Foundations of Computer Science Comp109

University of Liverpool Boris Konev konev@liverpool.ac.uk http://www.csc.liv.ac.uk/~konev/COMP109

http://www.csc.liv.ac.uk/~konev/COMP109

Part 1. Number Systems and Proof Technique

Part 1. Number Systems and Proof Techniques Comp109 Foundations of Computer Science ■ S. Epp. Discrete Mathematics with Applications Chapter 4, Sections 5.2 and 5.3.

■ E. Bloch. *Proofs and Fundamentals* Chapter 2, Section 6.3.

Reading

7/72 http://www.csc.liv.ac.uk/~konev/COMP109

Part 1. Number Systems and Proof Te

K. Rosen. Discrete Mathematics and Its Applications Section 5.1.

	http://www.csc.liv.ac.uk/~konev/COMP109	2 http://www.csc.liv.ac.uk/~konev/COMP109		
Contents	What is a number?	The natural numbers		
 The most basic datatypes Natural Numbers Integers Rationals Real Numbers Prime Numbers Proof Techniques Direct proof and disproof Disproof by counterexample Existence proof Generalising from the generic particular Indirect Proof Proof by contradiction 		Key property: Any natural numb operation $S(n) = n + 1$ some nu Examples: $S(0) = 1$. S(S(0)) = 2. S(S(S(0))) = 3.	0, 1, 2, 3, per can be obtained from 0 by applying the umber times.	

Prime numbers	Example: prime and composite numbers	Beyond naturals
A prime number is a integer greater than 1 which has exactly two divisors	1. Is 1 prime?	The Integers, -2, -1, 0, 1, 2,
that are positive integers: 1 and itself. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,	2. Is every integer greater than 1 either prime or composite?	The Rational Numbers all numbers that can be written as $\frac{m}{n}$ where <i>m</i> and <i>n</i> are integers and <i>n</i> is not 0
Every natural number greater than 1 can be written as a unique product of prime numbers.	3. Write the first six prime numbers.	
Examples: $6 = 2 \times 3$. $15 = 3 \times 5$. $1400 = 2^3 \times 5^2 \times 7$.	4. Write the first six composite numbers.	

Part 1. Number Systems and Proof Tech

6/72 http://www.csc.liv.ac.uk/~konev/COMP109

Reminder: Algebraic manipulation	Solving and computing	Statements
	Mathematics underpins STEM subjects. In many cases, we are concerned with solving and computing	Which of the following are true?
	$\begin{aligned} & \text{Complete the table of values for} y^{\pm 3 - x^2} \\ & \text{Wite down the value of } x + \beta \text{ and the value of } x_\beta. \end{aligned}$ $\begin{aligned} & \text{Work out} \frac{1}{3} \times \frac{1}{5} \end{aligned}$ $\begin{aligned} & \text{Find the general solution, in degrees, of the equation} \\ & 2\sin(3x + 45^\circ) = 1 \end{aligned}$ $\begin{aligned} & \text{Solution} \text{ Solution} \text{ and } x + 5^\circ \text{ and } x +$	 An integer doubled is larger than the integer. The sum of any two odd numbers is even.
http://www.csc.liv.ac.uk/-konev/COMP189 Part 1. Number Systems and Proof Techniques 9 / 72 The moral of the story	http://www.csc.liv.ac.uk/-konev/COMP109 Part 1. Number Systems and Proof Techniques 10 / 72 Example: Drivers behaviour ¹	http://www.csc.liv.ac.uk/-konev/COMP109 Part 1. Number Systems and Proof Techniques 11 / : Historical detour: Visual proofs
We can't believe a statement just because it appears to be true. We need a proof that the statement is true or a proof that it is false. Do we care?	do { KeAcquireSpinLock(); nPacketsOld = nPackets; if (request) { request = request->Next; KeReleaseSpinLock(); nPackets++; } } while (nPackets != nPacketsOld); KeReleaseSpinLock(); Vou don't need to understand the actual codet $Vou don't need to understand the actual codet$ $Vou don't need to understand the actual codet$	\mathbf{a} \mathbf{b}
http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 12 / 72 Drooffe	http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 13 / 72	http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 14 / 7
 A mathematical proof is as a carefully reasoned argument to convince a sceptical listener (often yourself) that a given statement is true. Both discovery and proof are integral parts of problem solving. When you think you have discovered that a certain statement is true, try to figure out why it is true. If you succeed, you will know that your discovery is genuine. Even if you fail, the process of trying will give you insight into the nature of the problem and may lead to the discovery that the statement is false. 	Definition An integer <i>n</i> is even if, and only if, <i>n</i> equals twice some integer. An integer <i>n</i> is odd if, and only if, <i>n</i> equals twice some integer plus 1. Symbolically, if <i>n</i> is an integer, then <i>n</i> is even $\Leftrightarrow \exists$ an integer <i>k</i> such that $n = 2k$. <i>n</i> is odd $\Leftrightarrow \exists$ an integer <i>k</i> such that $n = 2k + 1$. Notice the use of $\Leftrightarrow \exists \forall$.	Use the definitions of even and odd to justify your answers to the following questions. Definition $n ext{ is even } \Leftrightarrow \exists ext{ an integer } k ext{ such that } n = 2k.$ $n ext{ is odd } \Leftrightarrow \exists ext{ an integer } k ext{ such that } n = 2k + 1.$ 1. Is 0 even? 2. Is 301 odd?

Example: Properties of odd and even numbers	Existence proofs	Constructive proof
 Definition <i>n</i> is even ⇔ ∃ an integer <i>k</i> such that <i>n</i> = 2<i>k</i>. <i>n</i> is odd ⇔ ∃ an integer <i>k</i> such that <i>n</i> = 2<i>k</i> + 1. 3. If <i>a</i> and <i>b</i> are integers, is 6<i>a</i>²<i>b</i> even? 4. If <i>a</i> and <i>b</i> are integers, is 10<i>a</i> + 8<i>b</i> + 1 odd? 5. Is every integer either even or odd? 	 Statements of the form ∃x Q(x) Examples: 1. Prove the following: ∃ an even integer n that can be written in two ways as a sum of two prime numbers. 2. Suppose that r and s are integers. Prove the following: ∃ an integer k such that 22r + 18s = 2k. 	• One way to prove $\exists x Q(x)$ is to find an x in that makes $Q(x)$ true.
http://www.csc.liv.ac.uk/-konev/COMP109 Part 1. Number Systems and Proof Techniques 18 / 72	http://www.csc.liv.ac.uk/-konev/COMP109 Part 1. Number Systems and Proof Techniques 19 / 72	http://www.csc.liv.ac.uk/-konev/COMP189 Part 1. Number Systems and Proof Techniques 20
The vast majority of mathematical statements to be proved are universal. In discussing how to prove such statements, it is helpful to imagine them in a standard form: $\forall x \text{ if } P(x) \text{ then } Q(x)$ For example, If <i>a</i> and <i>b</i> are integers then $6a^2b$ is even.	Some theorems can be proved by examining relatively small number of examples. Prove that $(n + 1)^3 \ge 3^n$ if n is a positive integer with $n \le 4$. n = 1 n = 2 n = 3 n = 4 Prove for every natural number n with $n < 40$ that $n^2 + n + 41$ is prime.	Notive tige example. National number. The answer is 7. Step Visual Result Algebraic Result Pick a number. Image: Image and the answer is 7. Number. Algebraic Result Pick a number. Image: Image and the answer is 7. Subtract 6. Image: Image and the answer is 7. Subtract 6. Image and the answer is 7. Subtract twice the original number. Image and the answer is 7. Number and the answer is 7. Image and the answer is 7.
http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 21 / 72 Generalising from the Generic Particular	http://www.csc.liv.ac.uk/-konev/COMP109 Part1. Number Systems and Proof Techniques 22 / 72 Method of direct proof	http://www.csc.liv.ac.uk/-konev/COMP109 Part 1. Number Systems and Proof Techniques 23 Prove that the sum of any two even integers is even
The most powerful technique for proving a universal statement is one that works regardless of the choice of values for x. To show that every x satisfies a certain property, suppose x is a particular but arbitrarily chosen and show that x satisfies the property.	 Express the statement to be proved in the form "∀x, if P(x) then Q(x)." (This step is often done mentally.) Start the proof by supposing x is a particular but arbitrarily chosen element for which the hypothesis P(x) is true. (This step is often abbreviated "Suppose P(x).") Show that the conclusion Q(x) is true by using definitions, previously established results, and the rules for logical inference. 	

http://www.csc.liv.ac.uk/~konev/COMP109

Part 1. Number Systems and Proof Techniques

24/72 http://www.csc.liv.ac.uk/~konev/COMP109

25 / 72 http://www.csc.liv.ac.uk/~konev/COMP109

Part 1. Number Systems and Proof Techniques

Prove that every integer is rational	Prove that the sum of any two rational numbers is rational	Prove that the product of any two rational numbers is rational
http://www.csc.liv.ac.uk/-konev/COMP109 Part 1. Number Systems and Proof Techniques 27 / 72	http://www.csc.liv.ac.uk/-konev/COMP109 Part 1. Number Systems and Proof Techniques 28 / 72	http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 29 / 7
Prove that the double of a fational number is fational	Prove for all integers <i>n</i> , in <i>n</i> is even then <i>n</i> ² is even	Prove by cases: combine generic particulars and proof by exhaustion
		Statement: For all integers n , $n^2 + n$ is even
		Case 1: n is even
		Case 2: n is odd
http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 30 / 72	http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 31 / 72	http://www.csc.liv.ac.uk/-konev/COMP109 Part 1. Number Systems and Proof Techniques 32 / 7
How about	Disproving universal statements by counterexample	Is it true that for every positive integer <i>n</i> , $n^2 \ge 2n$?
Drave for all integers m and n if $m^2 - n^2$ then $m - n^2$		
Prove for all integers <i>m</i> and <i>n</i> , if $m^2 = n^2$ then $m = m^2$		
	To disprove a statement means to show that it is false. Consider the	
	$\forall x, \text{ if } P(x) \text{ then } Q(x).$	
	Showing that this statement is false is equivalent to showing that its	
	$\exists x \text{ such that } P(x) \text{ and not } Q(x).$	

35 / 72

http://www.csc.liv.ac.uk/~konev/COMP109

43 / 72 http://www.csc.liv.ac.uk/~konev/COMP109

- In a direct proof you start with the hypothesis of a statement and make one deduction after another until you reach the conclusion.
- Indirect proofs are more roundabout. One kind of indirect proof, argument by contradiction, is based on the fact that either a statement is true or it is false but not both.
- So if you can show that the assumption that a given statement is not true leads logically to a contradiction, impossibility, or absurdity, then that assumption must be false: and, hence, the given statement must be true.

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

tp://www.csc.liv.ac.uk/~konev/COMP109	Part 1. Number Systems and Proof Techniques 36 / 72	nttp://www.csc.liv.ac.uk/~konev/COMP109	Part 1. Number Systems and Proof Techniques 377	//2 http://www.csc.liv.ac.uk/~konev/COMP109	Part 1. Number Systems and Proof lechniques 38 / 7
Use proof by contradiction to show t tional number	hat there is no smallest positive ra-	Use proof by contradiction to show odd	that no integer can be both even and	Use proof by contradiction to show	v that there is no greatest prime number
Let $f(x) = 2x + 5$. Prove that if $x \neq y$ th	Part 1. Number Systems and Proof Techniques $39/72$ nen $f(X) eq f(y)$	When to use indirect proof	Part 1. Number Systems and Proof Techniques 40 /	The real numbers	Part 1. Number Systems and Proof Techniques 41 / 7
Direct proof					
Proof by contradiction		 Many theorems can be proved oboth types of proof are possible proof. In the absence of obvious clues to prove a statement directly. T a counterexample. If the search for a counterexam contradiction 	either way. Usually, however, when e, indirect proof is clumsier than direct s suggesting indirect argument, try first hen, if that does not succeed, look for ple is unsuccessful, look for a proof by	All (decimal) numbers — distances Examples. -3.0 0 1.6 $\pi = 3.14159$ A real number that is not rational But are there any irrational numb	s to points on a number line. is called irrational. ers?

42 / 72 http://www.csc.liv.ac.uk/~konev/COMP109

Proving that $\sqrt{2}$ is not a rational number	the proof continued	Prove that $1 + 3\sqrt{2}$ is irrational
 Proof by contradiction. If √2 were rational then we could write it as √2 = x/y where x and y are integers and y is not 0. By repeatedly cancelling common factors, we can make sure that x and y have no common factors so they are not both even. Then 2 = x²/y² so x² = 2y² so x² is even. This means x is even, because the square of any odd number is odd. 	 Let x = 2w for some integer w. Then x² = 4w² so 4w² = 2y² so y² = 2w² so y² is even so y is even. This contradicts the fact that x and y are not both even, so our original assumption, that √2 is rational, must have been wrong. 	
http://www.csc.liv.ac.uk/-konev/COMP109 Part 1. Number Systems and Proof Techniques 45 / 72 Mathematical induction	http://www.csc.liv.ac.uk/-konev/COMP109 Part 1. Number Systems and Proof Techniques 46 / 72 Example: Domino effect	http://www.csc.liv.ac.uk/-konev/COMP109 Part 1. Number Systems and Proof Techniques 47 / 7.
 Mathematical induction is one of the more <i>recently</i> developed techniques of proof in the history of mathematics. It is used to check conjectures about the outcomes of processes that occur repeatedly and according to definite patterns. In general, mathematical induction is a method for proving that a property defined for integers <i>n</i> is true for all values of <i>n</i> that are greater than or equal to some initial integer 	 One domino for each natural number, arranged in order. I will push domino 0 (the one at the front of the picture) towards the others. For every natural number <i>m</i>, if the <i>m</i>'th domino falls, then the (<i>m</i> + 1)st domino will fall. Conclude: All of the Dominoes will fall. 	 Prove that the property holds for the natural number n = 0. Prove that if the property holds for n = m (for any natural number m) then it holds for n = m + 1. The validity of proof by mathematical induction is generally taken as an axiom. That is why it is referred to as the principle of mathematical induction rather than as a theorem.
http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 48 / 72 A proof of a property by induction looks like this	http://www.csc.liv.ac.uk/-konev/COMP109 Part 1. Number Systems and Proof Techniques 49 / 72 Example: Proof by induction	http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 50 / 7. Proof continued
Base Case: Show that the property holds for $n = 0$. Inductive Step: Assume that the property holds for $n = m$. Show that it holds for $n = m + 1$. Conclusion: You can now conclude that the property holds for every natural number n .	For every natural number <i>n</i> , $0+1+\dots+n=\frac{n(n+1)}{2}$. Base Case: Take $n = 0$. The left-hand-side and the right-hand-side are both 0 so they are equal. Inductive Step: Assume that the property holds for $n = m$, so $0+1+\dots+m=\frac{m(m+1)}{2}$. Now consider $n = m + 1$. We must show that $0+1+\dots+m+(m+1)=\frac{(m+1)(m+2)}{2}$.	Since $0 + 1 + \dots + m = \frac{m(m+1)}{2}.$ $0 + 1 + \dots + m + (m+1) = \frac{m(m+1)}{2} + m + 1$ $= \frac{m(m+1) + 2(m+1)}{2}$ $= \frac{(m+1)(m+2)}{2}$

53 / 72

Other starting values	Example: Proof by induction	Example: Proof by induction
Suppose you want to prove a statement not for all natural numbers, but for all integers greater than or equal to some particular natural number <i>b</i> Base Case: Show that the property holds for $n = b$. Inductive Step: Assume that the property holds for $n = m$ for any $m \ge b$. Show that it holds for $n = m + 1$. Conclusion: You can now conclude that the property holds for every integer $n \ge b$.	For all integers $n \ge 8$, $n \notin$ can be obtained using $3 \notin$ and $5 \notin$ coins. Base Case: For $n = 8$, $8 \notin = 3 \notin + 5 \notin$. Inductive Step: Suppose that $m \notin$ can be obtained using $3 \notin$ and $5 \notin$ coins for any $m \ge 8$. We must show that $(m + 1) \notin$ can be obtained using $3 \notin$ and $5 \notin$ coins. Consider cases There is a $5 \notin$ coin among those used to make up the $m \notin$. Replace the $5 \notin$ coin with two $3 \notin$ coins. We obtain $(m + 1) \notin$. There is no $5 \notin$ coin among those used to make up the $m \notin$. There are three $3 \notin$ coins ($m \ge 8$). Replace the three $3 \notin$ coins with two $5 \notin$ coins	For every integer $n \ge 3$, $4^n > 2^{n+2}$. Base Case: Take $n = 3$. Then $4^n = 4^3 = 64$. Also, $2^{n+2} = 2^5 = 32$. So $4^n > 2^{n+2}$. Inductive Step: For any $m \ge 3$, assume that the statement $4^m > 2^{m+2}$ is true. (This is called the "inductive hypothesis".) Now consider $n = m + 1$. We must show that $4^{m+1} > 2^{(m+1)+2} = 2^{m+3}$. Here is the calculation. $4^{m+1} = 4 \times 4^m$. But by the inductive hypothesis, $4 \times 4^m > 4 \times 2^{m+2}$. Finally, $4 \times 2^{m+2} > 2 \times 2^{m+2} = 2^{m+3}$.
http://www.csc.liv.ac.uk/-konev/COMP109 Part 1. Number Systems and Proof Techniques 54 / 72	http://www.csc.liv.ac.uk/-konev/COMP109 Part1. Number Systems and Proof Techniques 55 / 72	http://www.csc.liv.ac.uk/-konev/COMP189 Part 1. Number Systems and Proof Techniques 56 / 72 Proof hv induction
What does the following program do? i = 0 M = 0 mylist = [1, 2, 6, 3, 4, 5] while i < len(mylist): M = max(M, mylist[i]) i = i + 1 print M	<pre>i = 0 M = 0 mylist = [1, 2, 6, 3, 4, 5] while i < len(mylist): M = max(M, mylist[i]) i = i + 1 print M Property: After the statement M = max(M, mylist[i]) gets executed, the value of M is max(mylist[0],,mylist[i]).</pre>	 Property: After the statement M = max(M, mylist[i]) gets executed, the value of M is max(mylist[0],,mylist[i]). Base Case: Take i=0. Before the statement, M=0, so the statement assigns M to be the maximum of 0 and mylist[0], which is mylist[0]. Inductive Step: Assume that the statement is true for i=m for some m≥ 0. Now consider i=m+1. The statement assigns M to be the maximum of mylist[m+1] and max(mylist[0],,mylist[m]), so after the statement, M is max(mylist[0],,mylist[m+1]).
Strong induction	Example: Proof by strong induction	Example: Number of multiplications
 Prove that the property holds for the natural number n = 0. Prove that if the property holds for n = 0, 2,, m (and not just for m!) then it holds for n = m + 1. Can also be used to prove a property for all integers greater than or equal to some particular natural number b 	Every natural number $n \ge 2$, is a prime or a product of primes. Base Case: Take $n = 2$. Then n is a prime number. Inductive Step: Assume that the property holds for $n = m$ so every number i s.t. $2 \le i \le m$ is a prime or a produce of primes. Now consider $n = m + 1$.	For any integer $n \ge 1$, if $x_1, x_2,, x_n$ are n numbers, then no matter how the parentheses are inserted into their product, the number of multiplications used to compute the product is $n - 1$.

61/72 http://www.csc.liv.ac.uk/~konev/COMP109

Part 1. Number Systems and Proof Techniques

62 / 72

http://www.csc.liv.ac.uk/~konev/COMP109

Part 1. Number Systems and Proof Techniques

60 / 72 http://www.csc.liv.ac.uk/~konev/COMP109

Bad proofs: Arguing from example	Bad proofs: Using the same letter to mean two different things	Bad proofs: Jumping to a conclusion
An incorrect "proof" of the fact that the sum of any two even integers is even. This is true because if m = 14 and n = 6, which are both even, then m + n = 20, which is also even.	Consider the following "proof" fragment: Suppose m and n are any odd integers. Then by definition of odd, m = 2k + 1 and $n = 2k + 1$ for some integer k.	To jump to a conclusion means to allege the truth of something without giving an adequate reason. Suppose m and n are any even integers. By definition of even, m = 2r and n = 2s for some integers r and s. Then m + n = 2r + 2s. So m + n is even.
ttp://www.csc.liv.ac.uk/-konev/COMP189 Part 1. Number Systems and Proof Techniques 63 / 72 Bad proofs: Circular reasoning	http://www.csc.liv.ac.uk/-konev/COMP109 Part 1. Number Systems and Proof Techniques 64 / 72 Bad proofs: Confusion between what is known and what is still to be shown	http://www.csc.liv.ac.uk/-konev/COMP109 Part 1. Number Systems and Proof Techniques 65 Good proofs in practice ²
To engage in circular reasoning means to assume what is to be proved. Suppose m and n are any odd integers. When any odd integers are multiplied, their product is odd. Hence mn is odd.	Suppose m and n are any odd integers. We must show that mn is odd. This means that there exists an integer s such that mn = 2s + 1. Also by definition of odd, there exist integers a and b such that m = 2a + 1 and $n = 2b + 1$. Then mn = (2a + 1)(2b + 1) = 2s + 1. So, since s is an integer, mn is odd by definition of odd.	State your game plan. A good proof begins by explaining the general line of reasoning, for example, "We use case analysis" or "We argue by contradiction."
ttp://www.csc.liv.ac.uk/-konev/COMP109 Part 1. Number Systems and Proof Techniques 66 / 72 Good proofs in Practice	http://www.csc.liv.ac.uk/-konev/COMP109 Part1. Number Systems and Proof Techniques 67 / 72 Good proofs in practice	http://www.csc.liv.ac.uk/-konev/COMP109 Part 1. Number Systems and Proof Techniques 68 Good proofs in practice
Keep a linear flow. Sometimes proofs are written like mathematical mosaics, with juicy titbits of independent reasoning sprinkled throughout. This is not good. The steps of an argument should follow one another in an intelligible order.	A proof is an essay, not a calculation. Many students initially write proofs the way they compute integrals. The result is a long sequence of expressions without explanation, making it very hard to follow. This is bad. A good proof usually looks like an essay with some equations thrown in. Use complete sentences.	 Structure your proof Theorem—A very important true statement. Proposition—A less important but still interesting statement. Lemma—A true statement used to prove other statements. Corollary—A simple consequence of a theorem or a proposition.

70 / 72 http://www.csc.liv.ac.uk/~konev/COMP109

Part 1. Number Systems and Proof Techniques

http://www.csc.liv.ac.uk/~konev/COMP109

Part 1. Number Systems and Proof Techniques

69/72 http://www.csc.liv.ac.uk/~konev/COMP109

http://www.csc.liv.ac.uk/~konev/COMP109

Finish

At some point in a proof, you'll have established all the essential facts you need. Resist the temptation to quit and leave the reader to draw the "obvious" conclusion. Instead, tie everything together yourself and explain why the original claim follows.

Part 1. Number Systems and Proof Techniques