Foundations of Computer Science Comp109

University of Liverpool Boris Konev konev@liverpool.ac.uk http://www.csc.liv.ac.uk/~konev/COMP109

http://www.csc.liv.ac.uk/~konev/COMP109

Part 3. Relations

Part 3. Relations

6/54 http://www.csc.liv.ac.uk/~konev/COMP109

Comp109 Foundations of Computer Science

Discrete Mathematics and Its Applications K. Rosen, Chapter 9.

Reading

7/54 http://www.csc.liv.ac.uk/~konev/COMP109

Part 3. Relations

	http://www.csc.liv.ac.uk/-konev/COMP109 Part3.Relations 1/5	ه http://www.csc.liv.ac.uk/~konev/COMP109 Part1.Relations 2/5	
Contents	Motivation	Databases and relations	
 The Cartesian product Definition and examples Representation of binary relations by directed graphs Representation of binary relations by matrices Properties of binary relations Transitive closure Equivalence relations and partitions Partial orders and total orders. Unary relations 	 Intuitively, there is a "relation" between two things if there is some connection between them. E.g. 'friend of' a < b m divides n Relations are used in crucial ways in many branches of mathematics Equivalence Ordering Computer Science 	A database table \approx relationTABLE 1 Students.Student_nameID_numberMajorGPAAckermann231455Computer Science3.88Adams888323Physics3.45Chou102147Computer Science3.49Goodfriend453876Mathematics3.45Rao678543Mathematics3.90Stevens786576Psychology2.99	
http://www.csc.liv.ac.uk/-konev/COMP109 Part3.Relations 3/54 Ordered pairs	http://www.csc.liv.ac.uk/-konev/COMP109 Part3. Relations 4/5 Example	4 http://www.csc.liv.ac.uk/-konev/COMP109 Part3.Relations 5/5 Relations	
Definition The Cartesian product $A \times B$ of sets A and B is the set consisting of all pairs (a, b) with $a \in A$ and $b \in B$, i.e., $A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}.$ Note that $(a, b) = (c, d)$ if and only if $a = c$ and $b = d$. Note $\{1, 2\} = \{2, 1\}$ but $(1, 2) \neq (2, 1)$.	• Let $A = \{1, 2\}$ and $B = \{a, b, c\}$. Then $A \times B = \{(1, a), (2, a), (1, b), (2, b), (1, c), (2, c)\}.$ • $B \times A =$	Definition A binary relation between two sets A and B is a subset R of the Cartesian product A × B. If A = B, then R is called a binary relation on A.	

Example: Family tree	Example 2	Example 3
Fred and Mavis John and Mary Alice Ken and Sue Mike Penny Jane Fiona Alan Write down $R = \{(x, y) \mid x \text{ is a grandfather of } y \};$	Write down the ordered pairs belonging to the following binary relations between $A = \{1, 3, 5, 7\}$ and $B = \{2, 4, 6\}$: $U = \{(x, y) \in A \times B \mid x + y = 9\};$ $V = \{(x, y) \in A \times B \mid x < y\}.$	Let $A = \{1, 2, 3, 4, 5, 6\}$. Write down the ordered pairs belonging to $R = \{(x, y) \in A \times A \mid x \text{ is a divisor of } y\}.$
$\blacksquare S = \{(x, y) \mid x \text{ is a sister of } y \}.$ http://www.csc.liv.ac.uk/-konev/COMP109 Part 3. Relations 9 / 54		http://www.csc.liv.ac.uk/-konev/COMP109 Part 3. Relations 11 / 54
Representation of binary relations: directed graphs	Example	Digraphs of binary relations on a single set
 Let A and B be two finite sets and R a binary relation between these two sets (i.e., R ⊆ A × B). We represent the elements of these two sets as vertices of a graph. For each (a, b) ∈ R, we draw an arrow linking the related elements. This is called the directed graph (or digraph) of R. 	Consider the relation V between $A = \{1, 3, 5, 7\}$ and $B = \{2, 4, 6\}$ such that $V = \{(x, y) \in A \times B \mid x < y\}$. $\begin{array}{c} $	A binary relation between a set A and itself is called "a binary relation on A". To represent such a relation, we use a directed graph in which a single set of vertices represents the elements of A and arrows link the related elements. Consider the relation $V \subseteq A \times A$ where $A = \{1, 2, 3, 4, 5\}$ and $V = \{(1, 2), (3, 3), (5, 5), (1, 4), (4, 1), (4, 5)\}$. $10 \rightarrow 0$
Functions as relations	Inverse relation	Composition of relations
 Recall that a function <i>f</i> from a set <i>A</i> to a set <i>B</i> assigns exactly one element of <i>B</i> to each element of <i>A</i>. Gives rise to the relation R_f = {(a, b) ∈ A × B b = f(a)} If a relation S ⊆ A × B is such that for every a ∈ A there exists at most one b ∈ B with (a, b) ∈ S, relation S is functional. (Sometimes in the literature, functions are introduced through functional relations.) 	Definition Given a relation $R \subseteq A \times B$, we define the <i>inverse relation</i> $R^{-1} \subseteq B \times A$ by $R^{-1} = \{(b, a) \mid (a, b) \in R\}.$ Example: The inverse of the relation <i>is a parent of</i> on the set of people is the relation <i>is a child of.</i>	 Definition Let R ⊆ A × B and S ⊆ B × C. The (functional) composition of R and S, denoted by S ∘ R, is the binary relation between A and C given by S ∘ R = {(a, c) exists b ∈ B such that aRb and bSc}. Example: If R is the relation <i>is a sister of</i> and S is the relation <i>is a parent of</i>, then S ∘ R is the relation <i>is an aunt of</i>; S ∘ S is the relation <i>is a grandparent of</i>.

Part 3. Relations

16/54 http://www.csc.liv.ac.uk/~konev/COMP109

Part 3. Relations

15/54 http://www.csc.liv.ac.uk/~konev/COMP109

http://www.csc.liv.ac.uk/~konev/COMP109

Digraph representation of compositions	Computer friendly representation of binary relations: matrices	Example 1
$ \begin{array}{c} $	 Another way of representing a binary relation between finite sets uses an array. Let A = {a₁,, a_n}, B = {b₁,, b_m} and R ⊆ A × B. We represent R by an array M of n rows and m columns. Such an array is called a n by m matrix. The entry in row i and column j of this matrix is given by M(i, j) where M(i, j) = {T if (a_i, b_j) ∈ R F if (a_i, b_j) ∉ R 	Let $A = \{1, 3, 5, 7\}, B = \{2, 4, 6\}, \text{ and}$ $U = \{(x, y) \in A \times B \mid x + y = 9\}$ Assume an enumeration $a_1 = 1, a_2 = 3, a_3 = 5, a_4 = 7 \text{ and } b_1 = 2, b_2 = 4, b_3 = 6.$ Then M represents U , where $M = \begin{bmatrix} F & F & F \\ F & F & T \\ F & T & F \\ T & F & F \end{bmatrix}$
http://www.csc.liv.ac.uk/~konev/COMP109 Part3.Relations 18/54 Example 2	http://www.csc.liv.ac.uk/-konev/COMP109 Part3.Relations 19/54 Example	http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 20 / 54 Matrices and composition
Let $A = \{a, b, c, d\}$ and suppose that $R \subseteq A \times A$ has the following matrix representation: $M = \begin{bmatrix} F & T & T & F \\ F & F & T & T \\ F & T & F & F \\ T & T & F & T \end{bmatrix}$ List the ordered pairs belonging to R .	The binary relation R on A = {1, 2, 3, 4} has the following digraph representation. 1 - 2 $4 - 3$ The ordered pairs R = The matrix $ \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot &$	Now let's go back and see how this works for matrices representing relations $ \begin{array}{c} $
http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 21 / 54 The formal description	http://www.csc.liv.ac.uk/-konev/COMP109 Part 3. Relations 22 / 54 Matrix representation of compositions	http://www.csc.liv.ac.uk/~konev/COMP109 Part3. Relations 23 / 54 The example from before
Given two matrices with entries "T" and "F" representing the relations we can form the matrix representing the composition. This is called the <i>logical</i> (<i>Boolean</i>) <i>matrix product</i> . Let $A = \{a_1, \ldots, a_n\}$, $B = \{b_1, \ldots, b_m\}$ and $C = \{c_1, \ldots, c_p\}$. The logical matrix M representing R is given by: $M(i,j) = \begin{cases} T & \text{if } (a_i, b_j) \in R \\ F & \text{if } (a_i, b_j) \notin R \end{cases}$ The logical matrix N representing S is given by $N(i,j) = \begin{cases} T & \text{if } (b_i, c_j) \notin S \\ F & \text{if } (b_i, c_j) \notin S \end{cases}$	 Then the entries P(i, j) of the logical matrix P representing S ∘ R are given by P(i, j) = T if there exists l with 1 ≤ l ≤ m such that M(i, l) = T and N(l, j) = T. P(i, j) = F, otherwise. We write P = MN. 	Let <i>R</i> be the relation between $A = \{a, b\}$ and $B = \{1, 2, 3\}$ represented by the matrix $M = \begin{bmatrix} T & T & T \\ F & T & F \end{bmatrix}$ Similarly, let <i>S</i> be the relation between <i>B</i> and <i>C</i> = $\{x, y\}$ represented by the matrix $N = \begin{bmatrix} F & T \\ T & F \\ T & F \end{bmatrix}$

Part 3. Relations

25/54 http://www.csc.liv.ac.uk/~konev/COMP109

Part 3. Relations

24/54 http://www.csc.liv.ac.uk/~konev/COMP109

http://www.csc.liv.ac.uk/~konev/COMP109

Example	Infix notation for binary relations	Properties of binary relations (1)
Then the matrix $P = MN$ representing $S \circ R$ is $P = \begin{bmatrix} T & T \\ T & F \end{bmatrix}$	If <i>R</i> is a binary relation then we write <i>xRy</i> whenever $(x, y) \in R$. The predicate <i>xRy</i> is read as <i>x</i> is <i>R</i> -related to <i>y</i> .	A binary relation R on a set A is ■ reflexive when xRx for all x ∈ A. ∀x A(x) ⇒ xRx ■ symmetric when xRy implies yRx for all x, y ∈ A; ∀x, y xRy ⇒ yRx
http://www.csc.liv.ac.uk/~konev/COMP109 Part3. Relations 27 / Properties of binary relations (2)	S4 http://www.csc.liv.ac.uk/-konev/COMP109 Part3. Relations 28 / 5 Example	4 http://www.csc.liv.ac.uk/-konev/COMP189 Part 3. Relations 29 / 54 Digraf representation
 A binary relation R on a set A is antisymmetric when xRy and yRx imply x = y for all x, y ∈ A; ∀x, y xRy and yRx ⇒ y = x transitive when xRy and yRz imply xRz for all x, y, z ∈ A. ∀x, y, z xRy and yRz ⇒ xRz 	<pre> • reflexive xRx • symmetric xRy \implies yRx • antisymmetric xRy, yRx \implies x = y • transitive xRy, yRz \implies xRz Let A = {1,2,3}. R₁ = {(1,1), (2,2), (3,3), (2,3), (3,2)} R₂ = {(2,2), (2,3), (3,2), (3,3)} R₃ = {(1,1), (2,2), (3,3), (1,3)} R₄ = {(1,3), (3,2), (2,3)}</pre>	 In the directed graph representation, <i>R</i> is <i>reflexive</i> if there is always an arrow from every vertex to itself; <i>symmetric</i> if whenever there is an arrow from <i>x</i> to <i>y</i> there is also an arrow from <i>y</i> to <i>x</i>; <i>antisymmetric</i> if whenever there is an arrow from <i>x</i> to <i>y</i> and <i>x</i> ≠ <i>y</i>, then there is no arrow from <i>y</i> to <i>x</i>; <i>transitive</i> if whenever there is an arrow from <i>x</i> to <i>y</i> and from <i>y</i> to <i>z</i> there is also an arrow from <i>x</i> to <i>z</i>.
		4 http://www.csc.liv.ac.uk/~konev/COMP109 Part3. Relations 32 / 54
 Example Which of the following define a relation that is reflexive, symmetric, antisymmetric or transitive? x divides y on the set Z⁺ of positive integers; x ≠ y on the set Z of integers; x has the same age as y on the set of people. 	Transitive closureGiven a binary relation R on a set A, the transitive closure R^* of R is the (uniquely determined) relation on A with the following properties: R^* is transitive; $R \subseteq R^*$;If S is a transitive relation on A and $R \subseteq S$, then $R^* \subseteq S$.	Example Let $A = \{1, 2, 3\}$. Find the transitive closure of $R = \{(1, 1), (1, 2), (1, 3), (2, 3), (3, 1)\}.$

Part 3. Relations

33/54 http://www.csc.liv.ac.uk/~konev/COMP109

http://www.csc.liv.ac.uk/~konev/COMP109

Part 3. Relations

34/54 http://www.csc.liv.ac.uk/~konev/COMP109

Finding the transitive closure is easier with the digraph representation	Transitivity and composition	Transitive closure in matrix form		
Reachability relation	A relation S is transitive if and only if $S \circ S \subseteq S$. This is because $S \circ S = \{(a, c) \mid \text{ exists } b \text{ such that } aSb \text{ and } bSc\}.$ Let S be a relation. Set $S^1 = S$, $S^2 = S \circ S$, $S^3 = S \circ S \circ S$, and so on. Theorem Denote by S* the transitive closure of S. Then xS*y if and only if there exists $n > 0$ such that xS^ny .	The relation R on the set $A = \{1, 2, 3, 4, 5\}$ is represented by the matrix $\begin{bmatrix} T & F & F & T & F \\ F & T & F & F & T \\ F & F & T & F & F \\ T & F & T & F & F \\ F & T & F & T & F \end{bmatrix}$ Determine the matrix $R \circ R$ and hence explain why R is not transitive.		
		4 http://www.csc.liv.ac.uk/-konev/COMP109 Part 3. Relations 38 / 54		
Computation $\begin{bmatrix} T & F & F & T & F \\ F & T & F & F & T \\ F & F & T & F & F \\ T & F & T & F & F \\ T & F & T & F & F \\ F & T & F & T & F \end{bmatrix} \begin{bmatrix} T & F & F & T & F \\ F & T & F & T & F \\ F & T & F & T & F \\ F & T & F & T & F \end{bmatrix} = \begin{bmatrix} T & F & T & T & F \\ F & T & F & T & T \\ T & F & T & F & T \\ T & T & T & F & T \end{bmatrix}$ $R \circ R = \{(a, c) \mid \text{ exists } b \in A \text{ such that } aRb \text{ and } bRc\}.$ Note (in red) that there are pairs (a, c) that are in $R \circ R$ but not in R . Hence, R is not transitive.	<pre>Detour: Warshall's algorithm def warshall(a): assert (len(row) == len(a) for row in a) n = len(a) for k in range(n): for i in range(n):</pre>	Important relations: Equivalence relationsDefinition A binary relation R on a set A is called an equivalence relation if it is reflexive, transitive, and symmetric.Examples:• the relation R on the non-zero integers given by xRy if $xy > 0$;• the relation has the same age on the set of people.Definition The equivalence class E_x of any $x \in A$ is defined by $E_x = \{y \mid yRx\}.$		
		4 http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 41 / 54		
Example Define a relation <i>R</i> on the set \mathbb{R} of real numbers by setting <i>xRy</i> if and only if $x - y$ is an integer. Prove that <i>R</i> is an equivalence relation. Moreover, $\mathbf{E}_0 = \mathbb{Z}$ is the equivalence class of 0; $\mathbf{E}_{\frac{1}{2}} = \{\dots, -2\frac{1}{2} - 1\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, 2\frac{1}{2}, \dots\}$ is the equivalence class of $\frac{1}{2}$.	Functions and equivalence relations Let $f : A \to B$ be a function. Define a relation R on A by $a_1Ra_2 \Leftrightarrow f(a_1) = f(a_2)$. Then R is an equivalence relation on A . The equivalence class E_a of $a \in A$ is given by $E_a = \{a' \in A \mid f(a') = f(a)\}$. Example: A is a set of cars, B is the set of real numbers, and f assigns to any car in A its length. Then a_1Ra_2 if and only if a_1 and a_2 are of the same length.	Partition of a set A partition of a set A is a collection of non-empty subsets $A_1,, A_n$ of A satisfying: $A = A_1 \cup A_2 \cup \cdots \cup A_n;$ $A_i \cap A_j = \emptyset$ for $i \neq j$. The A_i are called the blocks of the partition. $I = A_1 \cup A_2 \cup \cdots \cup A_n;$ $I = A_1 \cup A$		
http://www.csc.liv.ac.uk/~konev/COMP109 Part3.Relations 42/5	http://www.csc.liv.ac.uk/~konev/COMP109 Part3. Relations 43 / 5	4 http://www.csc.liv.ac.uk/~konev/COMP109 Part3. Relations 44 / 54		

Connecting partitions and equivalence relations	(Optional) Proof (continued)	Connecting partitions and equivalence relations
Theorem Let <i>R</i> be an equivalence relation on a non-empty set <i>A</i> . Then the equivalence classes $\{E_x \mid x \in A\}$ form a partition of <i>A</i> . Proof (Optional) The proof is in four parts: (1) We show that the equivalence classes $E_x = \{y \mid yRx\}, x \in A$, are non-empty subsets of <i>A</i> : by definition, each E_x is a subset of <i>A</i> . Since <i>R</i> is reflexive , <i>xRx</i> . Therefore $x \in E_x$ and so E_x is non-empty. (2) We show that <i>A</i> is the union of the equivalence classes $E_x, x \in A$: We know that $E_x \subseteq A$, for all $E_x, x \in A$. Therefore the union of the equivalence classes is a subset of <i>A</i> . So, <i>A</i> is a subset of the union of the equivalence classes.	The purpose of the last two parts is to show that distinct equivalence classes are disjoint, satisfying (ii) in the definition of partition. (3) We show that if <i>xRy</i> then $E_x = E_y$: Suppose that <i>xRy</i> and let $z \in E_x$. Then, <i>zRx</i> and <i>xRy</i> . Since <i>R</i> is a transitive relation, <i>zRy</i> . Therefore, $z \in E_y$. We have shown that $E_x \subseteq E_y$. An analogous argument shows that $E_y \subseteq E_x$. So, $E_x = E_y$. (4) We show that any two distinct equivalence classes are disjoint: To this end we show that if two equivalence classes are not disjoint then they are identical. Suppose $E_x \cap E_y \neq \emptyset$. Take a $z \in E_x \cap E_y$. Then, <i>zRx</i> and <i>zRy</i> . Since <i>R</i> is symmetric, <i>xRz</i> and <i>zRy</i> . But then, by transitivity of <i>R</i> , <i>xRy</i> . Therefore, by (3), $E_x = E_y$.	 Theorem Suppose that A₁,, A_n is a partition of A. Define a relation R on A by setting: xRy if and only if there exists i such that 1 ≤ i ≤ n and x, y ∈ A_i. Then R is an equivalence relation. Proof (Optional) Reflexivity: if x ∈ A, then x ∈ A_i for some i. Therefore xRx. Transitivity: if xRy and yRz, then there exists A_i and A_j such that x, y ∈ A_i and y, z ∈ A_j. y ∈ A_i ∩ A_j implies i = j. Therefore x, z ∈ A_i which implies xRz. Symmetry: if xRy, then there exists A_i such that x, y ∈ A_i. Therefore yRx.
http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 45 / 54	http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 46 / 54	http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 47 / 54

precedence.

Examples:

http://www.csc.liv.ac.uk/~konev/COMP109

• the relation \leq on the the set \mathbb{R} of real numbers;

Definition A binary relation *R* on a set *A* which is reflexive, transitive and

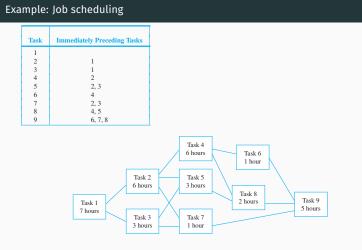
Partial orders are important in situations where we wish to characterise

• the relation \subseteq on Pow(A);

Important relations: Partial orders

antisymmetric is called a partial order.

• *"is a divisor of"* on the set \mathbb{Z}^+ of positive integers.



If *R* is a partial order on a set *A* and *xRy*, $x \neq y$ we call *x* a predecessor of *y*.

If x is a predecessor of y and there is no $z \notin \{x, y\}$ for which xRz and zRy, we call *x* an immediate predecessor of *y*.

Part 3. Relat

http://www.csc.tiv.ac.uk/~konev/compile9 Part3. Relations	48/54 http://www.csc.tiv.ac.uk/~konev/compile9 Part3. Relations	49/54 http://www.csc.uiv.ac.uk/~konev/compies		Part 3. Relations	
Important relations: Total orders	n-ary relations	Databases and relations			
		A database table $pprox$ relation	A database table \approx relation		
Definition A binary relation <i>R</i> on a set <i>A</i> is a total order if it is a partial		TABLE 1 Stu	TABLE 1 Students.		
order such that for any $x, y \in A$, xRy or yRx .		Student_name	ID_number	Major	GPA
	The Cartesian product $A_1 \times A_2 \times \cdots \times A_n$ of sets A_1, A_2, \ldots, A_n is of		231455	Computer Science	3.88
The Hasse diagram of a total order is a chain.	$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, \dots, a_n) \mid a_1 \in A_1, \dots, a_n \in A_n\}$	Adams Chou	888323 102147	Physics Computer Science	3.45 3.49
Examples	Here $(a_1, \ldots, a_n) = (b_1, \ldots, b_n)$ if and only if $a_i = b_i$ for all $1 \le i \le n$.	Goodfriend Rao	453876 678543	Mathematics Mathematics	3.45 3.90
		$\leq n.$ Stevens	786576	Psychology	2.99
\blacksquare the relation \leq on the set $\mathbb R$ of real numbers;	An n-any relation is a subset of $A_{1} \times A_{2}$				
the usual lexicographical ordering on the words in a dictionary;	An <i>n</i> -ary relation is a subset of $A_1 \times \ldots A_n$	Students = {			

51/54 http://www.csc.liv.ac.uk/~konev/COMP109

■ the relation "is a divisor of" is *not* a total order.

Part 3. Relatio

52/54 http://www.csc.liv.ac.uk/~konev/COMP109

Predecessors in partial orders

http://www.csc.liv.ac.uk/~konev/COMP109

Unary relations are just subsets of a set.

 $\mbox{Example:}$ The unary relation $\mbox{EvenPositiveIntegers}$ on the set \mathbb{Z}^+ of positive integers is

 $\{x \in \mathbb{Z}^+ \mid x \text{ is even}\}.$

Part 3. Relations

54 / 54