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Motivation

Intuitively, there is a “relation” between two things if there is some
connection between them.
E.g.

‘friend of’
a < b
m divides n

Relations are used in crucial ways in many branches of mathematics
Equivalence
Ordering

Computer Science
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Databases and relations

A database table ≈ relation
9.2 n-ary Relations and Their Applications 585

TABLE 1 Students.

Student_name ID_number Major GPA

Ackermann 231455 Computer Science 3.88
Adams 888323 Physics 3.45
Chou 102147 Computer Science 3.49
Goodfriend 453876 Mathematics 3.45
Rao 678543 Mathematics 3.90
Stevens 786576 Psychology 2.99

are represented as 4-tuples of the form (Student_name, ID_number, Major, GPA). A sample
database of six such records is

(Ackermann, 231455, Computer Science, 3.88)
(Adams, 888323, Physics, 3.45)
(Chou, 102147, Computer Science, 3.49)
(Goodfriend, 453876, Mathematics, 3.45)
(Rao, 678543, Mathematics, 3.90)
(Stevens, 786576, Psychology, 2.99).

Relations used to represent databases are also called tables, because these relations are often
displayed as tables. Each column of the table corresponds to an attribute of the database. For
instance, the same database of students is displayed in Table 1. The attributes of this database
are Student Name, ID Number, Major, and GPA.

A domain of an n-ary relation is called a primary key when the value of the n-tuple from
this domain determines the n-tuple. That is, a domain is a primary key when no two n-tuples in
the relation have the same value from this domain.

Records are often added to or deleted from databases. Because of this, the property that a
domain is a primary key is time-dependent. Consequently, a primary key should be chosen that
remains one whenever the database is changed. The current collection of n-tuples in a relation
is called the extension of the relation. The more permanent part of a database, including the
name and attributes of the database, is called its intension. When selecting a primary key, the
goal should be to select a key that can serve as a primary key for all possible extensions of the
database. To do this, it is necessary to examine the intension of the database to understand the
set of possible n-tuples that can occur in an extension.

EXAMPLE 5 Which domains are primary keys for the n-ary relation displayed in Table 1, assuming that no
n-tuples will be added in the future?

Solution: Because there is only one 4-tuple in this table for each student name, the domain
of student names is a primary key. Similarly, the ID numbers in this table are unique, so the
domain of ID numbers is also a primary key. However, the domain of major fields of study
is not a primary key, because more than one 4-tuple contains the same major field of study.
The domain of grade point averages is also not a primary key, because there are two 4-tuples
containing the same GPA. ▲

Combinations of domains can also uniquely identify n-tuples in an n-ary relation. When
the values of a set of domains determine an n-tuple in a relation, the Cartesian product of these
domains is called a composite key.
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Ordered pairs

Definition The Cartesian product A× B of sets A and B is the set consisting
of all pairs (a,b) with a ∈ A and b ∈ B, i.e.,

A× B = {(a,b) | a ∈ A and b ∈ B}.

Note that (a,b) = (c,d) if and only if a = c and b = d.

Note

{1, 2} = {2, 1} but (1, 2) , (2, 1).
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Example

Let A = {1, 2} and B = {a,b, c}. Then

A× B = {(1,a), (2,a), (1,b), (2,b), (1, c), (2, c)}.

B× A =
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Relations

Definition A binary relation between two sets A and B is a subset R of the
Cartesian product A× B.

If A = B, then R is called a binary relation on A.
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Example: Family tree

Fred and Mavis

Alice Ken and

Jane Fiona Alan

John and Mary

Sue Mike Penny

Write down

R = {(x, y) | x is a grandfather of y };

S = {(x, y) | x is a sister of y }.
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Example 2

Write down the ordered pairs belonging to the following binary relations
between A = {1, 3, 5, 7} and B = {2, 4, 6}:

U = {(x, y) ∈ A× B | x+ y = 9};

V = {(x, y) ∈ A× B | x < y}.
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Example 3

Let A = {1, 2, 3, 4, 5, 6}. Write down the ordered pairs belonging to

R = {(x, y) ∈ A× A | x is a divisor of y }.
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Representation of binary relations: directed graphs

Let A and B be two finite sets and R a binary relation between these
two sets (i.e., R ⊆ A× B).
We represent the elements of these two sets as vertices of a graph.
For each (a,b) ∈ R, we draw an arrow linking the related elements.
This is called the directed graph (or digraph) of R.
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Example

Consider the relation V between A = {1, 3, 5, 7} and B = {2, 4, 6} such that
V = {(x, y) ∈ A× B | x < y}.

1

3

5

7

2

4

6

Figure 1: digraph of V
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Digraphs of binary relations on a single set

A binary relation between a set A and itself is called “a binary relation on
A”.

To represent such a relation, we use a directed graph in which a single set
of vertices represents the elements of A and arrows link the related
elements.

Consider the relation V ⊆ A× A where A = {1, 2, 3, 4, 5} and
V = {(1, 2), (3, 3), (5, 5), (1, 4), (4, 1), (4, 5)}.

1 2

3

4

5

Figure 2: digraph of Vhttp://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 14 / 54

Functions as relations

Recall that a function f from a set A to a set B assigns exactly one
element of B to each element of A.

Gives rise to the relation Rf = {(a,b) ∈ A× B | b = f(a)}

If a relation S ⊆ A× B is such that for every a ∈ A there exists at most
one b ∈ B with (a,b) ∈ S, relation S is functional.

(Sometimes in the literature, functions are introduced through
functional relations.)
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Inverse relation

Definition Given a relation R ⊆ A× B, we define the inverse relation
R−1 ⊆ B× A by

R−1 = {(b,a) | (a,b) ∈ R}.

Example: The inverse of the relation is a parent of on the set of people is
the relation is a child of.
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Composition of relations

Definition Let R ⊆ A× B and S ⊆ B× C. The (functional) composition of R
and S, denoted by S ◦ R, is the binary relation between A and C given by

S ◦ R = {(a, c) | exists b ∈ B such that aRb and bSc}.

Example: If R is the relation is a sister of and S is the relation is a parent
of, then

S ◦ R is the relation is an aunt of;
S ◦ S is the relation is a grandparent of.
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Digraph representation of compositions

a

b

1

2

3

R

1

2

3

x

y

S

a

b

x

y

S ◦ R
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Computer friendly representation of binary relations: matrices

Another way of representing a binary relation between finite sets uses
an array.
Let A = {a1, . . . ,an}, B = {b1, . . . ,bm} and R ⊆ A× B.
We represent R by an array M of n rows and m columns. Such an array
is called a n by m matrix.
The entry in row i and column j of this matrix is given by M(i, j) where

M(i, j) =
{
T if (ai,bj) ∈ R
F if (ai,bj) < R
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Example 1

Let A = {1, 3, 5, 7}, B = {2, 4, 6}, and

U = {(x, y) ∈ A× B | x+ y = 9}

Assume an enumeration a1 = 1, a2 = 3, a3 = 5, a4 = 7 and b1 = 2, b2 = 4,
b3 = 6. Then M represents U, where

M =




F F F
F F T
F T F
T F F
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Example 2

Let A = {a,b, c,d} and suppose that R ⊆ A× A has the following matrix
representation:

M =




F T T F
F F T T
F T F F
T T F T




List the ordered pairs belonging to R.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 21 / 54

Example

The binary relation R on A = {1, 2, 3, 4} has the following digraph
representation.

1 2

34

The ordered pairs R =

The matrix 


. . . .

. . . .

. . . .

. . . .




In words:
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Matrices and composition

Now let’s go back and see how this works for matrices representing
relations

a

b

1

2

3

R :

[
T T T
F T F

]

1

2

3

x

y

S :



F T
T F
T F




a

b

x

y

S ◦ R :

[
T T
T F

]
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The formal description

Given two matrices with entries “T” and “F” representing the relations we
can form the matrix representing the composition. This is called the
logical (Boolean) matrix product.

Let A = {a1, . . . ,an}, B = {b1, . . . ,bm} and C = {c1, . . . , cp}.

The logical matrix M representing R is given by:

M(i, j) =
{
T if (ai,bj) ∈ R
F if (ai,bj) < R

The logical matrix N representing S is given by

N(i, j) =
{
T if (bi, cj) ∈ S
F if (bi, cj) < S
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Matrix representation of compositions

Then the entries P(i, j) of the logical matrix P representing S◦R are given by

P(i, j) = T if there exists l with 1 ≤ l ≤ m such that M(i, l) = T and
N(l, j) = T.
P(i, j) = F, otherwise.

We write P = MN.
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The example from before

Let R be the relation between A = {a,b} and B = {1, 2, 3} represented by
the matrix

M =

[
T T T
F T F

]

Similarly, let S be the relation between B and C = {x, y} represented by the
matrix

N =



F T
T F
T F
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Example

Then the matrix P = MN representing S ◦ R is

P =

[
T T
T F

]
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Infix notation for binary relations

If R is a binary relation then we write xRy whenever (x, y) ∈ R. The
predicate xRy is read as x is R-related to y.
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Properties of binary relations (1)

A binary relation R on a set A is

reflexive when xRx for all x ∈ A.

∀x A(x) =⇒ xRx

symmetric when xRy implies yRx for all x, y ∈ A;

∀x, y xRy =⇒ yRx
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Properties of binary relations (2)

A binary relation R on a set A is

antisymmetric when xRy and yRx imply x = y for all x, y ∈ A;

∀x, y xRy and yRx =⇒ y = x

transitive when xRy and yRz imply xRz for all x, y, z ∈ A.

∀x, y, z xRy and yRz =⇒ xRz
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Example

reflexive xRx
symmetric xRy =⇒ yRx
antisymmetric xRy, yRx =⇒ x = y
transitive xRy, yRz =⇒ xRz

Let A = {1, 2, 3}.

R1 = {(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)}

R2 = {(2, 2), (2, 3), (3, 2), (3, 3)}

R3 = {(1, 1), (2, 2), (3, 3), (1, 3)}

R4 = {(1, 3), (3, 2), (2, 3)}
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Digraf representation

In the directed graph representation, R is

reflexive if there is always an arrow from every vertex to itself;
symmetric if whenever there is an arrow from x to y there is also an
arrow from y to x;
antisymmetric if whenever there is an arrow from x to y and x , y,
then there is no arrow from y to x;
transitive if whenever there is an arrow from x to y and from y to z
there is also an arrow from x to z.
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Example

Which of the following define a relation that is reflexive, symmetric,
antisymmetric or transitive?

x divides y on the set Z+ of positive integers;
x , y on the set Z of integers;
x has the same age as y on the set of people.
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Transitive closure

Given a binary relation R on a set A, the transitive closure R∗ of R is the
(uniquely determined) relation on A with the following properties:

R∗ is transitive;
R ⊆ R∗;
If S is a transitive relation on A and R ⊆ S, then R∗ ⊆ S.
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Example

Let A = {1, 2, 3}. Find the transitive closure of

R = {(1, 1), (1, 2), (1, 3), (2, 3), (3, 1)}.
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Finding the transitive closure is easier with the digraph representation

Reachability relation
1 2

3

4

5

6
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Transitivity and composition

A relation S is transitive if and only if S ◦ S ⊆ S.

This is because

S ◦ S = {(a, c) | exists b such that aSb and bSc}.

Let S be a relation. Set S1 = S, S2 = S ◦ S, S3 = S ◦ S ◦ S, and so on.

Theorem Denote by S∗ the transitive closure of S. Then xS∗y if and only if
there exists n > 0 such that xSny.
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Transitive closure in matrix form

The relation R on the set A = {1, 2, 3, 4, 5} is represented by the matrix




T F F T F
F T F F T
F F T F F
T F T F F
F T F T F




Determine the matrix R ◦ R and hence explain why R is not transitive.
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Computation




T F F T F
F T F F T
F F T F F
T F T F F
F T F T F







T F F T F
F T F F T
F F T F F
T F T F F
F T F T F



=




T F T T F
F T F T T
F F T F F
T F T T F
T T T F T




R ◦ R = {(a, c) | exists b ∈ A such that aRb and bRc}.

Note (in red) that there are pairs (a, c) that are in R ◦ R but not in R. Hence,
R is not transitive.
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Detour: Warshall’s algorithm

def warshal l ( a ) :
asser t ( len ( row ) == len ( a ) for row in a )
n = len ( a )
for k in range ( n ) :

for i in range ( n ) :
for j in range ( n ) :

a [ i ] [ j ] = a [ i ] [ j ] or
( a [ i ] [ k ] and a [ k ] [ j ] )

return a

pr in t warshal l ( [ [ 1 , 0 , 0 , 1 , 0 ] ,
[ 0 , 1 , 0 , 0 , 1 ] ,
[ 0 , 0 , 1 , 0 , 0 ] ,
[ 1 , 0 , 1 , 0 , 0 ] ,
[ 0 , 1 , 0 , 1 , 0 ] ] )
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Important relations: Equivalence relations

Definition A binary relation R on a set A is called an equivalence relation if
it is reflexive, transitive, and symmetric.

Examples:

the relation R on the non-zero integers given by xRy if xy > 0;
the relation has the same age on the set of people.

Definition The equivalence class Ex of any x ∈ A is defined by

Ex = {y | yRx}.
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Example

Define a relation R on the set R of real numbers by setting xRy if and only
if x− y is an integer. Prove that R is an equivalence relation. Moreover,

E0 = Z is the equivalence class of 0;
E 1
2
= {. . . , −2 12 − 1 12 , − 1

2 ,
1
2 , 1

1
2 , 2

1
2 , . . .} is the equivalence class of 12 .
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Functions and equivalence relations

Let f : A → B be a function. Define a relation R on A by

a1Ra2 ⇔ f(a1) = f(a2).

Then R is an equivalence relation on A. The equivalence class Ea of a ∈ A is
given by

Ea = {a′ ∈ A | f(a′) = f(a)}.

Example: A is a set of cars, B is the set of real numbers, and f assigns to
any car in A its length. Then a1Ra2 if and only if a1 and a2 are of the same
length.
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Partition of a set

A partition of a set A is a collection of non-empty subsets A1, . . . ,An of A
satisfying:

A = A1 ∪ A2 ∪ · · · ∪ An;
Ai ∩ Aj = ∅ for i , j.

The Ai are called the blocks of the partition.

AA1

A2

A3

A4

Figure 3: Partition of A
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Connecting partitions and equivalence relations

Theorem Let R be an equivalence relation on a non-empty set A. Then the
equivalence classes {Ex | x ∈ A} form a partition of A.

Proof (Optional)

The proof is in four parts:

(1) We show that the equivalence classes Ex = {y | yRx}, x ∈ A, are
non-empty subsets of A: by definition, each Ex is a subset of A. Since R is
reflexive, xRx. Therefore x ∈ Ex and so Ex is non-empty.

(2) We show that A is the union of the equivalence classes Ex, x ∈ A: We
know that Ex ⊆ A, for all Ex, x ∈ A. Therefore the union of the equivalence
classes is a subset of A. Conversely, suppose x ∈ A. Then x ∈ Ex. So, A is a
subset of the union of the equivalence classes.
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(Optional) Proof (continued)

The purpose of the last two parts is to show that distinct equivalence
classes are disjoint, satisfying (ii) in the definition of partition.

(3) We show that if xRy then Ex = Ey: Suppose that xRy and let z ∈ Ex. Then,
zRx and xRy. Since R is a transitive relation, zRy. Therefore, z ∈ Ey. We have
shown that Ex ⊆ Ey. An analogous argument shows that Ey ⊆ Ex. So, Ex = Ey.

(4) We show that any two distinct equivalence classes are disjoint: To this
end we show that if two equivalence classes are not disjoint then they are
identical. Suppose Ex ∩ Ey , ∅. Take a z ∈ Ex ∩ Ey. Then, zRx and zRy. Since R
is symmetric, xRz and zRy. But then, by transitivity of R, xRy. Therefore, by
(3), Ex = Ey.
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Connecting partitions and equivalence relations

Theorem Suppose that A1, . . . ,An is a partition of A. Define a relation R on
A by setting: xRy if and only if there exists i such that 1 ≤ i ≤ n and
x, y ∈ Ai. Then R is an equivalence relation.

Proof (Optional)

Reflexivity: if x ∈ A, then x ∈ Ai for some i. Therefore xRx.
Transitivity: if xRy and yRz, then there exists Ai and Aj such that
x, y ∈ Ai and y, z ∈ Aj. y ∈ Ai ∩ Aj implies i = j. Therefore x, z ∈ Ai which
implies xRz.
Symmetry: if xRy, then there exists Ai such that x, y ∈ Ai. Therefore yRx.
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Important relations: Partial orders

Definition A binary relation R on a set A which is reflexive, transitive and
antisymmetric is called a partial order.

Partial orders are important in situations where we wish to characterise
precedence.

Examples:

the relation ≤ on the the set R of real numbers;
the relation ⊆ on Pow(A);
“is a divisor of” on the set Z+ of positive integers.
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Example: Job scheduling

8.5 Partial Order Relations 511

Example 8.5.12 A Job Scheduling Problem

At an automobile assembly plant, the job of assembling an automobile can be broken
down into these tasks:

1. Build frame.

2. Install engine, power train components, gas tank.

3. Install brakes, wheels, tires.

4. Install dashboard, floor, seats.

5. Install electrical lines.

6. Install gas lines.

7. Install brake lines.

8. Attach body panels to frame.

9. Paint body.

Certain of these tasks can be carried out at the same time, whereas some cannot be started
until other tasks are finished. Table 8.5.1 summarizes the order in which tasks can be
performed and the time required to perform each task.

Table 8.5.1

Time Needed to
Task Immediately Preceding Tasks Perform Task

1 7 hours
2 1 6 hours
3 1 3 hours
4 2 6 hours
5 2, 3 3 hours
6 4 1 hour
7 2, 3 1 hour
8 4, 5 2 hours
9 6, 7, 8 5 hours

Let T be the set of all tasks, and consider the partial order relation ≼ defined on T as
follows: For all tasks x and y in T ,

x ≼ y ⇔ x = y or x precedes y.

If the Hasse diagram of this relation is turned sideways (as is customary in PERT and
CPM analysis), it has the appearance shown below.

Task 4
6 hours Task 6

1 hour

Task 8
2 hours Task 9

5 hours
Task 1
7 hours

Task 5
3 hours

Task 2
6 hours

Task 7
1 hour

Task 3
3 hours
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Predecessors in partial orders

If R is a partial order on a set A and xRy, x , y we call x a predecessor of y.

If x is a predecessor of y and there is no z < {x, y} for which xRz and zRy,
we call x an immediate predecessor of y.
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Important relations: Total orders

Definition A binary relation R on a set A is a total order if it is a partial
order such that for any x, y ∈ A, xRy or yRx.

The Hasse diagram of a total order is a chain.

Examples

the relation ≤ on the set R of real numbers;
the usual lexicographical ordering on the words in a dictionary;
the relation “is a divisor of” is not a total order.
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n-ary relations

The Cartesian product A1 × A2 × · · · × An of sets A1,A2, . . . ,An is defined by

A1 × A2 × · · · × An = {(a1, . . . ,an) | a1 ∈ A1, . . . ,an ∈ An}.

Here (a1, . . . ,an) = (b1, . . . ,bn) if and only if ai = bi for all 1 ≤ i ≤ n.

An n-ary relation is a subset of A1 × . . . . . .An
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Databases and relations

A database table ≈ relation 9.2 n-ary Relations and Their Applications 585

TABLE 1 Students.

Student_name ID_number Major GPA

Ackermann 231455 Computer Science 3.88
Adams 888323 Physics 3.45
Chou 102147 Computer Science 3.49
Goodfriend 453876 Mathematics 3.45
Rao 678543 Mathematics 3.90
Stevens 786576 Psychology 2.99

are represented as 4-tuples of the form (Student_name, ID_number, Major, GPA). A sample
database of six such records is

(Ackermann, 231455, Computer Science, 3.88)
(Adams, 888323, Physics, 3.45)
(Chou, 102147, Computer Science, 3.49)
(Goodfriend, 453876, Mathematics, 3.45)
(Rao, 678543, Mathematics, 3.90)
(Stevens, 786576, Psychology, 2.99).

Relations used to represent databases are also called tables, because these relations are often
displayed as tables. Each column of the table corresponds to an attribute of the database. For
instance, the same database of students is displayed in Table 1. The attributes of this database
are Student Name, ID Number, Major, and GPA.

A domain of an n-ary relation is called a primary key when the value of the n-tuple from
this domain determines the n-tuple. That is, a domain is a primary key when no two n-tuples in
the relation have the same value from this domain.

Records are often added to or deleted from databases. Because of this, the property that a
domain is a primary key is time-dependent. Consequently, a primary key should be chosen that
remains one whenever the database is changed. The current collection of n-tuples in a relation
is called the extension of the relation. The more permanent part of a database, including the
name and attributes of the database, is called its intension. When selecting a primary key, the
goal should be to select a key that can serve as a primary key for all possible extensions of the
database. To do this, it is necessary to examine the intension of the database to understand the
set of possible n-tuples that can occur in an extension.

EXAMPLE 5 Which domains are primary keys for the n-ary relation displayed in Table 1, assuming that no
n-tuples will be added in the future?

Solution: Because there is only one 4-tuple in this table for each student name, the domain
of student names is a primary key. Similarly, the ID numbers in this table are unique, so the
domain of ID numbers is also a primary key. However, the domain of major fields of study
is not a primary key, because more than one 4-tuple contains the same major field of study.
The domain of grade point averages is also not a primary key, because there are two 4-tuples
containing the same GPA. ▲

Combinations of domains can also uniquely identify n-tuples in an n-ary relation. When
the values of a set of domains determine an n-tuple in a relation, the Cartesian product of these
domains is called a composite key.

Students = {
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Unary relations

Unary relations are just subsets of a set.

Example: The unary relation EvenPositiveIntegers on the set Z+ of
positive integers is

{x ∈ Z+ | x is even}.
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