
Foundations of Computer Science
Comp109

University of Liverpool
Boris Konev
konev@liverpool.ac.uk
http://www.csc.liv.ac.uk/~konev/COMP109

Introduction
Comp109 Foundations of Computer Science

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 1 / 29

Information

Lecturer

Prof Boris Konev
Office: 1.15 Ashton building
Email: konev@liverpool.ac.uk
Course web page:
http://www.csc.liv.ac.uk:/~konev/COMP109

∼30 lectures + 2 class tests + 11 tutorials

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 2 / 29

Module aims

To introduce the notation, terminology, and techniques underpinning
the discipline of Theoretical Computer Science.
To provide the mathematical foundation necessary for understanding
datatypes as they arise in Computer Science and for understanding
computation.
To introduce the basic proof techniques which are used for reasoning
about data and computation.
To introduce the basic mathematical tools needed for specifying
requirements and programs

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 3 / 29

Module outcomes

At the end of this module students should be able to:

Understand how a computer represents simple numeric data types;
reason about simple data types using basic proof techniques;
Interpret set theory notation, perform operations on sets, and reason
about sets;
Understand, manipulate and reason about unary relations, binary
relations, and functions;
Apply logic to represent mathematical statement and digital circuit,
and to recognise, understand, and reason about formulas in
propositional and predicate logic;
Apply basic counting and enumeration methods as these arise in
analysing permutations and combinations.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 4 / 29

Assessment

Exam: 80%
Multiple-choice test

Continuous Assessment: 20%
Assessment 1. Covers Parts 1-4

Class test
Tutorial contribution

Assessment 2. Covers Parts 5-7
Class test
Tutorial contribution

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 5 / 29

Lectures

We will have three lectures per week.
Your personal timetable is on Liverpool Life.

Read the slides before (and after) the lecture.
Take notes. (University is a lot different from school.)
I will write on the slides.
Notes often make no/little sense

PDFs will appear on
http://cgi.csc.liv.ac.uk/~konev/COMP109

These notes are not a replacement for your own notes!

Please study as you go along.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 6 / 29

Tutorials

The class will be divided into tutorial groups. You will be able to find
out which group you are in from your personal timetable.
Each tutorial group meets once a week.
Problem sheets will become available on the module web page
(https://intranet.csc.liv.ac.uk/~konev/COMP109).
Try to solve the problems before your tutorial. Part of your continuous
assessment mark will be based on your contribution during tutorials,
including
1. making reasonable attempts to solve the problems, and bringing these
(in writing) to tutorials, and

2. your contribution to group discussions in the tutorial group.

You will hand your work in at the end of each tutorial and get a
feedback the following week.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 7 / 29

Extenuating circumstances

If you cannot attend a tutorial / test / exam for a good reason

Notify the department (see the handbook)
Missed tutorial: hand in your best attempt at your earliest opportunity.
Missed class test: dept. decides either resit or module mark is based
on other assessment.
Missed exam: first attempt stutus in resits.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 8 / 29

Core textbook

K. Rosen. Discrete Mathematics and Its Applications, McGraw-Hill. 7th
edition, 2012.

(any edition, including the US edition, is OK)

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 9 / 29

Recommended books

S. Epp. Discrete Mathematics with Applications, Cengage Learning. 4th
edition, 2011.
E. Lehman, F. T. Leighton and A. R. Meyer Mathematics for Computer
Science. Free book
E. Bloch. Proofs and Fundamentals, Springer. 2nd edition, 2011
K. Houston. How to Think Like a Mathematician, Cambridge University
Press. 2009

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 10 / 29

Course contents

Part 1. Number Systems and Proof Techniques
Part 2. Set Theory
Part 3. Functions
Part 4. Relations
Part 5. Propositional Logic & Digital Circuits
Part 6. Combinatorics & Probability

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 11 / 29

So, this is maths…

The module does not depend upon A-level maths.
You can get a first in this module even if you did badly at GCSE maths.
To do well in this module, you have to work hard.

But Who Needs Maths?

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 12 / 29

You do!

Comp108, Comp 202, Comp226, Comp304, Comp305, Comp309,...

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 13 / 29

Datatypes

A datatype in a programming language is a set of values and the
operations on those values. The datatype states

the possible values for the datatype
the operations that can be performed on the values
the way that values are stored.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 14 / 29

Number systems and datatypes

The most basic datatypes
Natural Numbers
Integers
Rationals
Real Numbers
Prime Numbers

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 15 / 29

Number systems and proof techniques

Proof Techniques
Finding a counter-example
Proof by contradiction
Proof by Induction

These are used, for example, to reason about data types and to reason
about algorithms.

We use proof techniques, both to show that an algorithm is correct and to
show that it is efficient.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 16 / 29

Data collections

Most applications work with collections of data items

Price list
Phonebook
Climate change data
Stock exchange data
…

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 17 / 29

Sets

A set is a well-defined collection of objects. The objects in the set are
called the elements or members of the set.

The set containing the numbers 1, 2, 3, 4 and 5 is written {1, 2, 3, 4, 5}.
The number 3 is an element of the set, that is, 3 ∈ {1, 2, 3, 4, 5}.
The number 6 is not an element of the set, that is, 6 < {1, 2, 3, 4, 5}.
The set {dog, cat, mouse} is a set with three elements: dog, cat and
mouse.

Young man, in mathematics you don’t understand things. You just
get used to them. (John von Neumann)

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 18 / 29

Some important sets

N = {0, 1, 2, 3, . . .} (the natural numbers)
Z = {. . . ,−2,−1, 0, 1, 2, . . .} (the integers)
Q = {p/q | p and q are integers,q , 0} (the rationals)
R: (real numbers)

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 19 / 29

Functions

A function is just a map from a set of inputs to a set of outputs.
This is exactly what an algorithm computes.

Functions can also be used to determine how long algorithms take to
run.

20 Chapter 1 Speaking Mathematically

function machine

Input
x

f (x) Output

Figure 1.3.1

Example 1.3.6 Functions Defined by Formulas

The squaring function f from R to R is defined by the formula f (x) = x2 for all real
numbers x . This means that no matter what real number input is substituted for x , the
output of f will be the square of that number. This idea can be represented by writing
f (!) = !2. In other words, f sends each real number x to x2, or, symbolically,
f : x → x2. Note that the variable x is a dummy variable; any other symbol could replace
it, as long as the replacement is made everywhere the x appears.

The successor function g from Z to Z is defined by the formula g(n) = n + 1. Thus,
no matter what integer is substituted for n, the output of g will be that number plus
one: g(!) = !+ 1. In other words, g sends each integer n to n + 1, or, symbolically,
g: n → n + 1.

An example of a constant function is the function h from Q to Z defined by the
formula h(r) = 2 for all rational numbers r . This function sends each rational number
r to 2. In other words, no matter what the input, the output is always 2: h(!) = 2 or
h: r → 2.

The functions f, g, and h are represented by the function machines in Figure 1.3.2.

squaring
function

x

f (x) = x2

(a)

successor
function

n

g(n) = n + 1

(b)

constant
function

r

h(r) = 2

(c)

Figure 1.3.2 ■

A function is an entity in its own right. It can be thought of as a certain relationship
between sets or as an input/output machine that operates according to a certain rule. This
is the reason why a function is generally denoted by a single symbol or string of symbols,
such as f, G, of log, or sin.

A relation is a subset of a Cartesian product and a function is a special kind of relation.
Specifically, if f and g are functions from a set A to a set B, then

f = {(x, y) ∈ A × B | y = f (x)} and g = {(x, y) ∈ A × B | y = g(x)}.
It follows that

f equals g, written f = g, if, and only if, f (x) = g(x) for all x in A.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Examples:
y = x2

y = sin(x)
first letter of your name

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 20 / 29

Family relations

Fred and Mavis

Alice Ken and

Jane Fiona Alan

John and Mary

Sue Mike Penny

Write down

R = {(x, y) | x is a grandfather of y };

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 21 / 29

Relations and databases

Databases: Most databases store information as relations over sets. We
need precise notation and terminology for sets and relations in order to
talk about databases. Basic mathematical facts about relations and sets
are required to understand how a database is designed and implemented.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 22 / 29

Logic and specification languages

How can we specify what a program should do? Natural languages can be
long-winded and ambiguous and are not appropriate for intricate
problems.

A formal language without ambiguous statements is required.

Propositional and Predicate Logic are the most important formal
languages for specifying programs.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 23 / 29

Propositional logic and digital circuits

Syntax: formulas and formal representations
Semantics: interpretations and truth tables
Logic and digital circuits
Computer arithmetic
Logical equivalence

82 Chapter 2 The Logic of Compound Statements

Circuits for Computer Addition
Consider the question of designing a circuit to produce the sum of two binary digits P
and Q. Both P and Q can be either 0 or 1. And the following facts are known:

12 + 12 = 102,

12 + 02 = 12 = 012,

02 + 12 = 12 = 012,

02 + 02 = 02 = 002.

It follows that the circuit to be designed must have two outputs—one for the left
binary digit (this is called the carry) and one for the right binary digit (this is called
the sum). The carry output is 1 if both P and Q are 1; it is 0 otherwise. Thus the carry
can be produced using the AND-gate circuit that corresponds to the Boolean expression
P ∧ Q. The sum output is 1 if either P or Q, but not both, is 1. The sum can, therefore,
be produced using a circuit that corresponds to the Boolean expression for exclusive or:
(P ∨ Q)∧ ∼(P ∧ Q). (See Example 2.4.3(a).) Hence, a circuit to add two binary digits
P and Q can be constructed as in Figure 2.5.1. This circuit is called a half-adder.

HALF-ADDER

Circuit Input/Output Table

P

Q
NOT

AND

AND

OR
Sum

Carry

P Q Carry Sum

1 1 1 0

1 0 0 1

0 1 0 1

0 0 0 0

Figure 2.5.1 Circuit to Add P + Q, Where P and Q Are Binary Digits

Now consider the question of how to construct a circuit to add two binary integers,
each with more than one digit. Because the addition of two binary digits may result in
a carry to the next column to the left, it may be necessary to add three binary digits at
certain points. In the following example, the sum in the right column is the sum of two
binary digits, and, because of the carry, the sum in the left column is the sum of three
binary digits.

1 ← carry row

1 12
+ 1 12

1 1 02

Thus, in order to construct a circuit that will add multidigit binary numbers, it is
necessary to incorporate a circuit that will compute the sum of three binary digits. Such a
circuit is called a full-adder. Consider a general addition of three binary digits P, Q, and
R that results in a carry (or left-most digit) C and a sum (or right-most digit) S.

P
+ Q
+ R

C S

The operation of the full-adder is based on the fact that addition is a binary operation:
Only two numbers can be added at one time. Thus P is first added to Q and then the

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 24 / 29

Combinatorics

Combinatorics includes the study of counting and also the study of
discrete structures such as graphs. It is essential for analysing the
efficiency of algorithms.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 25 / 29

Combinatorics

Notation for sums and products, including the factorial function.
Principles for counting permutations and combinations, for example,
to enable you to solve the problem on the following slide.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 26 / 29

Applications to discrete probability

The draw selects a set of six different numbers from 1, 2, . . . , 49. Each
choice is equally likely.

You choose a set of six numbers in advance. If your numbers come up, you
win the jackpot. What is the probability of this event?

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 27 / 29

Reading mathematics1

Read with a purpose
Choose a book at the right level
Read with pen and paper at hand
Don’t read it like a novel
Identify what is important
Stop periodically to review
Read statements first—proofs later
Do the exercises and problems
Reflect
Write a summary

1How to think like a mathematician by K. Houston.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 28 / 29

Appendix: Greek letters

Alpha α A Iota ι I Sigma σ Σ

Beta β B Kappa κ K Tau τ T
Gamma γ Γ Lambda λ Λ Upsilon υ Υ

Delta δ ∆ Mu µ M Phi ϕ Φ

Epsilon ϵ E Nu ν N Chi χ X
Zeta ζ Z Omicron o O Psi ψ Ψ

Eta η E Pi π Π Omega ω Ω

Theta θ Θ Rho ρ R

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 29 / 29

