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Notation

A set is a collection of objects, called the elements of the set. For example:

{7, 5, 3};
{Liverpool,Manchester, Leeds}.

We have written down the elements of each set and contained them
between the braces { }.

We write a ∈ S to denote that the object a is an element of the set S:

7 ∈ {7, 5, 3}, 4 < {7, 5, 3}.
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Notes

The order of elements does not matter
Repeatitions do not count
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Notation

For a large set, especially an infinite set, we cannot write down all the
elements. We use a predicate P instead.

S = {x | P(x)}

denotes the set of objects x for which the predicate P(x) is true.

Examples: Let S = {1, 3, 5, 7, . . .}. Then

S = {x | x is an odd positive integer}

and
S = {2n− 1 | n is a positive integer }.
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More examples

Find simpler descriptions of the following sets by listing their elements:

A = {x | x is an integer and x2 + 4x = 12};
B = {x | x a day of the week not containing “u” };
C = {n2 | n is an integer }.
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Important sets (notation)

The empty set has no elements. It is written as ∅ or as {}.

We have seen some other examples of sets in Part 1.

N = {0, 1, 2, 3, . . .} (the natural numbers)
Z = {. . . , −2, −1, 0, 1, 2, . . .} (the integers)
Z+ = {1, 2, 3, . . .} (the positive integers)
Q = {x/y | x ∈ Z, y ∈ Z, y , 0} (the rationals)
R: (real numbers)

[a,b] = {x ∈ R | a ≤ x ≤ b} the set of real numbers between a and b
(inclusive)
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Detour: Sets in python

Sets are the ‘most elementary’ data structures (though they don’t always
map well into the underlying hardware).

Some modern programming languages feature sets.

For example, in Python one writes

empty = set ( )
m = { ’ a ’ , ’ b ’ , ’ c ’ }
n = { 1 , 2 }
pr in t ’ a ’ in m
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Computer representation of sets

Only finite sets can be represented

Number of elements not fixed: List (?) Java&Python do differently

All elements of A are drawn from some ordered sequence
S = s1, . . . , sn: the characteristic vector of A is the sequence
(b1, . . . ,bn) where

bi =
{
1 if si ∈ A
0 if si < A

Sequences of zeros and ones of length n are called bit strings of length n.
AKA bit vectors AKA bit arrays
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Example

Let S = {1, 2, 3, 4, 5}, A = {1, 3, 5} and B = {3, 4}.

The characteristic vector of A is (1, 0, 1, 0, 1).
The characteristic vector of B is (0, 0, 1, 1, 0).

The set characterised by (1, 1, 1, 0, 1) is {1, 2, 3, 5}.
The set characterised by (1, 1, 1, 1, 1) is {1, 2, 3, 4, 5}.
The set characterised by (0, 0, 0, 0, 0) is . . .
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Subsets

Definition A set B is called a subset of a set A if every element of B is an
element of A. This is denoted by B ⊆ A.

Examples:

{3, 4, 5} ⊆ {1, 5, 4, 2, 1, 3}, {3, 3, 5} ⊆ {3, 5}, {5, 3} ⊆ {3, 5}.

BA

Figure 1: Venn diagram of B ⊆ A.
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Detour: Subsets in Python

def i sSubset ( A , B ) :
for x in A :

i f x not in B :
return False

return True

Testing the method:

pr in t i sSubset (n ,m)

But then there is a built-in operation:

pr in t n<m
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Subsets and bit vectors

Let S = {1, 2, 3, 4, 5}, A = {1, 3, 5} and B = {3, 4}.

Is A ⊆ B?

Is the set C, represented by (1, 0, 0, 0, 1), a subset of the set D,
represented by (1, 1, 0, 0, 1)?
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Equality

Definition A set A is called equal to a set B if A ⊆ B and B ⊆ A. This is
denoted by A = B.

Examples:
{1} = {1, 1, 1},

{1, 2} = {2, 1},

{5, 4, 4, 3, 5} = {3, 4, 5}.
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The union of two sets

Definition The union of two sets A and B is the set

A ∪ B = {x | x ∈ A or x ∈ B}.

A B

Figure 2: Venn diagram of A ∪ B.
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Example

Suppose
A = {4, 7, 8}

and
B = {4, 9, 10}.

Then
A ∪ B = {4, 7, 8, 9, 10}.
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Detour: Set union in Python

def union (A , B ) :
r e su l t = set ( )
for x in A :

r e su l t . add ( x )
for x in B :

r e su l t . add ( x )
return r e su l t

Testing the method:

pr in t union (m, n )

But then there is a built-in operation:

pr in t m. union (n )
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Union of sets represented by bit vectors

Let S = {1, 2, 3, 4, 5}, A = {1, 3, 5} and B = {3, 4}.

Compute A ∪ B.

Compute the union of the set C, represented by (1, 0, 0, 0, 1), and the
set D, represented by (1, 1, 0, 0, 1).
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The intersection of two sets

Definition The intersection of two sets A and B is the set

A ∩ B = {x | x ∈ A and x ∈ B}.

A B

Figure 3: Venn diagram of A ∩ B.
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Example

Suppose
A = {4, 7, 8}

and
B = {4, 9, 10}.

Then
A ∩ B = {4}
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Detour: Set intersection in Python

def i n t e r sec t i on ( A , B ) :
r e su l t = set ( )
for x in A :

i f x in B :
r e su l t . add ( x )

return r e su l t

Testing the method:

pr in t i n t e r sec t i on (m, n )
pr in t i n t e r sec t i on (n , { 1 } )

But then there is a built-in operation:

pr in t n . i n t e r sec t i on ( { 1 } )
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Intersection of sets represented by bit vectors

Let S = {1, 2, 3, 4, 5}, A = {1, 3, 5} and B = {3, 4}.

Compute A ∩ B.

Compute the intersection of the set C, represented by (1, 0, 0, 0, 1), and
the set D, represented by (1, 1, 0, 0, 1).
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The relative complement

Definition The relative complement of a set B relative to a set A is the set

A− B = {x | x ∈ A and x < B}.

A B

Figure 4: Venn diagram of A− B.
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Example

Suppose
A = {4, 7, 8}

and
B = {4, 9, 10}.

Then
A− B = {7, 8}
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Detour: Set complement in Python

def complement ( A , B ) :
r e su l t = set ( )
for x in A :

i f x not in B :
r e su l t . add ( x )

return r e su l t

Testing the method:

pr in t complement (m, { ’ a ’ } )

But then there is a built-in operation:

pr in t m−{ ’ a ’ }
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Relative complement and bit vectors

Let S = {1, 2, 3, 4, 5}, A = {1, 3, 5} and B = {3, 4}.

Compute A− B.

Compute the relative complement of the set C, represented by
(1, 0, 0, 0, 1), related to the set D, represented by (1, 1, 0, 0, 1).
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The complement

When we are dealing with subsets of some large set U, then we call U the
universal set for the problem in question.

Definition The complement of a set A is the set

∼ A = {x | x < A} = U− A.

A

Figure 5: Venn diagram of ∼ A. (The rectangle is U)
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Complement and bit vectors

Let S = {1, 2, 3, 4, 5}, A = {1, 3, 5} and B = {3, 4}.

Compute ∼ A.

Compute ∼ B.

Compute the complement of the set C, represented by (1, 0, 0, 0, 1).
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The symmetric difference

Definition The symmetric difference of two sets A and B is the set

A∆B = {x | (x ∈ A and x < B) or (x < A and x ∈ B)}.

A B

Figure 6: Venn diagram of A∆B.
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Example

Suppose
A = {4, 7, 8}

and
B = {4, 9, 10}.

Then
A∆B = {7, 8, 9, 10}
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The algebra of sets

Suppose that A, B and U are sets with A ⊆ U and B ⊆ U.

Commutative laws:

A ∪ B = B ∪ A, A ∩ B = B ∩ A;

A B
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Proving the commutative law A ∪ B = B ∪ A

Definition: A ∪ B = {x | x ∈ A or x ∈ B} B ∪ A = {x | x ∈ B or x ∈ A}.

These are the same set. To see this, check all possible cases.

Case 1: Suppose x ∈ A and x ∈ B. Since x ∈ A, the definitions above show that x is
in both A ∪ B and B ∪ A.

Case 2: Suppose x ∈ A and x < B. Since x ∈ A, the definitions above show that x is
in both A ∪ B and B ∪ A.

Case 3: Suppose x < A and x ∈ B. Since x ∈ B, the definitions above show that x is
in both A ∪ B and B ∪ A.

Case 4: Suppose x < A and x < B. The definitions above show that x is not in A ∪ B
and x is not in B ∪ A.

So, for all possible x, either x is in both A ∪ B and B ∪ A, or it is in neither.
We conclude that the sets A ∪ B and B ∪ A are the same.
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The algebra of sets

Suppose that A,B, C,U are sets with A ⊆ U, B ⊆ U, and C ⊆ U.

Associative laws:

A ∪ (B ∪ C) = (A ∪ B) ∪ C, A ∩ (B ∩ C) = (A ∩ B) ∩ C;

A B

C
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Proving the associative law A ∪ (B ∪ C) = (A ∪ B) ∪ C

This is almost as easy as proving the commutative law, but now there are 8
cases to check, depending on whether x ∈ A, whether x ∈ B and whether
x ∈ C.

Definition: X ∪ Y = {x | x ∈ X or x ∈ Y}

Here is one case: Suppose x ∈ A, x < B and x < C. Since x ∈ A, we can use
the definition with X = A and Y = B ∪ C to show that x ∈ A ∪ (B ∪ C).

Since x ∈ A, we can use the definition with X = A and Y = B to show that
x ∈ A ∪ B. Then we can use the definition with X = A ∪ B and Y = C to show
that x ∈ (A ∪ B) ∪ C.

Writing out all eight cases is tedious, but it is not difficult.
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The algebra of sets

Suppose that A and U are sets with A ⊆ U.

Identity laws:

A ∪ ∅ = A, A ∪ U = U, A ∩ U = A, A ∩ ∅ = ∅;

A

U

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 36 / 50

The algebra of sets

Suppose that A,B, C,U are sets with A ⊆ U, B ⊆ U, and C ⊆ U.

Distributive laws:

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C);

A B

C
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The algebra of sets

Suppose that A and U are sets with A ⊆ U. Let ∼ A = U− A. Then

Complement laws:

A∪ ∼ A = U, ∼ U = ∅, ∼ (∼ A) = A,A∩ ∼ A = ∅, ∼ ∅ = U;

A

U
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The algebra of sets

Suppose that A, B and U are sets with A ⊆ U, and B ⊆ U. Recall that
∼ X = U− X and A ∪ B = {x | x ∈ A or x ∈ B} and
A ∩ B = {x | x ∈ A and x ∈ B}. Then

De Morgan’s laws:

∼ (A ∪ B) =∼ A∩ ∼ B, ∼ (A ∩ B) =∼ A∪ ∼ B.

A B
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A proof of De Morgan’s law ∼ (A ∩ B) =∼ A∪ ∼ B

Case 1: Suppose x ∈ A and x ∈ B. From the definition of ∩, x ∈ A ∩ B. So from the
definition of ∼, x <∼ (A ∩ B). From the definition of ∼, x <∼ A and also x <∼ B. So
from the definition of ∪, x <∼ A∪ ∼ B.

Case 2: Suppose x ∈ A and x < B. From the definition of ∩, x < A ∩ B. So from the
definition of ∼, x ∈∼ (A ∩ B). From the definition of ∼, x <∼ A but x ∈∼ B. So from
the definition of ∪, x ∈∼ A∪ ∼ B.

Case 3: Suppose x < A and x ∈ B. From the definition of ∩, x < A ∩ B. So from the
definition of ∼, x ∈∼ (A ∩ B). From the definition of ∼, x ∈∼ A but x <∼ B. So from
the definition of ∪, x ∈∼ A∪ ∼ B.

Case 4: Suppose x < A and x < B. From the definition of ∩, x < A ∩ B. So from the
definition of ∼, x ∈∼ (A∩ B). From the definition of ∼, x ∈∼ A and x ∈∼ B. So from
the definition of ∪, x ∈∼ A∪ ∼ B.
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Using the algebra of sets

Prove that A∆B = (A ∪ B)∩ ∼ (A ∩ B). (See the next slide.)

A B
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(A ∪ B) ∩ ∼ (A ∩ B) = (A ∪ B) ∩ (∼ A∪ ∼ B) De Morgan
= ((A ∪ B)∩ ∼ A) ∪ ((A ∪ B)∩ ∼ B) distributive
= (∼ A ∩ (A ∪ B)) ∪ (∼ B ∩ (A ∪ B)) commutative
= ((∼ A ∩ A) ∪ (∼ A ∩ B)) ∪ ((∼ B ∩ A) ∪ (∼ B ∩ B)) distributive
= ((A∩ ∼ A) ∪ (B∩ ∼ A)) ∪ ((A∩ ∼ B) ∪ (B∩ ∼ B)) commutative
= (∅ ∪ (B∩ ∼ A)) ∪ ((A∩ ∼ B) ∪ ∅) complement
= (A∩ ∼ B) ∪ (B∩ ∼ A) commutative and identity
= A∆B definition
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Cardinality of sets

Definition The cardinality of a finite set S is the number of elements in S,
and is denoted by |S|.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 43 / 50

Computing the cardinality of a union of two sets

If A and B are sets then

|A ∪ B| = |A| + |B| − |A ∩ B|.

A B
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Example

Suppose there are 100 third-year students. 40 of them take the module
“Sequential Algorithms” and 80 of them take the module “Multi-Agent
Systems”. 25 of them took both modules. How many students took neither
modules?
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Computing the cardinality of a union of three sets

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C| + |A ∩ B ∩ C|

A B

C

These are special cases of the principle of inclusion and exclusion which
we will study later.
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Proof (optional)

We need lots of notation.

|A− (B ∪ C)| = na, |B− (A ∪ C)| = nb, |C− (A ∪ B)| = nc,
|(A ∩ B) − C| = nab, |(A ∩ C) − B| = nac, |(B ∩ C) − A| = nbc,
|A ∩ B ∩ C| = nabc.

A B

C
Then

|A ∪ B ∪ C| = na + nb + nc + nab + nac + nbc + nabc
= (na + nab + nac + nabc) + (nb + nab + nbc + nabc)
+ (nc + nac + nbc + nabc) − (nab + nabc)
− (nac + nabc) − (nbc + nabc) + nabc
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Reflection

The following statements hold:

∅ ∈ {∅} but ∅ < ∅;
∅ ⊆ {5};
{2} ⊈ {{2}} but {2} ∈ {{2}};
{3, {3}} , {3}.
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Why is this set theory “naive”

It suffers from paradoxes.

A leading example:

A barber is the man who shaves all those, and only those, men
who do not shave themselves.

Who shaves the barber?
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Russell’s Paradox

Russell’s paradox shows that the ‘object’ {x | P(x)} is not always
meaningful.

Set A = {B | B < B}

Problem: do we have A ∈ A?

Abbreviate, for any set C, by P(C) the statement C < C. Then A = {B | P(B)}.

If A ∈ A, then (from the definition of P), not P(A). Therefore A < A.
If A < A, then (from the definition of P), P(A). Therefore A ∈ A.
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