Foundations of Computer Science Comp109

University of Liverpool Boris Konev konev@liverpool.ac.uk http://www.csc.liv.ac.uk/~konev/COMP109

Part 4. Function

http://www.csc.liv.ac.uk/~konev/COMP109

Functions

Comp109 Foundations of Computer Science

Discrete Mathematics and Its Applications K. Rosen, Section 2.3.

Part 4. Function

Discrete Mathematics with Applications S. Epp, Chapter 7.

Reading

1/42 http://www.csc.liv.ac.uk/~konev/COMP109

4/42 http://www.csc.liv.ac.uk/~konev/COMP10

7/42 http://www.csc.liv.ac.uk/~konev/COMP109

Functions/methods on programming

Functions:	definitions	and	examples	

- Domain, codomain, and range
- Injective, surjective, and bijective functions
- Invertible functions
- Compositions of functions
- Functions and cardinality
- Pigeon hole principle
- Cardinality of infinite sets

3/42 http://www.csc.liv.ac.uk/~konev/COMP16

6/42 http://www.csc.liv.ac.uk/~konev/COMP109

Examples: ■ y = x² ■ y = sin(x) ■ first letter of your name

http://www.csc.liv.ac.uk/~konev/COMP109

http://www.csc.liv.ac.uk/~konev/COMP109

Contents

A **function** from a set *A* to a set *B* is an assignment of exactly one element of *B* to each element of *A*.

Part 4. Functio

We write f(a) = b if b is the unique element of B assigned by the function f to the element of a.

If f is a function from A to B we write $f : A \rightarrow B$.

Figure 1: A function $f : \{1, 2, 3\} \rightarrow \{4, 5, 6\}$

Figure 3: No function

Domain, codomain, and range	Codomain vs range	Composition of functions
Suppose $f : A \to B$. • A is called the <i>domain</i> of f. B is called the <i>codomain</i> of f. • The <i>range</i> $f(A)$ of f is $f(A) = \{f(x) \mid x \in A\}.$	$\overbrace{f} \xrightarrow{B} f(A)$ Figure 4: the range of f	If $f: X \to Y$ and $g: Y \to Z$ are functions, then their composition $g \circ f$ is a function from X to Z given by $(g \circ f)(x) = g(f(x)).$ $X \qquad f \qquad f \qquad g \circ f$ $g \circ f$
ttp://www.csc.liv.ac.uk/-konev/COMP109 Part4.Function 9/42 Example	http://www.csc.liv.ac.uk/~konev/COMP199 Part4. Function 10 / 42 Injective (one-to-one) functions	http://www.csc.liv.ac.uk/-konev/COMP109 Part 4. Function 11 / 4 Surjective (or onto) functions
Consider the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$ and the function $g : \mathbb{R} \to \mathbb{R}$ given by $g(x) = 4x + 3$. Calculate $g \circ f, f \circ g, f \circ f$ and $g \circ g$.	Definition Let $f : A \to B$ be a function. We call f an <i>injective</i> (or <i>one-to-one</i>) function if $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$ for all $a_1, a_2 \in A$. This is logically equivalent to $a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$ and so injective functions never repeat values. In other words, different inputs give different outputs. <i>Examples</i> $f : \mathbb{Z} \to \mathbb{Z}$ given by $f(x) = x^2$ is not injective. $h : \mathbb{Z} \to \mathbb{Z}$ given by $h(x) = 2x$ is injective.	Definition $f : A \to B$ is <i>surjective</i> (or onto) if the range of f coincides with the codomain of f . This means that for every $b \in B$ there exists $a \in A$ with $b = f(a)$. <i>Examples</i> $f : \mathbb{Z} \to \mathbb{Z}$ given by $f(x) = x^2$ is not surjective. $h : \mathbb{Z} \to \mathbb{Z}$ given by $h(x) = 2x$ is not surjective. $h' : \mathbb{Q} \to \mathbb{Q}$ given by $h'(x) = 2x$ is surjective.
ttp://www.csc.liv.ac.uk/-konev/COMP109 Part 4. Function 12 / 42 $Classify f: \{a, b, c\} \rightarrow \{1, 2, 3\} \text{ given by}$	http://www.csc.liv.ac.uk/-konev/COMP109 Part4. Function 13 / 42 Classify $g: \{a, b, c\} \rightarrow \{1, 2, 3\}$ given by	http://www.csc.liv.ac.uk/-konev/COMP109 Part 4. Function 14 / 4. Classify $h: \{a, b, c\} \rightarrow \{1, 2\}$ given by

Part 4. Function

16/42 http://www.csc.liv.ac.uk/~konev/COMP109

Part 4. Function

15/42 http://www.csc.liv.ac.uk/~konev/COMP109

http://www.csc.liv.ac.uk/~konev/COMP109

Part 4. Function

Classify $h': \{a, b, c\} \rightarrow \{1, 2, 3\}$ given by	Bijections	Inverse functions
	We call <i>f</i> bijective if <i>f</i> is both injective and surjective. <i>Examples</i> $f: \mathbb{Q} \to \mathbb{Q}$ given by $f(x) = 2x$ is bijective.	If <i>f</i> is a bijection from a set <i>X</i> to a set <i>Y</i> , then there is a function f^{-1} from <i>Y</i> to <i>X</i> that "undoes" the action of <i>f</i> ; that is, it sends each element of <i>Y</i> back to the element of <i>X</i> that it came from. This function is called the inverse function for <i>f</i> . Then $f(a) = b$ if, and only if, $f^{-1}(b) = a$.
http://www.csc.liv.ac.uk/-konev/COMP109 Part 4. Function 18 / 42 Example	http://www.csc.liv.ac.uk/~konev/COMP189 Part 4. Function 19 / 42 Example	http://www.csc.liv.ac.uk/~konev/COMP189 Part 4. Function 20 / 42 Bijections and representations
$k : \mathbb{R} \to \mathbb{R}$ given by $k(x) = 4x + 3$ is invertible and $k^{-1}(y) = \frac{1}{4}(y - 3).$	Let $A = \{x \mid x \in \mathbb{R}, x \neq 1\}$ and $f : A \to A$ be given by $f(x) = \frac{x}{x-1}.$ Show that f is bijective and determine the inverse function.	Let $S = \{1, 2,, n\}$ and let B^n be the set of bit strings of length n . The function $f: Pow(S) \rightarrow B^n$ which assigns each subset A of S to its characteristic vector is a bijection.
http://www.csc.liv.ac.uk/-konev/COMP109 Part 4. Function 21/42 Cardinality of finite sets and functions	http://www.csc.tiv.ac.uk/~konev/COMP109 Part 4. Function 22 / 42 The pigeonhole principle	http://www.csc.tiv.ac.uk/~konev/COMP109 Part 4. Function 23 / 42 Pigeons and pigeonholes
Recall: The cardinality of a finite set S is the number of elements in S A bijection $f: S \rightarrow \{1,, n\}$. For finite sets A and B $ A \ge B $ iff there is a surjective function from A to B. $ A \le B $ iff there is a injective function from A to B. A = B iff there is a bijection from A to B.	Let $f : A \rightarrow B$ be a function where A and B are finite sets. The <i>pigeonhole principle</i> states that if $ A > B $ then at least one value of f occurs more than once. In other words, we have $f(a) = f(b)$ for some distinct elements a, b of A.	If (N+1) pigeons occupy N holes, then some hole must have at least 2 pigeons.

Part 4. Function

24/42 http://www.csc.liv.ac.uk/~konev/COMP109

25/42 http://www.csc.liv.ac.uk/~konev/COMP109

Part 4. Function

26 / 42

http://www.csc.liv.ac.uk/~konev/COMP109

Part 4. Function

Example	Example	Example
<i>Problem</i> . There are 15 people on a bus. Show that at least two of them have a birthday in the same month of the year.	<i>Problem.</i> How many different surnames must appear in a telephone directory to guarantee that at least two of the surnames begin with the same letter of the alphabet and end with the same letter of the alphabet?	<i>Problem</i> . Five numbers are selected from the numbers 1, 2, 3, 4, 5, 6, 7 and 8. Show that there will always be two of the numbers that sum to 9.
ttp://www.csc.liv.ac.uk/-konev/COMP109 Part 4. Function 27 / 42. Extended pigeonhole principle	http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 28 / 42. Example	http://www.csc.liv.ac.uk/-konev/COMP109 Part 4. Function 29 / 4 Example
Consider a function $f : A \to B$ where A and B are finite sets and $ A > k B $ for some natural number k. Then, there is a value of f which occurs at least $k + 1$ times.	<i>Problem</i> . How many different surnames must appear in a telephone directory to guarantee that at least five of the surnames begin with the same letter of the alphabet and end with the same letter of the alphabet?	<i>Problem</i> . Show that in any group of six people there are either three who all know each other or three complete strangers.
ttp://www.csc.liv.ac.uk/-konev/COMP109 Part 4 Function 30 / 42	http://www.csc.liv.ac.uk/~konev/COMP109 Part4.Function 31/42	http://www.csc.liv.ac.uk/-konev/COMP109 Part 4. Function 32 / 4
Bijections and cardinality	Example: The cardinality of the power set.	Power set and bit vectors
Recall that the cardinality of a finite set is the number of elements in the set. Sets <i>A</i> and <i>B</i> have the same cardinality iff there is a bijection from <i>A</i> to <i>B</i> .	Definition The power set $Pow(A)$ of a set A is the set of all subsets of A. In other words, $Pow(A) = \{C \mid C \subseteq A\}.$ For all $n \in \mathbb{Z}^+$ and all sets A: if $ A = n$, then $ Pow(A) = 2^n$.	Recall that if all elements of a set <i>A</i> are drawn from some ordered sequence $S = s_1,, s_n$: the characteristic vector of <i>A</i> is the sequence $(b_1,, b_n)$ where $b_i = \begin{cases} 1 & \text{if } s_i \in A\\ 0 & \text{if } s_i \notin A \end{cases}$ We use the correspondence between bit vectors and subsets: $ Pow(A) $ is the number of bit vectors of length <i>n</i> .

Part 4. Function

34/42 http://www.csc.liv.ac.uk/~konev/COMP109

Part 4. Function

33/42 http://www.csc.liv.ac.uk/~konev/COMP109

http://www.csc.liv.ac.uk/~konev/COMP109

Part 4. Function

The number of <i>n</i> -bit vectors is 2 ^{<i>n</i>}	The number of <i>n</i> -bit vectors is 2 ^{<i>n</i>}	Infinite sets
We prove the statement by induction. Base Case: Take <i>n</i> = 1. There are two bit vectors of length 1: (0) and (1).	Inductive Step: Assume that the property holds for $n = m$, so the number of <i>m</i> -bit vectors is 2^m . Now consider the set <i>B</i> of all $(m + 1)$ -bit vectors. We must show that $ B = 2^{m+1}$. Every $(b_1, b_2, \ldots, b_{m+1}) \in B$ starts with an <i>m</i> -bit vector (b_1, b_2, \ldots, b_m) followed by b_{m+1} , which can be either 0 or 1. Thus $ B = 2^m + 2^m = 2^{m+1}$.	Sets <i>A</i> and <i>B</i> have the same cardinality iff there is a bijection from <i>A</i> to <i>B</i> . Examples: • \mathbb{Z} and even integers • consider $f(n) = 2n$ • $\{x \in \mathbb{R} \mid 0 < x < 1\}$ and \mathbb{R}^+ • consider $g(x) = \frac{1}{x} - 1$ • $\{x \in \mathbb{R} \mid 0 < x < 1\}$ and \mathbb{R}
http://www.csc.lu/.ac.uk/~konev/COMP109 Part & Function 36 / 42 Countable sets	http://www.csc.ltv.ac.uk/~konev/CMP189 Part 4, Function 37 / 42 Countable Sets: Q	http://www.csc.ltv.ac.uk/~konev/COMP109 Part4. Function 38 / 42 Uncountable sets
A set that is either finite or has the same cardinality as ℕ is called countable. ■ Z ··· -4 -3 -2 -1 0 1 2 3 4 ··· ← + + + + + + + + + + + + + + + + + + +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	■ A set that is not countable is called uncountable . ■ $S = \{x \in \mathbb{R} \mid 0 < x < 1\}$ is uncountable

Part 4. Functi

40/42 http://www.csc.liv.ac.uk/~konev/COMP109

39/42 http://www.csc.liv.ac.uk/~konev/COMP109

42 / 42

Cantor's diagonal argument

http://www.csc.liv.ac.uk/~konev/COMP109

Suppose S is countable. Then the decimal representations of these numbers can be written as a list

Part 4. Function

Part 4. Function

 $\begin{array}{c} a_1 = 0.a_{11} \ a_{12} \ a_{13} \dots \ a_{1n} \dots \\ a_2 = 0.a_{21} \ a_{22} \ a_{23} \dots \ a_{2n} \dots \\ a_3 = 0.a_{31} \ a_{32} \ a_{33} \dots \ a_{3n} \dots \\ \vdots \\ a_n = 0.a_{n1} \ a_{n2} \ a_{n3} \dots \ a_{nn} \dots \\ \vdots \end{array}$

Let $d = 0.d_1 d_2 d_3 ... d_n ...$ where

$$d_{i} = \begin{cases} 1, \text{ if } a_{ii} \neq 1 \\ 2, \text{ if } a_{ii} = 1 \end{cases}$$

http://www.csc.liv.ac.uk/~konev/COMP109