisation G of C1 and C2 there exists G′ ∈ S ′
with G � G′ and for no distinct G1, G2 ∈ S ′ we have
G1 � G2. Then for every lgg G of C1 and C2 there exists an
lgg G′ ∈ S ′ equi-general toG, that is, S ′ is a finite complete
set of lggs as required. o

The proof of Theorem 2 gives a non-elementary upper
bound on the size of lggs. As the following example shows
this upper bound can be reached.

Example 3 Let n > 0 be even. Consider concepts

C1 := ∃r · · · ∃r︸ ︷︷ ︸
n

.

(
nd

i=1

(A1
i uA2

i )

)
u

nd

i=1

(∃s1i .A1
i u∃s2i .A2

i )

and

C2 := ∃r · · · ∃r︸ ︷︷ ︸
n

.

(
nd

i=1

(A1
i uA2

i )

)
u

nd

i=1

(∃s1i .A2
i u∃s2i .A1

i ).

Let the set of concepts C0 be defined as{
d

i∈S
(A1

i uA2
i ) u

d

i/∈S
(X1

i uX2
i )

∣∣∣∣∣ S ⊂ {1, . . . , n},|S| = n/2

}
.

We define for every 0 ≤ i < n

Ci+1 :=

{
∃r.
(

d

C∈C
C

) ∣∣∣∣ C ⊆ Ci, |C| = 1
2 |Ci|

}
.

One can see that

G :=
d

C∈Cn
C u

nd

i=1

(∃s1i .X1
i u ∃s2i .X2

i ).

is an lgg of C1 and C2. Indeed, for any substitutions τ1, τ2
such that τi(G) ≡ C1, for i = 1, 2, we have τ1(X1

i ) = A1
i

and τ1(X2
i ) = A2

i , while τ2(X1
i ) = A2

i and τ2(X1
i ) =

A2
i . Thus, for any substitution σ such that G′ = σ(G) is a

generalisation of C1 and C2, there exists a substitution σ′
such that σ′(G′) ≡ G.

There are cn elements in C0, for some c > 1, cc
n

elements
in C1, cc

cn

elements in C3 etc. Thus, the size of G is non-
elementary in terms of n.

Notice, however, that the concept

∃r · · · ∃r.
(

nd

i=1

(A1
i uA2

i )

)
u

nd

i=1

(∃s1i .X1
i u ∃s2i .X2

i )

is a polynomial size lgg of C1, C2, incomparable with G.



Fixed skeleton generalisation
Example 3 demonstrates that without restraints least general
generalisation can be of size non-elementary in the size of
given concepts. Moreover, the notion of an lgg introduced in
the previous section may not always be intuitive as it is not
‘monotone’ regarding modifications to the given concepts.

Consider, for example, C1 = C2 = ∃r.A u ∃r.B. Then,
as one would expect, G = ∃r.A u ∃r.B is an lgg of C1 and
C2; X uG is an lgg of D u C1 and E u C2; and ∃s.Y uG
is an lgg of ∃s.A u C1 and ∃s.B u C2. However, for C ′1 =
∃s.Au∃t.(DuC1) and C ′2 = ∃s.B u∃t.(E uC2), concept
G′ = ∃s.Y u ∃t.(X u G), counter to expectations, is not
an lgg of C ′1 and C ′2 as {X 7→ Z u ∃r.Y } maps G′ into
G′′ = ∃s.Y u ∃t.(Z u ∃r.A u ∃r.B u ∃r.Y ), which is a
generalisation of C ′1, C ′2 strictly less general than G′.

More control can be gained by restricting generalisations
to have a fixed tree structure or skeleton. Formally the skele-
ton skel(C) of a concept C is the concept obtained from C
by removing all occurrences of variables.

We say that a concept G is a generalisation of concepts
C1, C2 with a fixed skeleton Gsk iff G is a generalisation
of C1, C2 and skel(G) = Gsk. We say that G is an lgg of
concepts C1, C2 with a fixed skeleton Gsk if G is a general-
isation of C1, C2 with a fixed skeleton Gsk and whenever a
generalisation G′ of C1 and C2 with the same skeleton Gsk

is less general than G then G′ is equi-general to G.
It can be readily checked that results of Theorem 2 trans-

fer to the fixed skeleton case. Hence, for every EL concepts
C1, C2 a finite minimal complete set of generalisations with
a fixed skeleton Gsk always exists (possibly empty if C1 and
C2 do not have generalisations with skeleton Gsk).

To develop an algorithm computing fixed skeleton lggs,
following (Baader and Küsters 2006), we use a structural
characterisation of subsumption. We identify each EL con-
cept C with a finite description tree TC whose nodes are
labelled with sets of concept names and whose edges are la-
belled with role names. In detail, if C is a concept name A
or>, then TC has a single node dC with label l(dC) = {A}
if C = A, or l(dC) = ∅ if C = >; if C = ∃r.D,
then TC is obtained from TD by adding a new root dC
and an edge from dC to the root dD of TD with the label
l(dC ,dD) = r (we then call dD an immediate r-successor
of dC); if C =

dn
i=1 Ci, for n > 0, then TC is obtained

by identifying the roots dCi of all TCi , 1 ≤ i ≤ n, into dC
and setting l(dC) =

⋃n
i=1 l(dCi

). We write root(C) for the
root node of TC . Conversely, every tree T of the described
form gives rise to an EL concept CT in the obvious way.

A concept D subsumes a concept C iff there exists a ho-
momorphism from TD to TC defined as a function ϕ from
the nodes of TD to the nodes of TC satisfying the following
properties (Baader and Küsters 2006):

1. ϕ(root(D)) = root(C);
2. for all d1, d2 nodes of TD and r ∈ NR such that d2 is

an r-successor of d1 in TD, we have that ϕ(d2) is an
r-successor of ϕ(d1);

3. for every node d of TD, we have l(d) ⊆ l(ϕ(d)).
We say that a function ϕ is a variable ignoring homomor-
phism from D to C if condition 3 above is replaced with

3’. for every node d of TD, we have (l(d) ∩ NCa) ⊆
l(ϕ(d)).

Homomorphisms are extended from nodes to sets of nodes
in the usual way: ϕ(S) := ∪d∈S{ϕ(d)}.

We do not always distinguish explicitly between a concept
and its tree representation and between nodes and subtrees
rooted at the nodes, which allows us to speak, for exam-
ple, about the nodes and subtrees of an EL concept, apply
substitutions to nodes and consider homomorphisms to be
functions between concepts. We also treat a variable ignor-
ing homomorphism from D to C as a homomorphism from
skel(D) to C and vice versa.

While our methods can be applied to the general case,
for the sake of presentation in this paper we restrict our
consideration to exact generalisations. Intuitively, exactness
requires the skeletons to contain only essential nodes that
match the corresponding nodes in the input concepts en-
tirely. We say that a concept G is an exact generalisation
of concepts C1 and C2 if there exist substitutions τ1 and τ2
and variable ignoring homomorphisms ϕ1 and ϕ2 from G
to C1, C2, respectively, such that for every node d of G we
have τi(d) ≡ ϕi(d), for i = 1, 2.

Since root(G) is mapped by ϕi into root(Ci), for i =
1, 2, we have τi(G) ≡ Ci, so every exact generalisation is a
generalisation. For example, for C1 = ∃r.(AuB) and C2 =
∃r.Au∃r.B bothG1 = ∃r.(AuX)u∃r.(BuX) andG2 =
∃r.A u ∃r.(B u Y ) are least general generalisations with
the same skeleton Gsk = ∃r.Au ∃r.B and homomorphisms
ϕi : Gsk → Ci, for i = 1, 2, are uniquely determined;
however,G1 is exact whileG2 is not. The notions of an exact
lgg and of an exact (least general) generalisation with a fixed
skeleton are defined in the obvious way.

Looking back at the notions of generalisation we use in
this paper, one can see that we started with unrestricted gen-
eralisation and then tried to make it more specific by in-
troducing fixed skeletons. Further, we defined a variant that
we called exact generalisation, and its version with a fixed
skeleton. In the definition of the latter (that has not been ex-
plicitly spelled), the existence of the corresponding homo-
morphisms are asserted. We now make a step further and
define exact generalisations with a fixed skeleton when the
homomorphisms are given.

We say that F = (Gsk,ϕ1,ϕ2) is a fixed skeleton exact
generalisation framework (or simply generalisation frame-
work for short) for conceptsC1 andC2 if lcs(C1, C2) v Gsk

and ϕi : Gsk → Ci, for i = 1, 2, are homomorphisms.
We say that that a concept G is an exact generalisation of
concepts C1 and C2 w.r.t. a generalisation framework F
if skel(G) = Gsk, and there exist substitutions τ1 and τ2
(called witness substitutions) such that for every node d of
G we have ϕi(d) ≡ τi(d). An exact lgg w.r.t. F is defined
in the obvious way.

In what follows we develop a non-deterministic polyno-
mial time algorithm that given concepts C1, C2 and a gener-
alisation framework F computes an exact lgg G w.r.t. F. To
achieve that, we characterise substitutions τi that witness G
being an exact lgg w.r.t F in terms of anti-unification triples,



(m): Merge

X : [LX1 ,U
X
1 ] , [LX2 ,U

X
2 ], Y : [LY1 ,U

Y
1 ] , [LY2 ,U

Y
2 ]

Z : [lcs(LX1 , L
Y
1 ),UX1 u UY1 ] , [lcs(LX2 , L

Y
2 ),UX2 u UY2 ]

{X 7→ Z, Y 7→ Z}

(sm): Split-merge

X : [LX1 ,U
X
1 u U′

X
1 ] , [LX2 ,U

X
2 u U′

X
2 ], Y : [LY1 ,U

Y
1 ] , [LY2 ,U

Y
2 ]

Z : [lcs(LX1 , L
Y
1 ),UX1 u UY1 ] , [lcs(LX2 , L

Y
2 ),UX2 u UY2 ]

X ′ : [LX1 ,U
′X
1 ] , [LX2 ,U

′X
2 ]

{X 7→ Z uX ′, Y 7→ Z}

(ssm): Split-split-merge

X : [LX1 ,U
X
1 u U′

X
1 ] , [LX2 ,U

X
2 u U′

X
2 ], Y : [LY1 ,U

Y
1 u U′

Y
1 ] , [LY2 ,U

Y
2 u U′

Y
2 ]

Z : [lcs(LX1 , L
Y
1 ),UX1 u UY1 ] , [lcs(LX2 , L

Y
2 ),UX2 u UY2 ]

X ′ : [LX1 ,U
′X
1 ] , [LX2 ,U

′X
2 ], Y ′ : [LY1 ,U

′Y
1 ] , [LY2 ,U

′Y
2 ]

{X 7→ Z uX ′, Y 7→ Z u Y ′}

Where
(i) lcs(LX1 , L

Y
1 ) v UX1 u UY1 , lcs(LX2 , L

Y
2 ) v UX2 u UY2 ; for no conjunct C 6= > of U′Xi we have lcs(LX1 , L

Y
1 ) v C;

for no conjunct D 6= > of U′
Y
i we have lcs(LX2 , L

Y
2 ) v D;

(ii) X u Y is not equivalent to a subconcept of G;
(iii) in the (ssm) rule for d, e nodes of G such that X ∈ l(d) and Y ∈ l(e) we have VG(d) ∩VG(e) = ∅.

Figure 1: Minimisation rules

AUTs for short, which are tuples of the form

X : [LX1 ,U
X
1 ] , [LX2 ,U

X
2 ],

where X is a concept variable and LX1 , UX1 , LX2 and UX2 are
EL concepts such that LXi v UXi for i = 1, 2. Intuitively,
every substitution that replaces a variableX inGwith a con-
cept C ‘between the lower and upper bounds for X’, that is,
such that LXi v C v UXi , for i = 1, 2 is a witness to G
being an exact lgg w.r.t. F. We then use this characterisation
to demonstrate that every exact lgg w.r.t. F can be obtained
with a substitution from the most general exact generalisa-
tion w.r.t. F, in which every node of Gsk contains a unique
variable. Then a complete set of exact lggs with skeletonGsk

for concepts C1, C2 can be computed by minimising the set
of all exact lggs of C1, C2 w.r.t. framework (Gsk,ϕ1,ϕ2),
for all possible choices of homomorphisms ϕi : Gsk → Ci.

Let C and D be EL concepts, ϕ be a variable ignoring
homomorphism from D to C and d be a node of D. The
difference at node d w.r.t ϕ between concepts C and D is
the concept

C 	d
ϕ D :=

d

A∈l(ϕ(d))\l(d)
A u

nd

i=1

∃si.Ci,

where {c1, . . . , cn}, n ≥ 0, is the set of all immediate suc-
cessors of ϕ(d) in C such that for all 1 ≤ i ≤ n,

• si = l(ϕ(d), ci),

• ci = root(Ci), and

• there exists no node d′ ∈ D such that l(d,d′) = si and
ϕ(d′) = ci,

For example, for C = ∃r.(AuB)u ∃r.(AuB′)u ∃s.A,
D = ∃r.(AuY ), let d = root(D), c = root(C), ϕ be the
variable ignoring homomorphism fromD toC that maps the
r-successor of d (denoted dr) into the first r-successor of c
(denoted c1r), i.e., ϕ(d) = c and ϕ(dr) = c1r . Then we have
l(d) = l(c) = ∅, l(dr) = {A, Y }, l(c1r) = {A,B}, and,
thus, C 	d

ϕ D = ∃r.(A uB′) u ∃s.A and C 	dr
ϕ D = B.

Let X be a concept variable, C be a concept and d be a
node of C. We denote by NC(X) the set of all nodes of C
with X in their label, and by VC(d) the set of all variables
in the label of d. Let F = (Gsk,ϕ1,ϕ2) be a generalisation
framework for concepts C1 and C2 and G be a concept with
skel(G) = Gsk. We say that a set of AUTs S is compatible
with G,C1, C2 w.r.t. F iff the following conditions hold:
(c1) For every variable X of G, the set S contains exactly

one AUT X : [LX1 ,U
X
1 ] , [LX2 ,U

X
2 ].

(c2) For every AUT X : [LX1 ,U
X
1 ] , [LX2 ,U

X
2 ] ∈ S, we

have LXi ≡lcs(ϕi(NG(X))), i = 1, 2;
(c3) For every node d of Gsk, we have

d
X∈VG(d) UXi v (Ci 	d

ϕi
Gsk), i = 1, 2.

When C1, C2 and F are clear from the context, we simply
talk about S being compatible with G.

The following lemma is proved by induction on the role
depth of C1 and C2.

Lemma 4 Let C1, C2 be concepts, F = (Gsk,ϕ1,ϕ2)
be a generalisation framework, and G be a concept such
that skel(G) = Gsk. Let S be a set of AUTs such that
for every variable X of G, it contains exactly one AUT



X : [LX1 ,U
X
1 ] , [LX2 ,U

X
2 ]. Assume that the substitutions

τi, for i = 1, 2, are defined as follows:

τi := {X 7→ UXi | X : [LX1 ,U
X
1 ] , [LX2 ,U

X
2 ] ∈ S}.

Then S is compatible withG,C1, C2 w.r.t. F iffG is an exact
generalisation of C1, C2 w.r.t. F witnessed by τ1, τ2.

Notice that for any substitutions σ, σ′ and concept C such
that σ(X) v σ′(X) for every X occurring in C we have
σ(C) v σ′(C). We use this fact to prove the following.

Corollary 5 If τi are such that for every variable of G we
have LXi v τi(X) v UXi , for i = 1, 2, then τ(G) ≡ Ci.

Given concepts C1 and C2 and a generalisation frame-
work F = (Gsk,ϕ1,ϕ2) we construct

• the concept GF by adding a fresh variable to the label of
its every node, and

• the set of AUTs SF, which for every variable X of GF

contains the AUT X : [LX1 ,U
X
1 ] , [LX2 ,U

X
2 ], where

LXi = ϕi(d) and UXi = Ci	d
ϕi
G, where d is the unique

node of GF containing variable X .

It should be obvious that GF is an exact generalisation of
C1, C2 w.r.t. F and SF is compatible with GF, C1, C2 w.r.t.
F (in fact GF is a most general exact generalisation of C1,
C2 w.r.t. F).

We say that a conceptG′ and a set of AUTs S′ is obtained
from a concept G and a set of AUTs S by an application
of a minimisation rule α with a side substitution σ, given in
Figure 1, in symbols (G,S) ùσ

α (G′, S′), if α is of the
form

S1

S2

σ,

and if (up to variable renaming) S can be represented as
S = S1 ∪· S′1 and S′ = S2 ∪· S′1, where ∪· denotes the dis-
joint union, and G′ = σ(G). We write (G,S) ù (G′, S′)
if S ùσ

α S′ for some α and σ. We denote by ù∗ the
reflexive transitive closure of ù.

Example 6 Consider concepts

C1 = ∃r.(A uB) u ∃s.(B u C) u ∃t.(A u C) and
C2 = ∃r.(A′ uB′) u ∃s.(B′ u C ′) u ∃t.(A′ u C ′).

LetGsk = ∃r.>u∃s.>u∃t.>. Notice that homomorphisms
ϕi : Gsk → Ci, and hence generalisation framework F =
(Gsk, φ1, φ2), are uniquely determined.

Then GF = ∃r.X u ∃s.Y u ∃t.Z u W and SF is the
following set of AUTs.

X : [A uB,A uB] , [A′ uB′, A′ uB′]
Y : [B u C,B u C] , [B′ u C ′, B′ u C ′]
Z : [A u C,A u C] , [A′ u C ′, A′ u C ′]
W : [C1,>] , [C2,>].

Notice that lcs(A u B,B u C) is B, and conjunctions
A u B and B u C can be represented as UX1 u U′

X
1 and

UY1 u U′
Y
1 , respectively, where UX1 = UY1 = B, U′

X
1 = A

and U′
Y
1 = C. Thus, the (ssm) rule is applicable to X and

Y with the side substitution {X 7→ X1 u V1, Y 7→ Y1 u V1}
and the set of AUTs

X1 : [A uB,A] , [A′ uB′, A′]
Y1 : [B u C,C] , [B′ u C ′, C ′]
V1 : [B,B] , [B′, B′].

Similarly, the (sm) rule is applicable to X1 and Z with the
side substitution {X1 7→ V2, Z 7→ Z1 u V2} and the set of
AUTs

V2 : [A,A] , [A′, A′], Z1 : [A u C,C] , [A′ u C ′, C ′]

Finally, the (m) rule applies to Y1 and Z1 giving {Z1 7→
V3, Y1 7→ V3} and

V3 : [C,C] , [C ′, C ′].

Putting it all together an application of the substitution

{X 7→ V2 u V1, Y 7→ V3 u V1, Z 7→ V3 u V2}

to G produces a generalisation

G′ = ∃r.(V1 u V2) u ∃s.(V3 u V1) u ∃t.(V3 u V2) uW.

It can be seen that the lgg of C1 and C2 w.r.t. F

G = ∃r.(V1 u V2) u ∃s.(V3 u V1) u ∃t.(V3 u V2)

can be obtained from G′ by eliminating variable W with a
substitution W 7→ >.

In what follows we prove that every generalisation can
be obtained by applying minimisation rules to (GF, SF) and
then simplifying the result, that is, that our procedure is com-
plete. We illustrate the main ideas of the completeness proof
here and defer the technical details to the full version.

The outline of our approach is as follows. Given a gen-
eralisation G and a compatible set of AUTs S we construct
a generalisation G′ and a set of AUTs S′ such that (G,S)
can be obtained from (G′, S′) by an application of one of
the minimisation rules and (G′, S′) is in some sense closer
to (GF, SF). By inductive reasoning, we end up with a se-
quence of rule applications such that (G,S) is obtained
starting from some (G0, S0) such that (G0, S0) cannot be
obtained by any rule application. We then apply the same
sequence of rules to (GF, SF) aiming to produce (G,S).

Notice that not every syntactic form of every generali-
sation can be obtained by applying minimisation rules to
(FF, SF), as the following example demonstrates.

Example 7 Consider C1 = A1 u A2, C2 = B1 u B2 and
G = X1 uX2. Then Gsk = > and the homomorphisms ϕ1,
ϕ2 are trivial. Notice that the set of AUTs S defined as

{Xi : [A1 uA2, Ai] , [B1 uB2, Bi] | 1 ≤ i ≤ 2}

is compatible with G,C1, C2 w.r.t. F = (Gsk,ϕ1,ϕ2), yet
(G,S) cannot be obtained by applying minimisation rules
to GF = X and SF = {X : [A1 u A2, A1 u A2] , [B1 u
B2, B1 uB2]}.



To address this issue, suppose that S is a set of AUTs com-
patible with the concept G w.r.t. some generalisation frame-
work F and let V be a set of variables of G such that every
{X,Y } ⊆ V we have NG(X) = NG(Y ). Notice that since
all variables of V only occur in the same nodes of G, by
definition of compatibility, we have LXi ≡ LYi , for i = 1, 2.

We say that G′ and S′ are obtained by reducing repeated
variables V into Z, in symbols (G,S)V⇒Z (G′, S′) if
• G′ is obtained from G by replacing in the label of every

node d all X ∈ V with Z, and
• S′ is obtained from the set S by replacing the AUTs
X : [LX1 ,U

X
1 ] , [LX2 ,U

X
2 ], for each X ∈ V , with

Z : [L1,
d
X∈V UX1 ] , [L2,

d
X∈V UX2 ], where Li ≡ LXi ,

for i = 1, 2 and X ∈ V .
We write (G,S) ⇒ (G′, S′) if (G,S)V ⇒Z (G′, S′) for
some V and Z. The relation ⇒∗ is the reflexive transitive
closure of⇒. It should be clear that G′ is equi-general to G
and S′ is compatible with G′ w.r.t. F.

Another problem is that backward applications of minimi-
sation rules starting with (G,S) not always result in exactly
(GF, SF).

Example 8 Let C1 = ∃r.A u ∃r.B, C2 = ∃r.(A u B) and
Gsk = ∃r.A u ∃r.B. The homomorphisms ϕi : Gsk → Ci,
for i = 1, 2, are uniquely determined by the shape of Gsk

and C1, C2.
Consider a concept G = ∃r.(A u X) u ∃r.(B u X). It

is easy to see that G is an exact generalisation of C1, C2

w.r.t. F = (Gsk,ϕ1,ϕ2) and the following set of AUTs S is
compatible with G w.r.t. ϕ1 and ϕ2:

S := {X : [>,>] , [A uB,A uB]}.

Then (G1, S1) ùσ
(m) (G,S), whereG1 = ∃r.(AuX1)u

∃r.(B uX2) and

S1 := {X1 : [A,>] , [A uB,A uB],

X2 : [B,>] , [A uB,A uB]}.

Notice that S1 differs from

SF := {X1 : [A,>] , [A uB,B],

X2 : [B,>] , [A uB,A]}

However GF = G1 and (GF, SF) ù∗ (G,S).

For two sets of AUTs S and S′, compatible with G w.r.t.
F, S is weaker than S′, in symbols (G,S′) � (G,S), if
for every variable X that occurs in G and the corresponding
AUTs X : [L1,U1] , [L2,U2] ∈ S and X : [L′1,U

′
1] ,

[L′2,U
′
2] ∈ S′ we have Li ≡ L′i and U′i v Ui, for i = 1, 2. In

Example 8 above, we have (GF, S1)� (GF, SF).
The following lemma is proved by induction on the num-

ber of variables that have more than one occurrence in the
generalisation.

Lemma 9 Let C1, C2 and G be EL concepts such that the
label of every node of G contains a variable. Let S be a
set of AUTs compatible with G w.r.t. some generalisation

framework F. Then there exist a concept G∗ and sets of
AUTs S∗ and S′ such that (GF, SF) ù∗ (G∗, S∗), and
(G,S)⇒∗ (G∗, S′)� (G∗, S∗).

Lemma 9 requires every node of G to contain a variable,
which does not always hold. We say that a concept G and
a set of AUTs S are obtained by variable elimination from
(G′, S′) if G = {X 7→ >}(G′) and S is obtained from S′

by removing the AUT X : [LX1 ,U
X
1 ] , [LX2 ,U

X
2 ] such that

UX1 u UX2 ≡ >. Let elimS(G′) denote the result of exhaus-
tive variable elimination. Then the following theorem imme-
diately follows from Lemma 9.

Theorem 10 (Completeness) LetC1,C2 andG be EL con-
cepts and F a generalisation framework. If G is an ex-
act generalisation of C1, C2 w.r.t. F then (GF, SF) ù∗

(G′, S), for some set of AUTs S and a generalisation G′ of
C1, C2 such that elimS(G′) is less general than G.

The following statement is an immediate consequence of the
shape of the minimisation rules.

Theorem 11 (Soundness) Let C1, C2 be EL concepts and
F be a generalisation framework. Let a concept G and a
set of AUTs S be such that (GF, SF) ù∗ (G,S). Then
elimS(G) is an exact generalisation of C1, C2 w.r.t. F.

Notice that every application of the (ssm) rule introduces a
shared variable Z in the nodes where X and Y occur; ev-
ery application of the (sm) rule introduces Z u X ′ into the
nodes where X occurs. We use these properties to prove in-
ductively that every computation terminates.

Theorem 12 (Termination) Let C1, C2 be EL concepts
and F a generalisation framework. Then any sequence
(GF, SF) = (G0, S0), (G1, S1),. . . , (Gm, Sm) such that
(Gi, Si) ù (Gi+1, Si+1) and no minimisation rule applies
to (Gm, Sm) contains polynomially many elements.

Finally we notice that every (Gi, Si) can be computed in
(non-deterministic) polynomial time. Indeed, even though
minimisation rules are formulated in such a way that a re-
peated computation of lcs is need, which can be exponential
in the size of input (Küsters 2001), we only use lcs to check
that UXi and UYi are such that lcs(LXi , L

Y
i ) v UXi u UYi ,

which is equivalent to LXi v UXi uUYi and LYi v UXi uUYi .
The side conditions in the minimisation rules ensure that the
length of every sequence of rule applications starting from
(GF, SF) is polynomial.

Complexity of fixed skeleton generalisations. We use
the machinery developed to analyse exact generalisations
w.r.t. generalisation frameworks to establish complexity
bounds for computing fixed skeleton generalisations. It fol-
lows from the NP-completeness of matching modulo equiv-
alence (Baader and Küsters 2006) that the computational
problem of checking if G is a generalisation of C1 and C2

is NP-complete. For least general generalisations, we rely
on the fact that if G is a fixed skeleton lgg of concepts
C1, C2 with skeleton Gsk then there exist homomorphisms
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Figure 2: Concepts C ′1 (left) and G′ (right) for the proof of Theorem 13.

ϕi : Gsk → Ci, for i = 1, 2, such that G is an lgg of C1 and
C2 w.r.t. (Gsk,ϕ1,ϕ2).

Theorem 13 Let C1, C2, Gsk and G be EL concepts. Then
the problem of checking if G is a least general exact gener-
alisation of C1 and C2 with skeleton Gsk is coNP-hard.

Proof. We proceed by reduction from unsatisfiability. Given
a 3CNF formula

φ = (l
(1)
1 ∨ l

(1)
2 ∨ l

(1)
3 ) ∧ · · · ∧ (l

(m)
1 ∨ l(m)

2 ∨ l(m)
3 ),

where, for i ∈ {1, 2, 3} and j ∈ {1, . . . ,m}, every l(j)i is a
literal from the set {p1, . . . , pn,¬p1, . . . ,¬pn}, we present
concepts C ′1, C ′2 over variables {X1, . . . , Xn, X1, . . . , Xn}
and a ground concept G′, and analyse conditions under
which G′ is an exact lgg of C ′1, C ′2 w.r.t. (G′sk,ϕ1,ϕ2),
for some homomorphisms ϕi : G′sk → C ′i, i = 1, 2,
G′sk = skel(G′), and discuss implications of these consid-
erations on the value that variables Xi and Xi, which en-
code propositional interpretations, take under witness sub-
stitutions τi. In the second step, we extend C ′1, C ′2, G′ into
concepts Cφ1 , Cφ2 and Gφ in such a way that Gφ is an exact
least general generalisation of Cφ1 and Cφ2 iff φ is unsatisfi-
able.

Consider concepts C ′1, C ′2 and G′1 defined as follows:

C ′1 := ∃r.(∃r1.(∃r.T u ∃r.F ) u · · · u
∃rn.(∃r.T u ∃r.F ) u ∃t.>) u

∃r.(∃r1.(∃r.A1
1 u ∃r.A2

1) u · · · u
∃rn.(∃r.A1

n u ∃r.A2
n) u ∃t.(T u F )),

C ′2 := ∃r.(∃r1.(∃r.T ′ u ∃r.F ′) u · · · u
∃rn.(∃r.T ′ u ∃r.F ′) u ∃t.>) u

∃r.(∃r1.(∃r.A′
1
1 u ∃r.A′

2
1) u · · · u

∃rn.(∃r.A′
1
n u ∃r.A′

2
n) u ∃t.(T ′ u F ′)).

and

G′ := ∃r.Y u ∃r.(∃r1.(∃r.X1 u ∃r.X1) u · · · u
∃rn.(∃r.Xn u ∃r.Xn) u ∃t.Z).

We illustrate concepts C ′1 and G′ in Figure 2. Let G′sk =
skel(G′) and let sets of homomorphisms Φq

1 and Φ×1 from
G′sk to C ′1 be defined as Φq

1 = {ϕq
1 | ϕq

1(d1) =
e1,ϕ

q
1(d2) = e2} and Φ×1 = {ϕ×1 | ϕ×1 (d1) =

e2,ϕ
×
1 (d2) = e1}. Notice that every homomorphism ϕ :

G′sk → C ′1 belongs to either Φq
1 or Φ×1 . Sets of homomor-

phisms Φq
2 and Φ×2 from G′sk to C ′2 are defined similarly.

It should be clear that for any ϕq
1 ∈ Φq

1 and ϕq
2 ∈ Φq

2,
the concept G′ is an exact generalisation of C ′1 and C ′2 w.r.t.
Fq = (G′sk,ϕ

q
1,ϕ

q
2) with witness substitutions σq

1 and σq
2

such that
σq
1(Y ) ≡ ∃r1.(∃r.T u ∃r.F ) u · · · u

∃rn.(∃r.T u ∃r.F ) u ∃t.>,
σq
1(Z) ≡ T u F and {σq

1(Xi), σ
q
1(Xi)} ≡ {A1

i , A
2
i },

for every i, 1 ≤ i ≤ n. For σq
2 the condition is similar. By

considering cases it can be proved that G′ is lgg(C ′1, C
′
2)

w.r.t. Fq.
Concept G′ is also an exact generalisation of C ′1 and C ′2

w.r.t. F = (G′sk,ϕ
×
1 ,ϕ2), for any ϕ×1 ∈ Φ×1 and ϕ2 ∈

Φq
2 ∪ Φ×2 , with witness substitutions σ×1
σ×1 (Y ) ≡ ∃r1.(∃r.A1

1 u ∃r.A2
1) u · · · u

∃rn.(∃r.A1
n u ∃r.A2

n) u ∃t.(T u F ),

σ×1 (Z) ≡ > and {σ×1 (Xi), σ
×
1 (Xi)} ≡ {T, F},

for every i, 1 ≤ i ≤ n. It is easy to see that, since for
some i 6= j we have σ×1 (Wi) = σ×1 (Wj) where Wi is
one of Xi, Xi and Wj is one of Xj , Xj , the (m) or (sm)
minimisation rule always applies to the corresponding set
of AUTs and so G′ is not an lgg(C ′1, C

′
2) w.r.t. F. For

F = (G′sk,ϕ1,ϕ
×
2 ) the reasoning is similar.

Thus,G′ is an exact least general generalisation ofC ′1 and
C ′2 w.r.t. some generalisation framework F = (G′sk,ϕ1,ϕ2)
iff ϕ1 ∈ Φq

1 and ϕ2 ∈ Φq
2.

Consider now

C ′′1 = ∃tF .F u
dn
i=1(∃t1i .A1

i u ∃t2i .A2
i ),

C ′′2 = ∃tF .F ′ u
dn
i=1(∃t1i .A′

1
i u ∃t2i .A′

2
i ), and

G′′ = ∃tF .YF u
dn
i=1(∃t1i .Y 1

i u ∃t2i .Y 2
i )

G′′ is an exact lgg of C ′′1 and C ′′2 with skeleton skel(G′′) and
for every witness substitutions τ1 and τ2 we always have

τ1(YF ) ≡ F ; τ1(Y 1
i ) ≡ A1

i ; τ1(Y 2
i ) ≡ A2

i ,

τ2(YF ) ≡ F ′; τ2(Y 1
i ) ≡ A′1i ; τ2(Y 2

i ) ≡ A′2i , i = 1, 2.

Finally, for the 3CNF formula

φ = (l
(1)
1 ∨ l

(1)
2 ∨ l

(1)
3 ) ∧ · · · ∧ (l

(m)
1 ∨ l(m)

2 ∨ l(m)
3 )

define a translation function f(pi) = Xi and f(¬pi) = Xi

and concepts Gφ, Cφ1 ,and Cφ2 as

Cφ1 := C ′1 u C ′′1 u
dm
j=1 ∃sj .(A u T u F ), and



Cφ2 := C ′2 u C ′′2 u
dm
j=1 ∃sj .(A′ u T ′ u F ′),

Gφ := G′ uG′′ u
md

j=1

∃sj .
(
Y u YF u

f(l
(j)
1 ) u f(l

(j)
2 ) u f(l

(j)
3 ) u Z

)
,

where Y = Y 1
1 uY 2

1 u · · · uY 1
n uY 2

n , A = A1
1uA2

1u · · · u
A1
n uA2

n, and A′ = A′
1
1 uA′

2
1 u · · · uA′

1
n uA′

2
n.

For every witness substitution σq
1 (resp. σq

2) we always
have (σq

1 ∪ τ1)(Gφ) ≡ Cφ1 (resp. (σq
2 ∪ τ2)(Gφ) ≡ Cφ2 );

for σ×1 we have (σ×1 ∪ τ1)(Gφ) ≡ Cφ1 iff I |= φ, where
the interpretation I is defined as I = {pi | σ×1 (Xi) = T}.
Thus,Gφ is an exact least general generalisation with a fixed
skeleton of concepts Cφ1 , Cφ2 iff φ is unsatisfiable. o

Experimental evaluation
We have implemented our anti-unification algorithm as
a Mathematica package. To reduce the degree of non-
determinism, in the (sm) and (ssm) rules we additionally
require UX1 u UY1 u UX2 u UY2 6≡ >, U′

Y
1 u U′

Y
2 6≡ >, and

U′
Y
1 u U′

Y
2 6≡ > and use the following strategy:

• Repeat until no minimisation rule is applicable
– Apply (m) exhaustively (does not generate branching)
– Apply (sm) whenever applicable (causes branching)
– Apply (ssm) whenever applicable (causes branching)

• If no rule is applicable, return elimS(G).
While this strategy leads to incompleteness, in many prac-
tical cases it gives shorter and more meaningful generalisa-
tions. The implementation accepts a generalisation frame-
work as input but it can construct one based on the lcs .

To evaluate our procedure, we have computed generali-
sations of the right hand sides of concept equalities of the
form A :≡ C of the GALEN-EL ontology (Kazakov and
Klinov 2015; Rector et al. 2003). There are 9968 such defi-
nitions in the ontology. We experimented with various ways
of computing lcs-based skeleton, from taking just the lcs to
making it some smaller size concept that subsumes the lcs
but still retains the common structure of the input concepts.
The statistics reported here is for the latter.

We ran our test on all 9968 selected axioms. To avoid
computing trivial or very simple generalisations, we re-
stricted our consideration to cases when generalisations
were either ground or had skeleton of depth at least 2.

It took 77.5 hours on Dell Linux Workstation with In-
tel Xeon E5-2680 v2 CPU and 384 GB RAM to anti-unify
49 675 528 concept pairs and compute 99 529 answers satis-
fying our selection criteria, among which 750 were ground,
42 258 showed that the anti-unified concepts differed from
each other only by concept names (we call them renaming
generalisations), and 56 521 showed non-renaming differ-
ences. To evaluate the scalability of our implementation, we
also run our tool on 1 000 randomly picked axioms, which
took it 47 minutes.

Our experiments revealed interesting insights into the
structure of the ontology; we illustrate some of our find-
ings below. A generalisation G being ground indicates that

the input concepts are identical, i.e., some concept descrip-
tions repeat in the ontology: There are axioms of the form
A :≡ G and B :≡ G, which could have been better mod-
elled as A :≡ G and B :≡ A. Examples of repeated defini-
tions are AbductionOfGlenoHumeralJoin, Anynomous-469,
and Anynomous-488, all defined as

Abduction u ∃actsSpecificallyOn.GlenoHumeralJoint;

Anynomous-109 and Anynomous-331 both are defined as

Device u ∃isSpecificPhysicalMeansOf.

(NonDirectInspecting u ∃actsSpecificallyOn.Eye);

etc.
The definitions of the concepts AdenomaOfColon and

AdrenalPhaeochromocytoma can be obtained from one an-
other by renaming of concept names, and their renaming
generalisation is

BodyStructure u ∃hasUniqueAssociatedProcess.

(BenignNeoplasticProcess u ∃actsSpecificallyOn.

(X1 u ∃isSpecificStructuralComponentOf. X2)),

where the differences are only in concept names as the com-
puted AUTs show

X1 : [. . . ,Adenocyte] , [. . . ,ChromaffinCell],

X2 : [. . . ,Colon] , [. . . ,AdrenalMedulla].

(The lower bounds are omitted for brevity.)
An interesting case is the generalisation of

Anonymous-257 and Anonymous-529, which shows
that these definitions differ in two places, but in exactly the
same way:

X1 u ∃IsDivisionOf.

(X1 u ∃isPairedOrUnpaired. atLeastPaired),

where

X1 : [. . . ,GenericBodyStructure] , [. . . ,BodyPart].

We call such generalisations nonlinear.
An example of a nonlinear and nonrenaming general-

isation has been obtained, e.g., for Anonymous-158 and
Anonymous-340:

absence u ∃isExistenceOf. (X1 uX2 u
∃isConsequenceOf. (GeneralisedProcess uX1 uX3 u
∃LocativeAttribute.OrganicSolidStructure)),

where the AUTs are

X1 : [. . . ,∃hasIntrinsicAbnormalityStatus. normal] ,

[. . . ,GeneralisedProcess],

X2 : [. . . ,GeneralisedSubstance] , [. . . ,>],

X3 : [. . . ,>] ,

[. . . ,∃hasAbnormalityStatus.nonNormal].

From this generalisation one can see that the definitions
of Anonymous-158 and Anonymous-340 are quite simi-
lar. As for the differences, the generalisation and the AUT



for X1 show that the definition of Anonymous-158 con-
tains the concept ∃hasIntrinsicAbnormalityStatus. normal
in two places where the definition of Anonymous-340 has
GeneralisedProcess. From the AUT for X2 we conclude
that Anonymous-158 contains GeneralisedSubstance, which
is not present in Anonymous-340. Similarly, the AUT for
X3 says that ∃hasAbnormalityStatus.nonNormal occurs in
Anonymous-340 but not in Anonymous-158.

Conclusions
We have studied the anti-unification problem for the de-
scription logic EL, proved that a finite minimal complete
set of generalisations for EL concepts always exists and es-
tablished complexity bounds for computing them. We pre-
sented an anti-unification algorithm for a fixed generalisa-
tion framework case and proved that it always terminates
with a generalisation of the given concepts and that every
lgg can be computed by an algorithm run. We evaluated its
performance in a case study. Investigating the existence of
tractable strategies that guarantee that the output is always
an lgg and computing lggs in presence of background knowl-
edge (TBoxes) constitutes future work.
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