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Notation

For a large set, especially an infinite set, we cannot write down all the
elements. We use a predicate P instead.

S={x[Px)}

denotes the set of objects x for which the predicate P(x) is true.

Examples: Let S = {1,3,5,7,...}. Then

S={x| xis an odd positive integer}

S={2n—-1| nis a positive integer }.
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Part 2. (Naive) Set Theory
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Notation

A setis a collection of objects, called the elements of the set. For example:

m {7,53}
m {Liverpool, Manchester, Leeds}.

We have written down the elements of each set and contained them
between the braces { }.

We write a € S to denote that the object a is an element of the set S:

7€{7,5,3}, 4¢{7,53}.

Part 2. Set Theory

More examples

Find simpler descriptions of the following sets by listing their elements:

m A= {x| xisan integer and x> + 4x = 12};
m B = {x| xa day of the week not containing “u” };

m C={n?| nisan integer }.
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Reading

m K. H. Rosen. Discrete Mathematics and Its Applications
Chapter 2
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Notes

m The order of elements does not matter

m Repeatitions do not count
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Important sets (notation)

The empty set has no elements. It is written as §) or as {}.

We have seen some other examples of sets in Part 1.

m N ={0,1,2,3,...} (the natural numbers)
mZ={.,-2,-1012...} (the integers)

m Zt = {1,2,3,...} (the positive integers)

m Q= {x/y|x€ZyeZy+0} (the rationals)
m R: (real numbers)

m [a,b] = {x e R|a < x < b} the set of real numbers between a and b
(inclusive)
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Detour: Sets in python

Sets are the ‘most elementary’ data structures (though they don't always
map well into the underlying hardware).

Some modern programming languages feature sets.

m For example, in Python one writes

empty = set()
={a’", b, "¢}
n =

,

print 'a’ in m
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Subsets

Definition A set B is called a subset of a set A if every element of B is an
element of A. This is denoted by B C A.

Examples:

{3,4,5} C {1,5,4,2,1,3}, {3,3,5} C {3,5}, {5,3} C {3,5}.

:

Figure 1: Venn diagram of B C A.
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Equality

Definition A set A is called equal to a set Bif AC Band B C A. This is
denoted by A = B.

Examples:
=1
1.2} = 2.1},
{5, 4,4,3,5} = {3,4,5}.
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Computer representation of sets

Only finite sets can be represented

m Number of elements not fixed: List (?) Java&Python do differently

m All elements of A are drawn from some ordered sequence
S =51,...,5, the characteristic vector of A is the sequence
(b1,...,bn) where

if S;eA
if si¢A

Sequences of zeros and ones of length n are called bit strings of length n.
AKA bit vectors AKA bit arrays
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Detour: Subsets in Python

def isSubset(A, B):
for x in A:
if x not in B:
return False
return True

Testing the method:

print isSubset(n,m)

But then there is a built-in operation:

print n<m

Part 2. Set Theory

The union of two sets

Definition The union of two sets A and B is the set

AUB={x|xeAorxe B}

Figure 2: Venn diagram of AU B.

~konev/COMP109

Example

Let S = {1,2,3,4,5}, A= {1,3,5} and B = {3,4}.

m The characteristic vector of Ais (1,0,1,0,1).

m The characteristic vector of B is (0,0,1,1,0).

m The set characterised by (1,1,1,0,1) is {1,2,3,5}.
m The set characterised by (1,1,1,1,1) is {1,2,3,4,5}.
m The set characterised by (0,0,0,0,0) is ...
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Subsets and bit vectors

LetS = {1,2,3,4,5}, A= {1,3,5} and B = {3, 4}.

mISACB?

m s the set C, represented by (1,0,0,0,1), a subset of the set D,
represented by (1,1,0,0,1)?
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Example

Suppose
A= {4,7,8}

and
B = {4,9,10}.

AUB = {4,7,8,9,10}.
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Detour: Set union in Python

def union(A, B):
result = set()
for x in A:

result.add(x)
for x in B:

result.add(x)
return result

Testing the method:

print union(m, n)

But then there is a built-in operation:

print m.union(n)
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Example

Suppose

A ={4,7,8}
and

B = {4,9,10}.

ANB = {4}

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory

The relative complement

Definition The relative complement of a set B relative to a set A is the set

A-B={x|xeAandx¢B}.

Figure 4: Venn diagram of A — B.
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Union of sets represented by bit vectors
Let S ={1,2,3,4,5}, A={1,3,5} and B = {3, 4}.

m Compute AUB.

m Compute the union of the set C, represented by (1,0, 0,0, 1), and the
set D, represented by (1,1,0,0,1).
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Detour: Set intersection in Python

def intersection(A, B):
result = set()
for x in A:
if x in B:
result.add(x)
result

return
Testing the method:

print intersection(m, n)
print intersection(n, {1})

But then there is a built-in operation:

print n.intersection ({1})

50 http://www.csc.liv.ac.uk/~konev/COMP169 Part 2. Set Theory

Example

Suppose

A={4,7,8}
and

B = {4,9,10}.

A—B={7,8}
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The intersection of two sets

Definition The intersection of two sets A and B is the set

ANB={x|xeAandx e B}.

Figure 3: Venn diagram of AN B.
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Intersection of sets represented by bit vectors

LetS = {1,2,3,4,5}, A= {1,3,5} and B = {3, 4}.

m Compute ANB.

m Compute the intersection of the set C, represented by (1,0, 0,0, 1), and
the set D, represented by (1,1,0,0,1).

Part 2. Set Theory

Detour: Set complement in Python

def complement(A, B):
result = set()
for x in A:
if x not in B:
result.add(x)

return result

Testing the method:
print complement(m, {'a’'})
But then there is a built-in operation:

print m—{'a’}
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Relative complement and bit vectors The complement Complement and bit vectors

When we are dealing with subsets of some large set U, then we call U the LetS={1,2,3,4,5},A={1,3,5} and B = {3, 4}.

LetS = {1,2,3,4,5}, A = {1,3,5} and B = {3, 4}. universal set for the problem in question. a Compute ~ A

mlComp Ui, Definition The complement of a set A is the set

~A={x|xgA}=U—A

m Compute ~ B.

m Compute the relative complement of the set C, represented by
(1,0,0,0,1), related to the set D, represented by (1,1,0,0,1).

m Compute the complement of the set C, represented by (1,0,0,0,1).

Figure 5: Venn diagram of ~ A. (The rectangle is U)
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The symmetric difference Example The algebra of sets

Definition The symmetric difference of two sets A and B is the set

Suppose that A, Band U are sets with A C Uand B C U.
AAB={x|(xeAandx¢B)or(x¢Aandxe B)}.
Commutative laws:

Suppose

A={4,7,8} AUB=BUA, ANB=BNA;

and
B = {4,9,10}.

AAB = {7,8,9,10}

Figure 6: Venn diagram of AAB.
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Proving the commutative lawAUB =BUA The algebra of sets Proving the associative law AU (BUC) = (AUB)UC

Definition: AUB = {x|x€Aorxe B} BUA={x|x € BorxeA}. Suppose that A, B, C,U are setswithAC U, B C U,and CC U.
This is almost as easy as proving the commutative law, but now there are 8
cases to check, depending on whether x € A, whether x € B and whether

Case 1: Suppose x € A and x € B. Since x € A, the definitions above show that x is AUBUC) = (AUB)UC, AN(BNC)=(ANB)NC; xeC.
inboth AUB and BUA. ’ ;

These are the same set. To see this, check all possible cases. Associative laws:

Definition: XUY ={x|xeXorxe Y}

Case 2: Suppose x € Aand x ¢ B. Since x € A, the definitions above show that x is
in both AUB and BUA. Here is one case: Suppose x € A, x ¢ Band x ¢ C. Since x € A, we can use

Case 3: Suppose x ¢ A and x € B. Since x € B, the definitions above show that x is the definition with X = A and ¥ = BU Cto show that x e AU (BU C).

in both AU B and BUA. Since x € A, we can use the definition with X = A and Y = B to show that

X € AU B. Then we can use the definition with X =AU B and Y = C to show
thatx e (AUB)UC.

Case 4: Suppose x ¢ A and x ¢ B. The definitions above show that x is not in AU B
and x is notin BUA.

So, for all possible x, either x is in both AU B and BUA, or it is in neither. ) Writing out all eight cases is tedious, but it is not difficult.
We conclude that the sets AU B and BU A are the same.
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The algebra of sets

Suppose that A and U are sets with A C U.

Identity laws:

AUD=A AUU=U, AnNU=A, An0 = 0;
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The algebra of sets

Suppose that A, B and U are sets with A C U, and B C U. Recall that
~X=U-XandAUB={x|xeAorxe B} and
ANB={x|xecAandx e B}. Then

De Morgan’s laws:

~ (AUB) =~ AN ~ B, ~ (AN B) =~ AU ~ B.
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(AUB)N~ (ANB)=(AUB)N(~A B) De Morgan

((AuB) A) U ((AUB)N ~ B) distributive
~AN(AUB))U(~ B (AUB)) commutative
(~ANA)U(~ANB))U((~BNA)U(~ BN B)) distributive
(AN ~A)U (BN ~ A)) U ((An ~ B) U (BN ~ B)) commutative
(DU (BN ~A)) U ((An ~ B) U ) complement

(
(
(

= (AN ~ B) U (BN ~ A) commutative and identity
= AAB definition
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The algebra of sets

Suppose that A, B, C, U are sets with AC U, BC U,and C C U.

Distributive laws:

AN(BUC)=(ANB)U(ANC), AU(BNC)=(AUB)N(AUC);
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A proof of De Morgan’s law ~ (AN B) =~ AU ~ B

Case 1: Suppose x € A and x € B. From the definition of N, x € AN B. So from the
definition of ~, x ¢~ (AN B). From the definition of ~, x ¢~ A and also x ¢~ B. So
from the definition of U, x ¢~ AU ~ B.

Case 2: Suppose x € A and x ¢ B. From the definition of N, x ¢ AN B. So from the
definition of ~, x e~ (AN B). From the definition of ~, x ¢~ A but x e~ B. So from
the definition of U, x e~ AU ~ B.

Case 3: Suppose x ¢ A and x € B. From the definition of N, x ¢ AN B. So from the
definition of ~, x e~ (AN B). From the definition of ~, x e~ A but x ¢~ B. So from
the definition of U, x e~ AU ~ B.

Case 4: Suppose x ¢ A and x ¢ B. From the definition of N, x ¢ AN B. So from the
definition of ~, x e~ (AN B). From the definition of ~, x e~ A and x e~ B. So from
the definition of U, x e~ AU ~ B.

Part 2. Set Theory

Cardinality of sets

Definition The cardinality of a finite set S is the number of elements in S,
and is denoted by |S|.
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The algebra of sets

Suppose that A and U are sets with A C U. Let ~ A = U — A. Then

Complement laws:

AU~A=U, ~U=0, ~(~A) =AAN~A=0, ~0=U;
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Using the algebra of sets

Prove that AAB = (AU B)N ~ (AN B). (See the next slide.)
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Computing the cardinality of a union of two sets

If Aand B are sets then

|AUB| = |A| + |B] — |AN B|.
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Example Computing the cardinality of a union of three sets Proof (optional)

We need lots of notation.

B [A—(BUCQ) =nq [B=(AUQ)|=np, |C—(AUB)| =nc,

IAUBUC| = |A|+ Bl +|C| = |ANB| - |ANC| = |BNCl+|ANBNC| B [(ANB) = (| = Nap, [(ANC) = B| = Nag, [(BNC) — Al = My,
B |[ANBNC| = Ngpe.

Al B
Suppose there are 100 third-year students. 40 of them take the module ‘
“Sequential Algorithms” and 80 of them take the module “Multi-Agent

Systems”. 25 of them took both modules. How many students took neither
modules? [AUBUC| = ng+np + Nc + Ngp + Nac + Npe + Nape

Al B Then

= (Na + Nab + Nac + Nabe) + (N + Nab + Npe + Nape)

+ (Nc + Nac + Npe + Nabe) = (Nab + Nabe)

These are special cases of the principle of inclusion and exclusion which
- (nuc + nabc) - (nbc + nabc) + Nabe

we will study later.
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Reflection Why is this set theory “naive” Why is this set theory “naive”

It suffers from paradoxes. It suffers from paradoxes.

The following statements hold:

A leading example:
m (e {0}buthed;
m () C {5} A barber is the man who shaves all those, and only those, men

m (2} ¢ {{2}} but {2} € {{2}}; who do not shave themselves.
m {3,{3}} # {3}.

m Who shaves the barber?
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Russell’s Paradox

Russell's paradox shows that the ‘object’ {x | P(x)} is not always
meaningful.

SetA={B|BgB}
Problem: do we have A € A?
Abbreviate, for any set C, by P(C) the statement C ¢ C. Then A = {B | P(B)}.

m If A € A then (from the definition of P), not P(A). Therefore A ¢ A.
m If A ¢ A then (from the definition of P), P(A). Therefore A € A.
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