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Ordered pairs

Definition The Cartesian product A x B of sets A and B is the set consisting
of all pairs (a,b) withae Aand b € B, ie,

AxB={(a,b)|aeAandb e B}.

Note that (a,b) = (c,d) ifand only ifa=cand b =d.

Note

m {1,2} = {2,1} but (1,2) # (2,1).
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Motivation

m Intuitively, there is a “relation” between two things if there is some
connection between them.
Eg.
m ‘friend of’
ma<b
m m divides n
m Relations are used in crucial ways in many branches of mathematics
m Equivalence
m Ordering

m Computer Science
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Example

m LetA={1,2} and B = {a,b,c}. Then

AxB={(1,a),(2,a),(1,b),(2,b),(1,¢),(2,¢)}.
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Reading

Discrete Mathematics and Its Applications K. Rosen, Chapter 9.
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Databases and relations

A database table ~ relation

TABLE 1 Students.

Student_name ID_number Major

Ackermann 231455 Computer Science
Adams 888323 Physics

Chou 102147
Goodfriend 453876
Rao 678543
Stevens 786576

Computer Science
Mathematics
Mathematics
Psychology
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Relations

Definition A binary relation between two sets A and B is a subset R of the
Cartesian product A x B.

If A= B, then R is called a binary relation on A.
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Example: Family tree

Fred and Mavis John and Mary

/

Alice Ken and Sue  Mike  Penny

Jane  Fiona  Alan

Write down

m R={(x,y) | xis agrandfather of y };

m S={(x,y)| xisasisterof y }.
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Representation of binary relations: directed graphs

m Let A and B be two finite sets and R a binary relation between these
two sets (i.e, R C A x B).

m We represent the elements of these two sets as vertices of a graph.

m For each (a,b) € R, we draw an arrow linking the related elements.

m This is called the directed graph (or digraph) of R.
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Functions as relations

m Recall that a function f from a set A to a set B assigns exactly one
element of B to each element of A.

m Gives rise to the relation Rr = {(a,b) € Ax B| b = f(a)}

m If a relation S C A x B is such that for every a € A there exists at most
one b € Bwith (a,b) € S, relation S is functional.

m (Sometimes in the literature, functions are introduced through
functional relations.)
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Example 2

Write down the ordered pairs belonging to the following binary relations
between A ={1,3,5,7} and B = {2, 4,6}:

B U={(x,y) eAxB|x+y=9}

mV={(x,y) eAxB|x<y}.
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Example

Consider the relation V between A = {1,3,5,7} and B = {2, 4,6} such that
V={(x,y) eAxB|x <y}

@

Figure 1: digraph of vV
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Inverse relation

Definition Given a relation R C A x B, we define the inverse relation
R-TCBxAby
R™ ={(b,a) | (a,b) € R}.

Example: The inverse of the relation is a parent of on the set of people is
the relation is a child of.
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Example 3

Let A ={1,2,3,4,5,6}. Write down the ordered pairs belonging to

R={(x,y) e AxA| xisadivisor of y }.

Part 3. Relations

Digraphs of binary relations on a single set
A binary relation between a set A and itself is called “a binary relation on
A"

To represent such a relation, we use a directed graph in which a single set
of vertices represents the elements of A and arrows link the related
elements.

Consider the relation V C A x A where A ={1,2,3,4,5} and
V=1{(1,2),(3,3), (5,5), (1,4), (4,1), (4,5)}.

http://www.csc.liv.ac.uk/~konev/COMP169 Part 3. Relations

Composition of relations

Definition Let R C A x Band S C B x C. The (functional) composition of R
and S, denoted by So R, is the binary relation between A and C given by

SoR={(a,c)| exists b € Bsuch that aRb and bSc}.
Example: If R is the relation is a sister of and S is the relation is a parent
of, then

m SoRisthe relation is an aunt of;
m SoSisthe relation is a grandparent of.
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Digraph representation of compositions
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Example 2

Let A= {a,b,c,d} and suppose that R C A x A has the following matrix
representation:

List the ordered pairs belonging to R.
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The formal description

Given two matrices with entries “T" and “F" representing the relations we
can form the matrix representing the composition. This is called the

logical (Boole

LetA={a,...,an}, B={by, bn}and C={a,...,cp}.

The logical matrix M representing R is given by:

- | T if (a,b)eR
M(”’)‘{F if (a,,bj)eR

The logical matrix N representing S is given by

NG, j) = { r
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Computer friendly representation of binary relations: matrices

m Another way of representing a binary relation between finite sets uses
an array.

m letA={ay,...,an},B={b1,...,bn}and RC A x B.

m We represent R by an array M of n rows and m columns. Such an array
is called a n by m matrix.

m The entry in row i and column j of this matrix is given by M(i,j) where

M@, j) :{
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Example

The binary relation R on A = {1,2,3, 4} has the following digraph
representation.

m The ordered pairs R =

m The matrix

m In words:
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Matrix representation of compositions

Then the entries P(i,j) of the logical matrix P representing So R are given by
m P(i,j) = T if there exists [ with 1 < [ < m such that M(i,l) = T and
N(Lj) =T.

m P(i,j) = F, otherwise.

We write P = MN.
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Example 1

Let A ={1,3,5,7}, B= {2, 4,6}, and
U={(x,y) eAxB|x+y=29}

Assume an enumeration a; =1,a, =3,a3 =5,a, =7 and by =2, b, = 4,
bs = 6. Then M represents U, where
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Matrices and composition

Now let's go back and see how this works for matrices representing
relations

@ O @ X @ ®

® @@ @®

e[1TT] s
| FTF ’
TF
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The example from before

Let R be the relation between A = {a, b} and B = {1,2,3} represented by
the matrix

mo [T TT
FTF

Similarly, let S be the relation between B and C = {x,y} represented by the
matrix
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Infix notation for binary relations Properties of binary relations (1)

Example

A binary relation R on a set A is

Then the matrix P = MN representing So R is m reflexive when xRx for all x € A.

If R is a binary relation then we write xRy whenever (x,y) € R. The WX A(X) —> XRX

TT ; ] i
P= predicate xRy is read as x is R-related to y.

T F
m symmetric when xRy implies yRx for all x,y € A;

VX, ¥ XRy = yRx
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Properties of binary relations (2) Example Digraf representation

m reflexive XRx

m symmetric xRy = yRX ) . )
In the directed graph representation, R is

A binary relation R on a setA is m antisymmetric xRy, yRx = x =y
m transitive xRy, yRz = xRz reflexive if there is always an arrow from every vertex to itself;

m antisymmetric when xRy and yRx imply x = y for all x,y € A; . . )
4 v J - ‘ ol symmetric if whenever there is an arrow from x to y there is also an

arrow from y to x;

- ) antisymmetric if whenever there is an arrow from x to y and x # y,

m transitive when xRy and yRz imply xRz for all x,y,z € A. Ri={(1,1),(2,2),(3,3),(2,3),(3,2)} then there is no arrow from y to x;

transitive if whenever there is an arrow from x to y and from y to z

there is also an arrow from x to z.

X,y XRy and yRx =y = X LetA = {1,2,3}.

VX,V,Z XRy and yRZ = xRz R, ={(2,2),(2,3),(3,2),(3,3)}
Ry ={(1,1),(2,2),(3,3),(1,3)}
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Example Transitive closure Example

Which of the following define a relation that is reflexive, symmetric, Given a binary relation R on a set A, the transitive closure R* of R is the
antisymmetric or transitive? (uniquely determined) relation on A with the following properties: Let A = {1,2,3}. Find the transitive closure of

m x divides y on the set Z* of positive integers; B R* is transitive;
4 P . R={(1,1),(1,2),(1,3),(2,3). 3. )}
m X # y on the set Z of integers; m R CR*%;

m x has the same age as y on the set of people. m If Sis a transitive relation on Aand R C S, then R* C S.

http://www.csc.liv.ac.uk/~konev/COMP109
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Finding the transitive closure is easier with the digraph representation

Reachability relation

http://www.csc.liv.ac.uk/~konev/COMP109

Computation

RoR={(a,c) | exists b € Asuch that aRb and bRc}.

Note (in red) that there are pairs (a, c) that are in Ro R but not in R. Hence,
R is not transitive.
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Example

Define a relation R on the set R of real numbers by setting xRy if and only
if x —yisan integer. Prove that R is an equivalence relation. Moreover,

m Ey = Zis the equivalence class of 0;

= 21 _q1 114191 i i 1
lE;f{.M 25 —15,—3,3,13,25,...} is the equivalence class of ;.
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Transitivity and composition

A relation S is transitive if and only if So S C S.

This is because

SoS={(a,c)| exists b such that aSb and bSc}.

Let S be a relation. Set$'=5,52=5085,5* =S0S50S, and so on.

Theorem Denote by S* the transitive closure of S. Then xS*y if and only if
there exists n > 0 such that xS"y.
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Detour: Warshall's algorithm

def warshall(a):
assert (len(row) == len(a) for row in a)
n = len(a)
for k in range(n):
for i in range(n):
for j in range(n):
illjl or
and alkl[j])

(n
alilljl = ali
k]

(alill

return a

print warshall([[1,0,0,1,0],
[0,1,0,0,1],
[0,0,1,0,0],
[1,0,1,0,0],
[0,1,0,1,0]1])
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Functions and equivalence relations

Letf: A — B be a function. Define a relation R on A by

aiRa; @f(aﬂ = f(az).

Then R is an equivalence relation on A. The equivalence class £, of a € A'is
given by

Eqo={d € A|f(d) =f(a)}.
Example: A is a set of cars, B is the set of real numbers, and f assigns to

any car in A its length. Then a;Ra; if and only if a; and a; are of the same
length.
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Transitive closure in matrix form

The relation R on the set A = {1,2,3, 4,5} is represented by the matrix

Determine the matrix R o R and hence explain why R is not transitive.

/54| http://www.csc.liv.ac.uk/~konev/COMP109

Part 3. Relations

Important relations: Equivalence relations

Definition A binary relation R on a set A is called an equivalence relation if
it is reflexive, transitive, and symmetric.

Examples:

m the relation R on the non-zero integers given by xRy if xy > 0;

m the relation has the same age on the set of people.
Definition The equivalence class Ex of any x € A is defined by

Ex={y | yRx}.
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Partition of a set

on of a set A is a collection of non-empty subsets Aq, ..., A, of A
satisfying:

BA=AUAU---UAp
IA,‘QA/'=®]COI’I.¢}',

The A; are called the blocks of the partjtion.

NS

Figure 3: Partition of A
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Connecting partitions and equivalence relations

Theorem Let R be an equivalence relation on a non-empty set A. Then the
equivalence classes {Ex | x € A} form a partition of A.

Proof (Optional)

The proofis in four parts:

(1) We show that the equivalence classes Ex = {y | yRx}, x € A, are
non-empty subsets of A: by definition, each Ey is a subset of A. Since R is
reflexive, xRx. Therefore x € Ex and so Ex is non-empty.

(2) We show that A is the union of the equivalence classes Ey,x € A: We
know that Ex C A, for all Ex, x € A. Therefore the union of the equivalence
classes is a subset of A. Conversely, suppose x € A. Then x € Ex. So,Ais a
subset of the union of the equivalence classes.
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Important relations: Partial orders

Definition A binary relation R on a set A which is reflexive, transitive and
antisymmetric is called a partial order.

Partial orders are important in situations where we wish to characterise
precedence.

Examples:

m the relation < on the the set R of real numbers;
m the relation C on Pow(A);

m “is a divisor of’ on the set Z* of positive integers.
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Important relations: Total orders

Definition A binary relation R on a set A is a total order if it is a partial
order such that for any x,y € A, xRy or yRx.

The Hasse diagram of a total order is a chain.

Examples

m the relation < on the set R of real numbers;
m the usual lexicographical ordering on the words in a dictionary;

m the relation “is a divisor of” is not a total order.
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(Optional) Proof (continued)

The purpose of the last two parts is to show that distinct equivalence
classes are disjoint, satisfying (ii) in the definition of partition.

(3) We show that if xRy then Ex = E,: Suppose that xRy and let z € E. Then,
zRx and xRy. Since R is a transitive relation, zRy. Therefore, z € E,. We have
shown that £x C Ey,. An analogous argument shows that £, C Ey. So, Ex = Ej,.

(4) We show that any two distinct equivalence classes are disjoint: To this
end we show that if two equivalence classes are not disjoint then they are
identical. Suppose ExNEy # (). Take a z € ExN E,. Then, zRx and zRy. Since R
is symmetric, XRz and zRy. But then, by transitivity of R, xRy. Therefore, by
(3), Ex =Ey.
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Example: Job scheduling

Immediately Preceding Tasks

Task 4
6 hours

Task 2
6 hours

Task 5
3 hours

Task 8
2 hours

Task 9
| 5hours
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n-ary relations

The Cartesian product Ay x Ay x -+ x A, of sets Ay, Ay, ..., A, is defined by
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Connecting partitions and equivalence relations

Theorem Suppose that Ay,..., A, is a partition of A. Define a relation R on
A by setting: xRy if and only if there exists i such that 1 <i < n and
X,y € A;. Then R is an equivalence relation.

Proof (Optional)

m Reflexivity: if x € A, then x € A; for some i. Therefore xRx.

m Transitivity: if xRy and yRz, then there exists A; and A; such that
x,y € Ajand y,z € A;. y € AinA; implies i = j. Therefore x,z € A; which
implies xRz.

m Symmetry: if xRy, then there exists A; such that x,y € A;. Therefore yRx.

Part 3. Relations

Predecessors in partial orders

If Ris a partial order on a set A and xRy, x # y we call x a predecessor of y.

If x is a predecessor of y and there is no z ¢ {x,y} for which xRz and zRy,
we call x an immediate predecessor of y.
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Databases and relations

A database table ~ relation

TABLE 1 Students.

Student_name ID_number Major

231455
888323
Chou 102147
Goodfriend 453876
Rao 678543
786576

Ackermann
Adams

Computer Science
Physics

Computer Science
Mathematics
Mathematics

Stevens Psychology

Students = {
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Unary relations

Unary relations are just subsets of a set.

Example: The unary relation EvenPositiveIntegers on the set Z* of
positive integers is

{xezZ"|xiseven}.
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