Foundations of Computer Science Comp109

University of Liverpool Boris Konev konev@liverpool.ac.uk http://www.csc.liv.ac.uk/~konev/COMP109

Part 2. (Naive) Set Theory

Comp109 Foundations of Computer Science

• K. H. Rosen. Discrete Mathematics and Its Applications Chapter 2

Reading

	http://www.csc.liv.ac.uk/-konev/COMP109 Part2.SetTheory 1/50	http://www.csc.liv.ac.uk/-konev/COMP109 Part2.SetTheory 2/50
Contents	Notation	Notes
 Notation for sets. Important sets. What is a subset of a set? When are two sets equal? Operations on sets. Algebra of sets. Bit strings. Cardinality of sets. Russell's paradox. 	A set is a collection of objects, called the <i>elements</i> of the set. For example: a {7,5,3}; b {Liverpool, Manchester, Leeds}. We have written down the elements of each set and contained them between the <i>braces</i> { }. We write $a \in S$ to denote that the object a is an element of the set S : $7 \in \{7,5,3\}, 4 \notin \{7,5,3\}.$	 The order of elements does not matter Repeatitions do not count
http://www.csc.liv.ac.uk/~konev/COMP109 Part2.Set Theory 3/5 Notation	0 http://www.csc.liv.ac.uk/~konev/COMP109 Part2.Set Theory 4/50 More examples	http://www.csc.liv.ac.uk/-konev/COMP109 Part2 Set Theory 5 / 50 Important sets (notation)
For a large set, especially an infinite set, we cannot write down all the elements. We use a predicate <i>P</i> instead. $S = \{x \mid P(x)\}$	Find simpler descriptions of the following sets by listing their elements:	The empty set has no elements. It is written as \emptyset or as {}. We have seen some other examples of sets in Part 1.

A = {x | x is an integer and x² + 4x = 12};
B = {x | x a day of the week not containing "u" };

• $C = \{n^2 \mid n \text{ is an integer }\}.$

6/50 http://www.csc.liv.ac.uk/~konev/COMP109

denotes the set of objects x for which the predicate P(x) is true.

Examples: Let S = {1, 3, 5, 7, . . .}. Then

 $S = \{x \mid x \text{ is an odd positive integer}\}$

and

http://www.csc.liv.ac.uk/~konev/COMP109

 $S = \{2n - 1 \mid n \text{ is a positive integer } \}.$

• $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ (the natural numbers)

■ $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ (the integers)

• $\mathbb{Z}^+ = \{1, 2, 3, \ldots\}$ (the positive integers)

 $\blacksquare \ \mathbb{Q} = \{x/y \mid x \in \mathbb{Z}, y \in \mathbb{Z}, y \neq 0\} \text{ (the rationals)}$

R: (real numbers)

7/50 http://www.csc.liv.ac.uk/~konev/COMP109

■ $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$ the set of real numbers between *a* and *b* (inclusive)

Part 2. Set Theor

Detour: Sets in python	Computer representation of sets	Example
<pre>Sets are the 'most elementary' data structures (though they don't always map well into the underlying hardware). Some modern programming languages feature sets. For example, in Python one writes empty = set() m = { 'a', 'b', 'c'} n = { 1, 2} print 'a' in m</pre>	Only finite sets can be represented • Number of elements not fixed: List (?) Java&Python do differently • All elements of A are drawn from some ordered sequence $S = s_1, \dots, s_n$: the characteristic vector of A is the sequence (b_1, \dots, b_n) where $b_i = \begin{cases} 1 & \text{if } s_i \in A \\ 0 & \text{if } s_i \notin A \end{cases}$ Sequences of zeros and ones of length n are called bit strings of length n. AKA bit vectors AKA bit arrays	 Let S = {1, 2, 3, 4, 5}, A = {1, 3, 5} and B = {3, 4}. The characteristic vector of A is (1, 0, 1, 0, 1). The characteristic vector of B is (0, 0, 1, 1, 0). The set characterised by (1, 1, 1, 0, 1) is {1, 2, 3, 5}. The set characterised by (1, 1, 1, 1, 1) is {1, 2, 3, 4, 5}. The set characterised by (0, 0, 0, 0, 0) is
http://www.csc.liv.ac.uk/~konev/COMP109 Part2.Set Theory 9/5		http://www.csc.liv.ac.uk/-konev/COMP109 Part2.Set Theory 11/50
Subsets Definition A set <i>B</i> is called a <i>subset</i> of a set <i>A</i> if every element of <i>B</i> is an element of <i>A</i> . This is denoted by $B \subseteq A$. Examples: $\{3,4,5\} \subseteq \{1,5,4,2,1,3\}, \{3,3,5\} \subseteq \{3,5\}, \{5,3\} \subseteq \{3,5\}.$ $I = I = I = I = I = I = I$ Figure 1: Venn diagram of $B \subseteq A$.	Detour: Subsets in Python def isSubset(A, B): for x in A: if x not in B: return False return True Testing the method: print isSubset(n,m) But then there is a built-in operation: print n <m< td=""><td>Subsets and bit vectors Let $S = \{1, 2, 3, 4, 5\}, A = \{1, 3, 5\}$ and $B = \{3, 4\}.$ Is $A \subseteq B$? Is the set C, represented by $(1, 0, 0, 0, 1)$, a subset of the set D, represented by $(1, 1, 0, 0, 1)$?</td></m<>	Subsets and bit vectors Let $S = \{1, 2, 3, 4, 5\}, A = \{1, 3, 5\}$ and $B = \{3, 4\}.$ Is $A \subseteq B$? Is the set C, represented by $(1, 0, 0, 0, 1)$, a subset of the set D, represented by $(1, 1, 0, 0, 1)$?
http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 12 / 5 Equality	http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 13 / 50 The union of two sets	http://www.csc.liv.ac.uk/~konev/COMP109 Part2.Set Theory 14/50 Example
Definition A set A is called <i>equal</i> to a set B if $A \subseteq B$ and $B \subseteq A$. This is denoted by $A = B$. Examples: $\{1\} = \{1, 1, 1\}, $ $\{1, 2\} = \{2, 1\}, $ $\{5, 4, 4, 3, 5\} = \{3, 4, 5\}.$	Definition The union of two sets A and B is the set $A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$	Suppose $A = \{4, 7, 8\}$ and $B = \{4, 9, 10\}.$ Then $A \cup B = \{4, 7, 8, 9, 10\}.$

Part 2. Set Theory

16/50 http://www.csc.liv.ac.uk/~konev/COMP109

Part 2. Set Theory

15/50 http://www.csc.liv.ac.uk/~konev/COMP109

http://www.csc.liv.ac.uk/~konev/COMP109

Part 2. Set Theory

def union (A, B): result = set() for x in A: result.add(x) for x in B: result.add(x) return resultDefinition The intersection of two sets A and B is the setTesting the method: print union (m, n)Compute A U B.Compute the union of the set C, represented by (1,0,0,0,1), and the set D, represented by (1,1,0,0,1).Image: Compute A U B.But then there is a built-in operation: print m. union (n)Compute A U B.Compute the union of the set C, represented by (1,0,0,0,1), and the set D, represented by (1,1,0,0,1).Image: Compute A U B.Image: Compute A U B = (2,1)Compute the union of the set C, represented by (1,0,0,0,1), and the set D, represented by (1,1,0,0,1).Image: Compute A U B.Image: Compute A U B = (2,1)Compute the union of the set C, represented by (1,0,0,0,1), and the set D, represented by (1,1,0,0,1).Image: Compute A U B.Image: Compute A U B = (2,1)Compute A U B = (2,1)Compute A U B = (2,1)Image: Compute A U B = (2,2)Image: Compute A U	n Python Union	The intersection	of two sets
ExampleDetour: Set intersection in PythonIntersection of sets represented by bit vectorsdef intersection (A, B): result = set () for x in A: if or x in A:Let S = {1,2,3,4,5}, A = {1,3,5} and B = {3,4}.	set() Le A: Ladd(x) B: t.add(x) sult d: , n) a built-in operation:		$A \cap B = \{x \mid x \in A \text{ and } x \in B\}.$
<pre>def intersection(A, B): result = set() for x in A: if x in D</pre> Let S = {1,2,3,4,5}, A = {1,3,5} and B = {3,4}.			
Supposeresult.add(x)Compute ATTS.and $B = \{4, 9, 10\}.$ Testing the method: print intersection (m, n) print intersection (n, {1}))Compute the intersection of the set C, represented by (1, 0, 0, 0) the set D, represented by (1, 1, 0, 0, 1).Then $A \cap B = \{4\}$ But then there is a built-in operation: print n.intersection (1))But then there is a built-in operation: print n.intersection ({1})	d $A = \{4, 7, 8\}$ $B = \{4, 9, 10\}.$ Te $A \cap B = \{4\}$ P	Let S = {1,2,3, ■ Compute A ■ Compute th	, 4, 5}, A = {1, 3, 5} and B = {3, 4}. A ∩ B. the intersection of the set C, represented by (1, 0, 0, 0, 1), and
http://www.csc.liv.ac.uk/-konev/COMP109 Part 2. Set Theory 21/50 http://www.csc.liv.ac.uk/-konev/COMP109 Part 2. Set Theory 22/50 http://www.csc.liv.ac.uk/-konev/COMP109 Part 2. Set Theory The relative complement Example Detour: Set complement in Python			
Definition The relative complement of a set B relative to a set A is the set $A - B = \{x \mid x \in A \text{ and } x \notin B\}.$ def complement(A, B): result = set() for x not in B: result.add(x) return resultImage: A - B = \{x \mid x \in A \text{ and } x \notin B\}.Suppose $A = \{4, 7, 8\}$ Image: A = \{4, 7, 8\}Image: A - B = \{7, 8\}Suppose $A - B = \{7, 8\}$ Testing the method: print complement(m, {'a'})Image: B - B - B - B - B - B - B - B - B - B	ative complement of a set <i>B</i> relative to a set <i>A</i> is the set $A - B = \{x \mid x \in A \text{ and } x \notin B\}.$ Sumptimized as the set of the	def complem result for x ir if x return Testing the met print comple But then there	nent(A, B): = set() n A: x not in B: result.add(x) result ethod: lement(m, {'a'}) e is a built-in operation:

Relative complement and bit vectors	The complement	Complement and bit vectors
Let $S = \{1, 2, 3, 4, 5\}$, $A = \{1, 3, 5\}$ and $B = \{3, 4\}$. Compute $A - B$.	When we are dealing with subsets of some large set <i>U</i> , then we call <i>U</i> the <i>universal set</i> for the problem in question. Definition The complement of a set <i>A</i> is the set $\sim A = \{x \mid x \notin A\} = U - A.$	Let $S = \{1, 2, 3, 4, 5\}$, $A = \{1, 3, 5\}$ and $B = \{3, 4\}$. Compute $\sim A$.
■ Compute the relative complement of the set <i>C</i> , represented by (1, 0, 0, 0, 1), related to the set <i>D</i> , represented by (1, 1, 0, 0, 1).	A Figure 5: Venn diagram of ~ A. (The rectangle is U)	 Compute ~ B. Compute the complement of the set C, represented by (1, 0, 0, 0, 1).
http://www.csc.liv.ac.uk/-konev/CMP109 Part 2. Set Theory 27 / 50 The symmetric difference	http://www.csc.liv.ac.uk/-konev/COMP199 Part2.SetTheory 28/50 Example	http://www.csc.liv.ac.uk/-konev/COMP189 Part 2. Set Theory 29 / 50 The algebra of sets
Definition The symmetric difference of two sets A and B is the set $A\Delta B = \{x \mid (x \in A \text{ and } x \notin B) \text{ or } (x \notin A \text{ and } x \in B)\}.$ $\qquad \qquad $	Suppose $A = \{4, 7, 8\}$ and $B = \{4, 9, 10\}.$ Then $A \Delta B = \{7, 8, 9, 10\}$	Suppose that A, B and U are sets with $A \subseteq U$ and $B \subseteq U$. Commutative laws: $A \cup B = B \cup A, \ A \cap B = B \cap A;$

http://www.csc.liv.ac.uk/~konev/COMP109 Part2.SetTheory 30 / 50	http://www.csc.liv.ac.uk/~konev/COMP109 Part2.SetTheory 31/50	http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 32 / 50
Proving the commutative law $A \cup B = B \cup A$	The algebra of sets	Proving the associative law $A \cup (B \cup C) = (A \cup B) \cup C$
Definition: $A \cup B = \{x \mid x \in A \text{ or } x \in B\} B \cup A = \{x \mid x \in B \text{ or } x \in A\}.$ These are the same set. To see this, check all possible cases. Case 1: Suppose $x \in A$ and $x \in B$. Since $x \in A$, the definitions above show that x is in both $A \cup B$ and $B \cup A$. Case 2: Suppose $x \in A$ and $x \notin B$. Since $x \in A$, the definitions above show that x is in both $A \cup B$ and $B \cup A$. Case 3: Suppose $x \notin A$ and $x \notin B$. Since $x \in A$, the definitions above show that x is in both $A \cup B$ and $B \cup A$. Case 4: Suppose $x \notin A$ and $x \notin B$. The definitions above show that x is not in $A \cup B$ and $x \cup A$. So, for all possible x, either x is in both $A \cup B$ and $B \cup A$, or it is in neither. We conclude that the sets $A \cup B$ and $B \cup A$ are the same.	Suppose that A, B, C, U are sets with $A \subseteq U$, $B \subseteq U$, and $C \subseteq U$. Associative laws: $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$; $A \cup (B \cup C) = (C \cup C) \cup C$	This is almost as easy as proving the commutative law, but now there are 8 cases to check, depending on whether $x \in A$, whether $x \in B$ and whether $x \in C$. Definition: $X \cup Y = \{x \mid x \in X \text{ or } x \in Y\}$ Here is one case: Suppose $x \in A$, $x \notin B$ and $x \notin C$. Since $x \in A$, we can use the definition with $X = A$ and $Y = B \cup C$ to show that $x \in A \cup (B \cup C)$. Since $x \in A$, we can use the definition with $X = A$ and $Y = B$ to show that $x \in A \cup B$. Then we can use the definition with $X = A \cup B$ and $Y = C$ to show that $x \in (A \cup B) \cup C$. Writing out all eight cases is tedious, but it is not difficult.

Part 2. Set Theory

34/50 http://www.csc.liv.ac.uk/~konev/COMP109

Part 2. Set Theory

33/50 http://www.csc.liv.ac.uk/~konev/COMP109

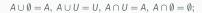
http://www.csc.liv.ac.uk/~konev/COMP109

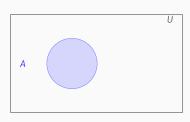
Part 2. Set Theory

The algebra of sets

Suppose that A and U are sets with $A \subseteq U$.

Identity laws:





The algebra of sets

Suppose that A, B, C, U are sets with $A \subseteq U$, $B \subseteq U$, and $C \subseteq U$.

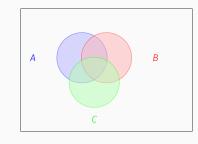
Distributive laws:

39/50 http://www.csc.liv.ac.uk/~konev/COMP109

Cardinality of sets

42/50 http://www.csc.liv.ac.uk/~konev/COMP109

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C), \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C);$

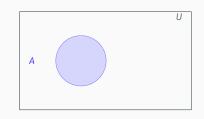


The algebra of sets

Suppose that A and U are sets with $A \subseteq U$. Let $\sim A = U - A$. Then

Complement laws:

$$A \cup \sim A = U, \ \sim U = \emptyset, \ \sim (\sim A) = A, A \cap \sim A = \emptyset, \ \sim \emptyset = U;$$



http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory	36 / 50 http://www.csc.liv.ac.uk/~konev/COMP109 Part2. Set Theory 37 /	50 http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 38 / 50
The algebra of sets	A proof of De Morgan's law $\sim (A \cap B) = \sim A \cup \sim B$	Using the algebra of sets
Suppose that A, B and U are sets with $A \subseteq U$, and $B \subseteq U$. Recall that $\sim X = U - X$ and $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ and $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$. Then De Morgan's laws: $\sim (A \cup B) = \sim A \cap \sim B, \sim (A \cap B) = \sim A \cup \sim B.$	Case 1: Suppose $x \in A$ and $x \in B$. From the definition of $\cap, x \in A \cap B$. So from the definition of $\sim, x \notin \sim (A \cap B)$. From the definition of $\sim, x \notin \sim A$ and also $x \notin \sim B$. So from the definition of $\cup, x \notin \sim A \cup \sim B$. Case 2: Suppose $x \in A$ and $x \notin B$. From the definition of $\cap, x \notin A \cap B$. So from the definition of $\sim, x \in \sim (A \cap B)$. From the definition of $\sim, x \notin A$ but $x \in \sim B$. So from the definition of $\cup, x \notin A \cup \sim B$. Case 3: Suppose $x \notin A$ and $x \notin B$. From the definition of $\cap, x \notin A \cap B$. So from the definition of $\cup, x \in \sim A \cup \sim B$. Case 3: Suppose $x \notin A$ and $x \in B$. From the definition of $\cap, x \notin A \cap B$. So from the definition of $\sim, x \in \sim (A \cap B)$. From the definition of $\sim, x \notin A$ but $x \notin \sim B$. So from the definition of $\cup, x \notin A \cap B$. So from the definition of $\cup, x \in \sim (A \cap B)$. From the definition of $\sim, x \in \sim A$ but $x \notin \sim B$. So from the definition of $\cup, x \notin A \cap B$. So from the definition of $\cup, x \in \sim A \cup \sim B$. Case 4: Suppose $x \notin A$ and $x \notin B$. From the definition of $\cap, x \notin A \cap B$. So from the definition of $\sim, x \in \sim (A \cap B)$. From the definition of $\sim, x \in \sim A$ and $x \in \sim B$. So from the definition of $\cup, x \in \sim A \cup \sim B$.	Prove that $A\Delta B = (A \cup B) \cap \sim (A \cap B)$. (See the next slide.)

$(A \cup B) \cap \sim (A \cap B) = (A \cup B) \cap (\sim A \cup \sim B)$) De Morgan

- $= ((A \cup B) \cap \sim A) \cup ((A \cup B) \cap \sim B)$ distributive
- $= (\sim A \cap (A \cup B)) \cup (\sim B \cap (A \cup B))$ commutative
- $= ((\sim A \cap A) \cup (\sim A \cap B)) \cup ((\sim B \cap A) \cup (\sim B \cap B))$ distributive
- $= ((A \cap \sim A) \cup (B \cap \sim A)) \cup ((A \cap \sim B) \cup (B \cap \sim B)) \text{ commutative}$

Part 2. Set Theory

- $= (\emptyset \cup (B \cap \sim A)) \cup ((A \cap \sim B) \cup \emptyset) \text{ complement}$
- $= (A \cap \sim B) \cup (B \cap \sim A)$ commutative and identity
- $= A\Delta B$ definition

http://www.csc.liv.ac.uk/~konev/COMP109

http://www.csc.liv.ac.uk/~konev/COMP

Definition The cardinality of a *finite* set S is the number of elements in S, and is denoted by |S|.

Part 2. Set Theory

Computing the cardinality of	of a union of two sets
------------------------------	------------------------

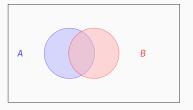
If A and B are sets then

40/50 http://www.csc.liv.ac.uk/~konev/COMP109

43 / 50 http://www.csc.liv.ac.uk/~konev/COMP109

 $|A \cup B| = |A| + |B| - |A \cap B|.$

Part 2. Set Theory



Example	Computing the cardinality of a union of three sets	Proof (optional)
Suppose there are 100 third-year students. 40 of them take the module "Sequential Algorithms" and 80 of them take the module "Multi-Agent Systems". 25 of them took both modules. How many students took neither modules?	$ A \cup B \cup C = A + B + C - A \cap B - A \cap C - B \cap C + A \cap B \cap C $ $A \cup B \cup C = A + B + C - A \cap B - A \cap C - B \cap C + A \cap B \cap C $ $A \cup B \cup C = A + B + C - A \cap B - A \cap C - B \cap C + A \cap B \cap C $ These are special cases of the principle of inclusion and exclusion which we will study later.	We need lots of notation. $ A - (B \cup C) = n_a, B - (A \cup C) = n_b, C - (A \cup B) = n_c,$ $ (A \cap B) - C = n_{ab}, (A \cap C) - B = n_{ac}, (B \cap C) - A = n_{bc},$ $ A \cap B \cap C = n_{abc}.$ Then $ A \cup B \cup C = n_a + n_b + n_c + n_{ab} + n_{ac} + n_{bc} + n_{abc}$ $= (n_a + n_{ab} + n_{ac} + n_{abc}) + (n_b + n_{ab} + n_{bc} + n_{abc})$ $+ (n_c + n_{ac} + n_{abc}) - (n_{ab} + n_{abc})$ $- (n_{ac} + n_{abc}) - (n_{bc} + n_{abc}) + n_{abc}$
http://www.csc.liv.ac.uk/-konev/COMP109 Part 2. Set Theory 45 / 50 Reflection	http://www.csc.liv.ac.uk/-konev/COMP109 Part2.Set Theory 46 / 50 Why is this set theory "naive"	http://www.csc.liv.ac.uk/-konev/COMP189 Part 2. Set Theory 47 / 5 Why is this set theory "naive"
The following statements hold: a $\emptyset \in \{\emptyset\}$ but $\emptyset \notin \emptyset$; b $\emptyset \subseteq \{5\}$; b $\{2\} \notin \{\{2\}\}$ but $\{2\} \in \{\{2\}\}$; c $\{3, \{3\}\} \neq \{3\}$.	It suffers from paradoxes.	It suffers from paradoxes. A leading example: A barber is the man who shaves all those, and only those, men who do not shave themselves. • Who shaves the barber?
http://www.csc.liv.ac.uk/~konev/COMP189 Part 2. Set Theory 48 / 50 Russell's Paradox	http://www.csc.liv.ac.uk/~konev/COMP109 Part2.SetTheory 49/50	http://www.csc.liv.ac.uk/-konev/COMP109 Part 2. Set Theory 49 / 5

Russell's paradox shows that the 'object' $\{x \mid P(x)\}$ is not always meaningful.

 $\mathsf{Set}\, A = \{B \mid B \notin B\}$

http://www.csc.liv.ac.uk/~konev/COMP109

Problem: do we have $A \in A$?

Abbreviate, for any set C, by P(C) the statement $C \notin C$. Then $A = \{B \mid P(B)\}$.

Part 2. Set Theory

If $A \in A$, then (from the definition of *P*), not *P*(*A*). Therefore $A \notin A$.

■ If $A \notin A$, then (from the definition of *P*), *P*(*A*). Therefore $A \in A$.