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Functions

20 Chapter 1 Speaking Mathematically

function machine

Input
x

f (x) Output

Figure 1.3.1

Example 1.3.6 Functions Defined by Formulas

The squaring function f from R to R is defined by the formula f (x) = x2 for all real
numbers x . This means that no matter what real number input is substituted for x , the
output of f will be the square of that number. This idea can be represented by writing
f (!) = !2. In other words, f sends each real number x to x2, or, symbolically,
f : x → x2. Note that the variable x is a dummy variable; any other symbol could replace
it, as long as the replacement is made everywhere the x appears.

The successor function g from Z to Z is defined by the formula g(n) = n + 1. Thus,
no matter what integer is substituted for n, the output of g will be that number plus
one: g(!) = !+ 1. In other words, g sends each integer n to n + 1, or, symbolically,
g: n → n + 1.

An example of a constant function is the function h from Q to Z defined by the
formula h(r) = 2 for all rational numbers r . This function sends each rational number
r to 2. In other words, no matter what the input, the output is always 2: h(!) = 2 or
h: r → 2.

The functions f, g, and h are represented by the function machines in Figure 1.3.2.
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Figure 1.3.2 ■

A function is an entity in its own right. It can be thought of as a certain relationship
between sets or as an input/output machine that operates according to a certain rule. This
is the reason why a function is generally denoted by a single symbol or string of symbols,
such as f, G, of log, or sin.

A relation is a subset of a Cartesian product and a function is a special kind of relation.
Specifically, if f and g are functions from a set A to a set B, then

f = {(x, y) ∈ A × B | y = f (x)} and g = {(x, y) ∈ A × B | y = g(x)}.
It follows that

f equals g, written f = g, if, and only if, f (x) = g(x) for all x in A.
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Examples:
y = x2

y = sin(x)
first letter of your name
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Functions/methods on programming

Java public int f(int x) {
return x+5;

}
C/C++ int f(int x) {

return x+5;
}

Python def f(int x):
return x+5
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Definition

A function from a set A to a set B is an assignment of exactly one element
of B to each element of A.

We write f(a) = b if b is the unique element of B assigned by the function f
to the element of a.

If f is a function from A to B we write f : A → B.
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Figure 1: A function f : {1, 2, 3} → {4, 5, 6}
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Figure 2: No function
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Figure 3: No function
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Domain, codomain, and range

Suppose f : A → B.

A is called the domain of f. B is called the codomain of f.
The range f(A) of f is

f(A) = {f(x) | x ∈ A}.
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Codomain vs range

f(A)

BA

f

Figure 4: the range of f
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Composition of functions

If f : X → Y and g : Y → Z are functions, then their composition g ◦ f is a
function from X to Z given by

(g ◦ f)(x) = g(f(x)).

7.3 Composition of Functions 417

to the squaring function, then they work together to operate as one larger machine. In
this larger machine, an integer n is first increased by 1 to obtain n + 1; then the quantity
n + 1 is squared to obtain (n + 1)2. This is illustrated in the following drawing.

successor function

n

n + 1

squaring function

(n + 1)2

Combining functions in this way is called composing them; the resulting function is
called the composition of the two functions. Note that the composition can be formed
only if the output of the first function is acceptable input to the second function. That is,
the range of the first function must be contained in the domain of the second function.

Note We put the f first
when we say “the
composition of f and g”
because an element x is
acted upon first by f and
then by g.

• Definition

Let f : X → Y ′ and g: Y → Z be functions with the property that the range of f is
a subset of the domain of g. Define a new function g◦ f : X → Z as follows:

(g◦ f )(x) = g( f (x)) for all x ∈ X,

where g◦ f is read “g circle f ” and g( f (x)) is read “g of f of x .” The function g◦ f
is called the composition of f and g.

This definition is shown schematically below.

Y ZX
f

x
f (x)

g( f (x)) =
(g % f )(x)Y'

g % f

g

!
Caution! Be careful not
to confuse g ◦ f and
g( f (x)): g ◦ f is the name
of the function whereas
g( f (x)) is the value of
the function at x .

Example 7.3.1 Composition of Functions Defined by Formulas

Let f : Z → Z be the successor function and let g: Z → Z be the squaring function. Then
f (n)= n + 1 for all n ∈ Z and g(n) = n2 for all n ∈ Z.

a. Find the compositions g◦ f and f ◦g.

b. Is g◦ f = f ◦g? Explain.

Solution

a. The functions g◦ f and f ◦g are defined as follows:

(g◦ f )(n) = g( f (n)) = g(n + 1) = (n + 1)2 for all n ∈ Z,

and

( f ◦g)(n) = f (g(n)) = f (n2) = n2 + 1 for all n ∈ Z.
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Example

Consider the function f : R→ R given by f(x) = x2 and the function
g : R→ R given by g(x) = 4x+ 3. Calculate g ◦ f, f ◦ g, f ◦ f and g ◦ g.
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Injective (one-to-one) functions

Definition Let f : A → B be a function. We call f an injective (or one-to-one)
function if

f(a1) = f(a2) ⇒ a1 = a2 for all a1,a2 ∈ A.

This is logically equivalent to a1 , a2 ⇒ f(a1) , f(a2) and so injective
functions never repeat values. In other words, different inputs give
different outputs.

Examples

f : Z→ Z given by f(x) = x2 is not injective.

h : Z→ Z given by h(x) = 2x is injective.
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Surjective (or onto) functions

Definition f : A → B is surjective (or onto) if the range of f coincides with
the codomain of f. This means that for every b ∈ B there exists a ∈ A with
b = f(a).

Examples

f : Z→ Z given by f(x) = x2 is not surjective.

h : Z→ Z given by h(x) = 2x is not surjective.

h′ : Q→ Q given by h′(x) = 2x is surjective.
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Classify f : {a,b, c} → {1, 2, 3} given by

a

b

c

1

2

3
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Classify g : {a,b, c} → {1, 2, 3} given by

a

b

c

1

2

3
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Classify h : {a,b, c} → {1, 2} given by

a

b

c

1

2
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Classify h′ : {a,b, c} → {1, 2, 3} given by

a

b

1

2

3
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Bijections

We call f bijective if f is both injective and surjective.

Examples

f : Q→ Q given by f(x) = 2x is bijective.
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Inverse functions

If f is a bijection from a set X to a set Y, then there is a function f−1 from Y
to X that “undoes” the action of f; that is, it sends each element of Y back
to the element of X that it came from. This function is called the inverse
function for f.

Then f(a) = b if, and only if, f−1(b) = a.
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Example

k : R→ R given by k(x) = 4x+ 3 is invertible and

k−1(y) = 1
4(y− 3).
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Example

Let A = {x | x ∈ R, x , 1} and f : A → A be given by

f(x) = x
x− 1 .

Show that f is bijective and determine the inverse function.
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Bijections and representations

Let S = {1, 2, . . . ,n} and let Bn be the set of bit strings of length n. The
function

f : Pow(S) → Bn

which assigns each subset A of S to its characteristic vector is a bijection.
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Cardinality of finite sets and functions

Recall: The cardinality of a finite set S is the number of elements in S

A bijection f : S → {1, . . . ,n}.

For finite sets A and B

|A| ≥ |B| iff there is a surjective function from A to B.
|A| ≤ |B| iff there is a injective function from A to B.
|A| = |B| iff there is a bijection from A to B.
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The pigeonhole principle

Let f : A → B be a function where A and B are finite sets.

The pigeonhole principle states that if |A| > |B| then at least one value of f
occurs more than once.

In other words, we have f(a) = f(b) for some distinct elements a,b of A.
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Pigeons and pigeonholes

If (N+1) pigeons occupy N holes, then some hole must have at
least 2 pigeons.
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Example

Problem. There are 15 people on a bus. Show that at least two of them
have a birthday in the same month of the year.
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Example

Problem. How many different surnames must appear in a telephone
directory to guarantee that at least two of the surnames begin with the
same letter of the alphabet and end with the same letter of the alphabet?
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Example

Problem. Five numbers are selected from the numbers 1, 2, 3, 4, 5, 6, 7 and
8. Show that there will always be two of the numbers that sum to 9.
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Extended pigeonhole principle

Consider a function f : A → B where A and B are finite sets and |A| > k|B|
for some natural number k. Then, there is a value of f which occurs at least
k+ 1 times.
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Example

Problem. How many different surnames must appear in a telephone
directory to guarantee that at least five of the surnames begin with the
same letter of the alphabet and end with the same letter of the alphabet?
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Example

Problem. Show that in any group of six people there are either three who
all know each other or three complete strangers.
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Bijections and cardinality

Recall that the cardinality of a finite set is the number of elements in the
set.

Sets A and B have the same cardinality iff there is a bijection from A to B.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 33 / 42

Example: The cardinality of the power set.

Definition The power set Pow(A) of a set A is the set of all subsets of A. In
other words,

Pow(A) = {C | C ⊆ A}.

For all n ∈ Z+ and all sets A: if |A| = n, then |Pow(A)| = 2n.
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Power set and bit vectors

Recall that if all elements of a set A are drawn from some ordered
sequence S = s1, . . . , sn: the characteristic vector of A is the sequence
(b1, . . . ,bn) where

bi =
{
1 if si ∈ A
0 if si < A

We use the correspondence between bit vectors and subsets: |Pow(A)| is
the number of bit vectors of length n.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 35 / 42



The number of n-bit vectors is 2n

We prove the statement by induction.

Base Case: Take n = 1. There are two bit vectors of length 1: (0) and (1).
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The number of n-bit vectors is 2n

Inductive Step: Assume that the property holds for n = m, so the
number of m-bit vectors is 2m. Now consider the set B of all (m+ 1)-bit
vectors. We must show that |B| = 2m+1.

Every (b1,b2, . . . ,bm+1) ∈ B starts with an m-bit vector (b1,b2, . . . ,bm)
followed by bm+1, which can be either 0 or 1.

Thus
|B| = 2m + 2m = 2m+1.
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Infinite sets

Sets A and B have the same cardinality iff there is a bijection from A to B.

Examples:

Z and even integers
consider f(n) = 2n

{x ∈ R | 0 < x < 1} and R+
consider g(x) = 1

x − 1

{x ∈ R | 0 < x < 1} and R

7.4 Cardinality with Applications to Computability 437

Define a function F: S → R as follows:
Draw a number line and place the interval, S, somewhat enlarged and bent into a

circle, tangent to the line above the point 0. This is shown below.

Number line

0–1–2–3 1 2 3

x

L

F(x)

For each point x on the circle representing S, draw a straight line L through the top-
most point of the circle and x . Let F(x) be the point of intersection of L and the number
line. (F(x) is called the projection of x onto the number line.)

It is clear from the geometry of the situation that distinct points on the circle go to
distinct points on the number line, so F is one-to-one. In addition, given any point y on
the number line, a line can be drawn through y and the top-most point of the circle. This
line must intersect the circle at some point x , and, by definition, y = F(x). Thus F is
onto. Hence F is a one-to-one correspondence from S to R, and so S and R have the
same cardinality. ■

You know that every positive integer is a real number, so putting Example 7.4.5
together with Cantor’s theorem (Theorem 7.4.2) shows that the infinity of the set of all
real numbers is “greater” than the infinity of the set of all positive integers. In exercise 35,
you are asked to show that any set and its power set have different cardinalities. Because
there is a one-to-one function from any set to its power set (the function that takes each
element a to the singleton set {a}), this implies that the cardinality of any set is “less
than” the cardinality of its power set. As a result, you can create an infinite sequence of
larger and larger infinities! For example, you could begin with Z, the set of all integers,
and take Z, P(Z), P(P(Z)), P(P(P(Z))), and so forth.

Application: Cardinality and Computability
Knowledge of the countability and uncountability of certain sets can be used to answer a
question of computability. We begin by showing that a certain set is countable.

Example 7.4.6 Countability of the Set of Computer Programs in a Computer Language

Show that the set of all computer programs in a given computer language is countable.

Solution This result is a consequence of the fact that any computer program in any
language can be regarded as a finite string of symbols in the (finite) alphabet of the lan-
guage.

Given any computer language, let P be the set of all computer programs in the lan-
guage. Either P is finite or P is infinite. If P is finite, then P is countable and we are
done. If P is infinite, set up a binary code to translate the symbols of the alphabet of
the language into strings of 0’s and 1’s. (For instance, either the seven-bit American
Standard Code for Information Interchange, known as ASCII, or the eight-bit Extended
Binary-Coded Decimal Interchange Code, known as EBCDIC, might be used.)

For each program in P , use the code to translate all the symbols in the program into
0’s and 1’s. Order these strings by length, putting shorter before longer, and order all
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Countable sets

A set that is either finite or has the same cardinality as N is called
countable.

Z

. . . −4 −3 −2 −1 0 1 2 3 4 . . .
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Countable Sets: Q
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Uncountable sets

A set that is not countable is called uncountable.
S = {x ∈ R | 0 < x < 1} is uncountable
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Cantor’s diagonal argument

Suppose S is countable. Then the decimal representations of these
numbers can be written as a list

a1 = 0.a11 a12 a13 . . . a1n . . .

a2 = 0.a21 a22 a23 . . . a2n . . .

a3 = 0.a31 a32 a33 . . . a3n . . .
...

an = 0.an1 an2 an3 . . . ann . . .
...

Let d = 0.d1 d2 d3 . . .dn . . . where

di =
{
1, if aii , 1
2, if aii = 1

Then d is not in the sequence a1, a2, a3…
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