
Foundations of Computer Science
Comp109

University of Liverpool
Boris Konev
konev@liverpool.ac.uk
http://www.csc.liv.ac.uk/~konev/COMP109

Part 5. Propositional Logic, digital circuits & computer
arithmetic
Comp109 Foundations of Computer Science

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 1 / 67

Reading

Discrete Mathematics and Its Applications, K.H. Rosen, Sections 1.1–1.3.
Discrete Mathematics with Applications, S. Epp, Chapter 2.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 2 / 67

Contents

The language of propositional logic
Semantics: interpretations and truth tables
Semantic consequence
Logical equivalence
Logic and digital circuits
Computer representation of numbers & computer arithmetic

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 3 / 67

Logic

Logic is concerned with

the truth and falsity of statements;
the question: when does a statement follow from a set of statements?

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 4 / 67

Propositional logic

Propositions

A proposition is a statement that can be true or false.
(but not both in the same time!)

Logic is easy;
I eat toast;
2+ 3 = 5;
2 · 2 = 5.
4+ 5;
What is the capital of UK?

Logic is not easy;
Logic is easy or I eat toast;

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 5 / 67

Compound propositions

More complex propositions formed using logical connectives (also
called Boolean connectives)
Basic logical connectives:
1. ¬: negation (read ”not”)
2. ∧: conjunction (read ”and”),
3. ∨: disjunction (read ”or”)
4. ⇒: implication (read ”if...then”)
5. ⇔: equivalence (read ”if, and only if,”)

Propositions formed using these logical connectives called compound
propositions; otherwise atomic propositions
A propositional formula is either an atomic or compound proposition

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 6 / 67

Giving meaning to propositions: Truth values

An interpretation I is a function which assigns to any atomic proposition pi
a truth value

I(pi) ∈ {0, 1}.

If I(pi) = 1, then pi is called true under the interpretation I.
If I(pi) = 0, then pi is called false under the interpretation I.

Given an assignment I we can compute the truth value of compound
formulas step by step using so-called truth tables.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 7 / 67

Negation

The negation ¬P of a formula P

It is not the case that P

Truth table:

P ¬P
1
0

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 8 / 67

Conjunction

The conjunction (P ∧ Q) of P and Q.

both P and Q are true

Truth table:

P Q (P ∧ Q)
1 1
1 0
0 1
0 0

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 9 / 67

Disjunction

The disjunction (P ∨ Q) of P and Q

at least one of P and Q is true

Truth table:

P Q (P ∨ Q)
1 1
1 0
0 1
0 0

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 10 / 67

Equivalence

The equivalence (P ⇔ Q) of P and Q

P and Q take the same truth value

Truth table:

P Q (P ⇔ Q)
1 1
1 0
0 1
0 0

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 11 / 67

Implication

The implication (P ⇔ Q) of P and Q

if P then Q

Truth table:

P Q (P ⇒ Q)
1 1
1 0
0 1
0 0

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 12 / 67

Truth under an interpretation

So, given an interpretation I, we can compute the truth value of any
formula P under I.

If I(P) = 1, then P is called true under the interpretation I.
If I(P) = 0, then P is called false under the interpretation I.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 13 / 67

Example

List the Interpretations I such that P = ((p1 ∨ ¬p2) ∧ p3) is true under I.

p1 p2 p3 ¬p2 (p1 ∨ ¬p2) P = ((p1 ∨ ¬p2) ∧ p3)

For values see http://www.csc.liv.ac.uk/~konev/COMP109/lecturelog.html

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 14 / 67

Logical puzzles

An island has two kinds of inhabitants, knights, who always tell the
truth, and knaves, who always lie.
You go to the island and meet A and B.

A says “B is a knight.”
B says “The two of us are of opposite types.”

What are A and B?

p: “A is a knight”; and q: “B is a knight”

Options for A.
p is true p ⇒ q
p is false ¬p ⇒ ¬q

Options for B.
q is true q ⇒ ¬p
q is false ¬q ⇒ ¬p

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 15 / 67

Truth table

p q ¬p ¬q p ⇒ q ¬p ⇒ ¬q q ⇒ ¬p ¬q ⇒ ¬p
0 0
0 1
1 0
1 1

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 16 / 67

Semantic consequence

Definition Suppose Γ is a finite set of formulas and P is a formula. Then P
follows from Γ (“ is a semantic consequence of Γ”) if the following
implication holds for every interpretation I:

If I(Q) = 1 for all Q ∈ Γ, then I(P) = 1.

This is denoted by
Γ |= P.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 17 / 67

Example

Show {(p1 ∧ p2)} |= (p1 ∨ p2).

p1 p2 (p0 ∧ p1) (p0 ∨ p1)
1 1
1 0
0 1
0 0

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 18 / 67

Example

Show {p1} ̸|= p2.

p1 p2
1 1
1 0
0 1
0 0

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 19 / 67

Example

Show {p1} |= (p1 ∨ p2).

p1 p2 (p1 ∨ p2)
1 1
1 0
0 1
0 0

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 20 / 67

Logic and proof principles I

Modus Ponens
Direct proof corresponds to the following semantic consequence

{P, (P ⇒ Q)} |= Q;

Reductio ad absurdum
Proof by contradiction corresponds to

{(¬P ⇒ ⊥)} |= P,

where ⊥ is a special proposition, which is false under every
interpretation.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 21 / 67

Logic and proof principles II

Modus Tollens
Another look at proof by contradiction

{(P ⇒ Q), ¬Q} |= ¬P

Case analysis

{(P ⇒ Q), (R ⇒ Q), (P ∨ R)} |= Q

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 22 / 67

Proof theory

We have studied proofs as carefully reasoned arguments to convince
a sceptical listener that a given statement is true.

“Social” proofs
Proof theory is a branch of mathematical logic dealing with proofs as
mathematical objects

Strings of symbols
Rules for manipulation
Mathematics becomes a ‘game’ played with strings of symbols
Can be read and interpreted by computer

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 23 / 67

Application: Digital logic circuits

Logic and electric circuits

P Q

“ in series”

P Q light
closed closed on
closed open off
open closed off
open open off

P

Q

“ in parallel”

Q Q light
closed closed on
closed open on
open closed on
open open off

Modern computers use logic gates

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 24 / 67

Basic logic gates

AND gate

P
Q R

P Q R
1 1 1
1 0 0
0 1 0
0 0 0

OR gate

P
Q R

P Q R
1 1 1
1 0 1
0 1 1
0 0 0

NOT gate

P R

P R
1 0
0 1

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 25 / 67

Rules for a combinatorial circuit

Never combine two input wires.
A single input wire can be split partway and used as input for two
separate gates.
An output wire can be used as input.
No output of a gate can eventually feed back into that gate.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 26 / 67

Determining output for a given circuit

P

Q

R

Input signals: P = 0 and Q = 1 Boolean expression

P
Q

R

S

Input signals: P = 1, Q = 1 and R = 1

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 27 / 67

Constructing circuits for Boolean expressions

(¬P ∧ Q) ∨ ¬Q

((P ∧ Q) ∧ (R ∧ S)) ∧ T

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 28 / 67

Multi-input AND and OR gates

P

Q

R

S

T

P

Q

R

S

T

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 29 / 67

Designing a circuit for a given input/output table

Input Output
P Q R S
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

P
Q
R

S

(P ∧ Q ∧ R) ∨ (P ∧ ¬Q ∧ R) ∨ (P ∧ Q ∧ ¬R)

disjunctive normal form (DNF)

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 30 / 67

Another example

Input Output
P Q R S
1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 0

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 31 / 67

Reopen the first case

Input Output
P Q R S
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

P

Q
R

S

P ∧ (Q ∨ R)

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 32 / 67

Circuit equivalence

P
Q
R

S
P

Q
R

S

Two digital circuits are equivalent if they produce the same output
given the same inputs.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 33 / 67

Logical equivalence

Definition Two formulas P and Q are called equivalent if they have the
same truth value under every possible interpretation. In other words, P
and Q are equivalent if I(P) = I(Q) for every interpretation I. This is
denoted by

P ≡ Q.

(P ∧ Q ∧ R) ∨ (R ∧ ¬Q ∧ R) ∨ (P ∧ Q ∧ ¬R) ≡ P ∧ (Q ∨ R)

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 34 / 67

On logical equivalence

Theorem The relation ≡ is an equivalence relation on P .

Proof

≡ is reflexive, since, trivially, I(P) = I(P) for every interpretation I.
≡ is transitive, since P ≡ Q and Q ≡ R implies P ≡ R.
≡ is symmetric, since P ≡ Q implies Q ≡ P.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 35 / 67

Simplifying propositional formulae

Exercises:

(P ⇒ Q) ≡ (¬P ∨ Q)
¬(P ⇒ Q) ≡ (P ∧ ¬Q)
(P ⇔ Q) ≡ ((P ⇒ Q) ∧ (Q ⇒ P))
(P ⇔ Q) ≡ (¬P ⇔ ¬Q)
(P ∧ (P ∨ Q)) ≡ P
¬(P ∨ (¬P ∧ Q)) ≡ (¬P ∧ ¬Q)

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 36 / 67

Useful equivalences

The following equivalences can be checked by truth tables:

Associative laws:

(P ∨ (Q ∨ R)) ≡ ((P ∨ Q) ∨ R),

(P ∧ (Q ∧ R)) ≡ ((P ∧ Q) ∧ R);

Commutative laws:

(P ∨ Q) ≡ (Q ∨ P), (P ∧ Q) ≡ (Q ∧ P);

Identity laws:

(P ∨ ⊥) ≡ P, (P ∨ ⊤) ≡ ⊤, (P ∧ ⊤) ≡ P, (P ∧ ⊥) ≡ ⊥;

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 37 / 67

Distributive laws:

(P ∧ (Q ∨ R)) ≡ ((P ∧ Q) ∨ (P ∧ R))

(P ∨ (Q ∧ R)) ≡ ((P ∨ Q) ∧ (P ∨ R));

Complement laws:

P ∨ ¬P ≡ ⊤, ¬⊤ ≡ ⊥, ¬¬P ≡ P,P ∧ ¬P ≡ ⊥, ¬⊥ ≡ ⊤;

De Morgan’s laws:

¬(P ∨ Q) ≡ (¬P ∧ ¬Q), ¬(P ∧ Q) ≡ (¬P ∨ ¬Q).

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 38 / 67

Boolean functions

A function F : {0, 1}k → {0, 1}, where k ∈ Z+ is arity of F, is called a
Boolean function

Any Boolean function can be expressed as a combination of ∧, ∨, ¬

Do we need all three types of gates?

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 39 / 67

Boolean functions of arity 2

P Q
1 1 0 1 0 1 0 1 0 1
1 0 0 0 1 1 0 0 1 1
0 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0

P Q
1 1 0 1 0 1 0 1 0 1
1 0 0 0 1 1 0 0 1 1
0 1 0 0 0 0 1 1 1 1
0 0 1 1 1 1 1 1 1 1

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 40 / 67

Logic gates

AND, OR, NOT

XOR

NAND, NOR, XNOR

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 41 / 67

Universality of NAND and NOR

NAND (AKA Sheffer stroke) P | Q = ¬(P ∧ Q)
and NOR (AKA Pierce arrow) P ↓ Q = ¬(P ∨ Q)

are universal:

¬P ≡ P | P

P ∨ Q ≡ (P | P) | (Q | Q)

P ∧ Q ≡ (P | Q) | (P | Q)

P ¬P P

P

Q

P
Q

P
Q

P
Q

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 42 / 67

Application: Number systems and
circuits for addition

Binary number system

Positional system: multiply each digit by its place value

Decimal notation:

426810 = 4 · 103 + 2 · 102 + 6 · 101 + 8 · 100

Binary notation

1100 01112 = 1 · 27 + 1 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 1 · 20

= 128+ 64+ 0+ 0+ 0+ 4+ 2+ 1 = 19910

Here indices 10 and 2 are used to highlight the base of the number system

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 43 / 67

Convert decimal numbers to binaries: divide by 2

Rule: divide repeatedly by 2, writing down the reminder from each stage
from right to left.

Example: 533/2 = 266 remainder = 1
266/2 = 133 remainder = 0
133/2 = 66 remainder = 1
66/2 = 33 remainder = 0
33/2 = 16 remainder = 1
16/2 = 8 remainder = 0
8/2 = 4 remainder = 0
4/2 = 2 remainder = 0
2/2 = 1 remainder = 0
1/2 = 0 remainder = 1

53310 = 10000101012

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 44 / 67

Alternative method

If you know powers of 2, continually subtract largest power value from
the number

12310 = 64+ (123− 64) = 64+ 59
= 64+ 32+ (59− 32) = 64+ 32+ 27
= 64+ 32+ 16+ (27− 16) = 64+ 32+ 16+ 11
= 64+ 32+ 16+ 8+ (11− 8) = 64+ 32+ 16+ 8+ 3 =
= 64+ 32+ 16+ 8+ 2+ (3− 2)
= 64+ 32+ 16+ 8+ 2+ 1 =
= 1 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20 =
= 11110112

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 45 / 67

Binary addition

02 + 02 = 02 02 + 12 = 12
12 + 02 = 12 12 + 12 = 102

1
1

1
1

1
1 1

+ 1 0 1 1
1 1 0 1 0

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 46 / 67

Half-adder

1
1

1
1

1
1 1

+ 1 0 1 1
1 1 0 1 0 P

Q Sum

Carry
P Q Carry Sum
1 1 1 0
1 0 0 1
0 1 0 1
0 0 0 0

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 47 / 67

Full-adder

Half-adder

Half-adder

P

Q

Cin

S

Cout

P Q Cin Cout S
1 1 1 1 1
1 1 0 1 0
1 0 1 1 0
1 0 0 0 1
0 1 1 1 0
0 1 0 0 1
0 0 1 0 1
0 0 0 0 0

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 48 / 67

‘Black box’ notation

Half-adder

Half-adder

P

Q

Cin

S

Cout

Cout

s

Cin

QP

full-adder

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 49 / 67

4-bit adder

a3 a2 a1 a0
+ b3 b2 b1 b0

c s3 s2 s1 s0

Cout
s

Cin

QP

full-adder

Cout
s

Cin

QP

full-adder

Cout
s

Cin

QP

full-adder

Cout
s

Cin

QP

full-adder

a3 b3

s3

c

a2 b2

s2

a1 b1

s1

a0 b0

0

s0

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 50 / 67

Computer representation of negative integers

Typically a fixed number of bits is used to represent integers:
8, 16, 32 or 64 bits

Unsigned integer can take all space available
Signed integers

Leading sign
0 000 00012 = 110
1 000 00012 = −110

but then
1 000 00002 = −010 (?!)

Two’s complement:
given a positive integer a, the two’s complement of a relative to a fixed
bit length n is the binary representation of

2n − a.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 51 / 67

Example: 4-bit two’s complement (n=4)

a = 1, two’s complement: 24 − 1 = 15 = 11112 = −1
a = 2, two’s complement: 24 − 2 = 14 = 11102 = −2
a = 3, two’s complement: 24 − 3 = 13 = 11012 = −3
…
a = 8, two’s complement: 24 − 8 = 8 = 10002 = −8

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 52 / 67

Properties

Positive numbers start with 0, negative numbers start with 1
0 is always represented as a string of zeros
−1 is always represented as a string of ones

Example: 4-bits 0000

0

0001

1

0010

2 0011
3

01004

0101
5

0110

6

0111

7

1000

-8

1001

-7

1010

-61011
-5

1100 -4

1101
-3

1110

-2

1111

-1

The number range is split unevenly between +ve and -ve numbers
The range of numbers we can represent in n bits is −2n−1 to 2n−1 − 1

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 53 / 67

Addition

Easy for computers
Example: 2+3

0 0 1 0
+ 0 0 1 1

0 1 0 1

A carry that goes off the end can often be ignored
Example: −1+ −3

1 1 1 1
+ 1 1 0 1

1 1 1 0 0

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 54 / 67

Subtraction

Treat as an addition by negating second operand
Example: 4− 3 = 4+ (−3)

0 1 0 0
+ 1 1 0 1

1 0 0 0 1

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 55 / 67

Overflow

Example: 4+ 7
0 1 0 0

+ 0 1 0 1
1 0 0 1

The correct result 9 is too big to fit into 4-bit representation
Testing for overflow:
If both inputs to an addition have the same sign, and the output sign
is different, overflow has occurred

Overflow cannot occur if inputs have opposite sign.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 56 / 67

Two’s complement and bit negation

Example n = 4

24 − a =
(
(24 − 1) − a

)
+ 1.

The binary representation of (24 − 1) is 11112
Subtracting a 4-bit number a from 11112 just switches all the 0’s in a to
1’s and all the 1’s to 0’s.
For example,

1 1 1 1
− 1 0 0 1

0 1 1 0

So, to compute the two’s complement of a, flip the bits and add 1.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 57 / 67

Example

Find the 8-bit two’s complement of 19.

Conversely, observe that

2n − (2n − a) = a
so to find the decimal representation of the integer with a given two’s
complement

Find the two’s complement of the given two’s complement
Write the decimal equivalent of the result

Example: Which number is represented by 1010 1001?

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 58 / 67

Recall: 4-bit adder

FA FA FA FA

a3 b3

s3

c

a2 b2

s2

a1 b1

s1

a0 b0

0

s0

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 59 / 67

4-bit subtractor

Implementing a+ b as the sum of a and two’s complement of b

FA FA FA FA

a3

b3

s3

c

a2

b2

s2

a1

b1

s1

a0

b0

1

s0

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 60 / 67

4-bit adder / subtractor

FA FA FA FA

a3

b3

s3

c

a2

b2

s2

a1

b1

s1

a0

b0

subtract

s0

When subtract is 0: bi
0 bi

When subtract is 1: bi
1 ¬bi

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 61 / 67

Integer types in high-level languages

E.g. Java has the following integer data types, using 2’s complement:

byte 8-bit −128 to +127
short 16-bit −32 768 to +32 767
int 32-bit −2 147 483 648 to +2 147 483 647
long 64-bit −263 to +263 − 1

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 62 / 67

Floating point numbers

It is not always possible to express numbers in integer form.
Real, or floating point numbers are used in the computer when:

the number to be expressed is outside of the integer range of the
computer, like

3.6× 1040 or 1.6× 10−19

or, when the number contains a decimal fraction, like

123.456

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 63 / 67

Scientific notation (AKA standard form)

The number is written in two parts:

Just the digits (with the decimal point placed after the first digit),
followed by
×10 to a power that puts the decimal point where it should be (i.e. it
shows how many places to move the decimal point).

123.456 = 1.23456× 102

In this example, 123.456 is written as 1.23456× 102 because
123.456 = 1.23456× 100 = 1.23456× 102

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 64 / 67

Binary fractions

Likewise, fractions can be represented base 2.

10.012 = 1× 21 + 0× 20 + 0× 2−1 + 1× 2−2

= 1× 2+ 0+ 0+ 1× 0.25
= 1.2510

Scientific representation: 10.012 = 1.001× 21

Note: in binary, for any non-zero number the leading digit is always 1

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 65 / 67

Computer representation

To represent a number in scientific notation:

The sign of the number.
The magnitude of the number, known as the mantissa or significand
The sign of the exponent
The magnitude of the exponent

Example: eight characters

S EEMMMMM
S is the sign of the number
EE are two characters encoding the exponent

both sign and magnitude

MMMMM are five characters for the mantissa

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 66 / 67

IEEE 754

IEEE standard for floating-point arithmetic
Implemented in many hardware units
Stipulates computer representation of numbers
For binary:

16 bit half precision numbers: 5 for exponent, 11 for mantissa
32 bit single precision numbers: 8 for exponent, 24 for mantissa
64 bit double precision numbers: 11 for exponent 53 for mantissa
128 bit quadruple precision numbers: 15 for exponent 113 for mantissa
256 bit octuple precision numbers: 19 for exponent 237 for mantissa

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 67 / 67

