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Definition

A function from a set A to a set B is an assignment of exactly one element
of B to each element of A.

We write f(a) = b if b is the unique element of B assigned by the function f
to the element of a.

If fis a function from A to B we write f: A — B.

O——®
@ ©)
©) ®

Figure 1: A function f: {1,2,3} — {4,5,6}
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Functions

7 Examples:
P <

my=x

Y m Y = sin(X)
N m first letter of your name
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Figure 2: No function
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Reading

1ematics and Its Applications K. Rosen, Section 2.3.

thematics with Applications S. Epp, Chapter 7.
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Functions/methods on programming

public int f(int x) {
return x+5;

¥

int f(int x) {
return x+5;

}

def f(int x):
return x+5
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Figure 3: No function
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Domain, codomain, and range

Suppose f: A — B.

m Ais called the domain of f. Bis called the ¢
m The range f(A) of fis
flA) = {fix) | x € A}.
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Example

Consider the function f: R — R given by f(x) = x* and the function
g :R — R given by g(x) = 4x+ 3. Calculate gof, fog,fofand gog.
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Classify f: {a,b,c} — {1,2,3} given by
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Codomain vs range

Figure 4: the range of f
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Injective (one-to-one) functions

Definition Let f: A — B be a function. We call fan injective (or one-t
function if
flar) = f(ay) = a1 =a; forall ay,a; € A.

This is logically equivalent to a; # a, = f(a1) # f(a2) and so injective
functions never repeat values. In other words, different inputs give
different outputs.

Examples
f:Z — Z given by f(x) = x* is not injective.

h:Z — Z given by h(x) = 2x is injective.
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Classify g : {a,b,c} — {1,2,3} given by
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Composition of functions

Iff:X— Yandg:Y — Zare functions, then their composition gofis a
function from X to Z given by

(9o f)(x) = g(f(x))-
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Surjective (or onto) functions

Definition f: A — B is surjective (or onto) if the range of f coincides with
the codomain of f. This means that for every b € B there exists a € A with
b =f(a).

Examples

f:Z — Z given by f(x) = x* is not surjective.

h:Z — Z given by h(x) = 2x is not surjective.

h":Q — Q given by h’(x) = 2x is surjective.
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Classify h : {a,b,c} — {1,2} given by
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Classify h' : {a,b,c} — {1,2,3} given by
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Example

kR :R — R given by R(x) = 4x + 3 is invertible and

K0) = 10— 3)
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Cardinality of finite sets and functions

Recall: The cardinality of a finite set S is the number of elements in S

A bijection f: S — {1

For finite sets A and B

m |A| > |B| iff there is a surjective function from A to B.
m |A| < |B| iff there is a injective function from A to B.
m |A| = |B| iff there is a bijection from A to B.
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Bijections

We call f bijective if fis both injective and surjective.

Examples

f:Q — Q given by f(x) = 2x is bijective.
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Example

Let A= {x|xeR,x#1}andf: A — A be given by

Show that f is bijective and determine the inverse function.
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The pigeonhole principle

Letf: A — Bbe a function where A and B are finite sets.

The pigeonhole principle states that if |A| > |B| then at least one value of f
occurs more than once.

In other words, we have f(a) = f(b) for some distinct elements a, b of A.

http://www.csc.liv.ac.uk/~konev/COMP109
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Inverse functions

If fis a bijection from a set X to a set Y, then there is a function f~' from Y
to X that “undoes” the action of f; that is, it sends each element of Y back
to the element of X that it came from. This function is called the inverse
function for f.

Then f(a) = b if, and only if, f~'(b) = a.

Part 4. Function

Bijections and representations

LetS={1,2,...,n} and let B" be the set of bit strings of length n. The

function
f: Pow(S) — B"

which assigns each subset A of S to its characteristic vector is a bijection.
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Pigeons and pigeonholes

If (N+1) pigeons occupy N holes, then some hole must have at
least 2 pigeons.
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Example

Problem. There are 15 people on a bus. Show that at least two of them
have a birthday in the same month of the year.
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Extended pigeonhole principle

Consider a function f: A — B where A and B are finite sets and |A| > k|B|
for some natural number k. Then, there is a value of f which occurs at least
R+ 1times.
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Bijections and cardinality

Recall that the cardinality of a finite set is the number of elements in the
set.

Sets A and B have the same cardinality iff there is a bijection from A to B.
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Example

Problem. How many different surnames must appear in a telephone
directory to guarantee that at least two of the surnames begin with the
same letter of the alphabet and end with the same letter of the alphabet?
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Example

Problem. How many different surnames must appear in a telephone
directory to guarantee that at least five of the surnames begin with the
same letter of the alphabet and end with the same letter of the alphabet?
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Example: The cardinality of the power set.

Definition The power set Pow(A) of a set A is the set of all subsets of A. In
other words,
Pow(A) = {C| C C A}.

Forall n € Z* and all sets A: if |A] = n, then |Pow(A)| = 2".

http://www.csc.liv.ac.uk/~konev/COMP109
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Example

Problem. Five numbers are selected from the numbers 1,2,3,4,5,6,7 and
8. Show that there will always be two of the numbers that sum to 9.
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Example

Problem. Show that in any group of six people there are either three who
all know each other or three complete strangers.
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Power set and bit vectors

Recall that if all elements of a set A are drawn from some ordered
sequence S = sy,...,Sy: the characteristic vector of A is the sequence

(b1,...,bn) where
S fif
"Tlo if

We use the correspondence between bit vectors and subsets: |Pow(A)]| is
the number of bit vectors of length n.

S;eA
S,’¢A
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The number of n-bit vectors is 2" The number of n-bit vectors is 2" Infinite sets

Sets A and B have the same cardinality iff there is a bijection from A to B.

Examples:

Inductive Step:  Assume that the property holds for n = m, so the
number of m-bit vectors is 2™. Now consider the set B of all (m + 1)-bit
vectors. We must show that |B| = 2M*".

We prove the statement by induction. ) . ) +
Every (b1, by, ..., bmy1) € B starts with an m-bit vector (by, by, ..., by) B {xeR[0<x<1}andR

Base Case: Take n = 1. There are two bit vectors of length 1: (0) and (7). followed by b4, which can be either 0 or 1.

m Z and even integers
m consider f(n) = 2n

m consider g(x) =1 —1

Thus

B {xeR|0<x<1}andR
|B| = 2™ + 2™ = 2m*.

Number line
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Countable sets Countable Sets: Q Uncountable sets

A set that is either finite or has the same cardinality as N is called
countable.

m A setthat is not countable is called uncountable.
m S={xeR|0<x<1}isuncountable
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Cantor’s diagonal argument

Suppose S is countable. Then the decimal representations of these
numbers can be written as a list

a=0.anapas... aip...
a; =0.a21 Q A23... Qop - - -
a3=0.037 03033 ... Q3 ...

anp=0.0p1 A2 Ap3... Qpp - - -

letd=0.dyd> ds...d,... where
d; = 1, i}fO,‘,‘#»’I
2, lfG//:1

Then d is not in the sequence ay, ay, as...
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