Foundations of Computer Science Comp109

University of Liverpool

Boris Konev

konev@liverpool.ac.uk

http://www.csc.liv.ac.uk/~konev/COMP109

Part 5. Propositional Logic, digital circuits & computer arithmetic

Comp109 Foundations of Computer Science

Reading

- Discrete Mathematics and Its Applications, K.H. Rosen, Sections 1.1–1.3.
- Discrete Mathematics with Applications, S. Epp, Chapter 2.

Contents

- The language of propositional logic
- Semantics: interpretations and truth tables
- Semantic consequence
- Logical equivalence
- Logic and digital circuits
- Computer representation of numbers & computer arithmetic

Logic

Logic is concerned with

- the truth and falsity of statements;
- the question: when does a statement follow from a set of statements?

Propositional logic

Propositions

A proposition is a statement that can be true or false. (but not both in the same time!)

- Logic is easy;
- I eat toast;
- \blacksquare 2 + 3 = 5;
- $2 \cdot 2 = 5.$
- \blacksquare 4 + 5;
- What is the capital of UK?
- Logic is not easy;
- Logic is easy or I eat toast;

Compound propositions

- More complex propositions formed using logical connectives (also called Boolean connectives)
- Basic logical connectives:
 - 1. ¬: negation (read "not")
 - 2. ∧: conjunction (read "and"),
 - 3. ∨: disjunction (read "or")
 - 4. ⇒: implication (read "if...then")
 - 5. ⇔: equivalence (read "if, and only if,")
- Propositions formed using these logical connectives called compound propositions; otherwise atomic propositions
- A propositional formula is either an atomic or compound proposition

Giving meaning to propositions: Truth values

An *interpretation I* is a function which assigns to any atomic proposition p_i a *truth value*

$$I(p_i) \in \{0,1\}.$$

- If $I(p_i) = 1$, then p_i is called *true* under the interpretation I.
- If $I(p_i) = 0$, then p_i is called *false* under the interpretation I.

Given an assignment *I* we can compute the truth value of compound formulas step by step using so-called truth tables.

Negation

The negation $\neg P$ of a formula P

It is not the case that P

Р	$\neg P$
1	
0	

Conjunction

The conjunction $(P \land Q)$ of P and Q.

both P and Q are true

Р	Q	$(P \wedge Q)$
1	1	
1	0	
0	1	
0	0	

Disjunction

The disjunction $(P \lor Q)$ of P and Q at least one of P and Q is true

Р	Q	$(P \lor Q)$
1	1	
1	0	
0	1	
0	0	

Equivalence

The equivalence $(P \Leftrightarrow Q)$ of P and Q

P and Q take the same truth value

Р	Q	$(P \Leftrightarrow Q)$
1	1	
1	0	
0	1	
0	0	

Implication

The implication $(P \Leftrightarrow Q)$ of P and Q

if P then Q

Р	Q	$(P \Rightarrow Q)$
1	1	
1	0	
0	1	
0	0	

Truth under an interpretation

So, given an interpretation *I*, we can compute the truth value of any formula *P* under *I*.

- If I(P) = 1, then P is called true under the interpretation I.
- If I(P) = 0, then P is called false under the interpretation I.

List the Interpretations I such that $P = ((p_1 \vee \neg p_2) \wedge p_3)$ is true under I.

<i>p</i> ₁	p ₂	<i>p</i> ₃	$\neg p_2$	$(p_1 \vee \neg p_2)$	$P = ((p_1 \vee \neg p_2) \wedge p_3)$

For values see $\verb|http://www.csc.liv.ac.uk/~konev/COMP109/lecturelog.html| \\$

Logical puzzles

- An island has two kinds of inhabitants, knights, who always tell the truth, and knaves, who always lie.
- You go to the island and meet A and B.
 - A says "B is a knight."
 - B says "The two of us are of opposite types."
- What are A and B?

p: "A is a knight"; and q: "B is a knight"

- Options for A.
 - *p* is true

$$p \Rightarrow q$$

 \blacksquare *p* is false

$$\neg p \Rightarrow \neg q$$

- \blacksquare Options for B.
 - \blacksquare q is true

 $q \Rightarrow \neg p$

 \blacksquare q is false

 $\neg q \Rightarrow \neg p$

р	q	¬р	$\neg q$	$p \Rightarrow q$	$\neg p \Rightarrow \neg q$	$q \Rightarrow \neg p$	$\neg q \Rightarrow \neg p$
0	0						
0	1						
1	0						
1	1						

Semantic consequence

Definition Suppose Γ is a finite set of formulas and P is a formula. Then P follows from Γ ("is a semantic consequence of Γ ") if the following implication holds for every interpretation I:

If
$$I(Q) = 1$$
 for all $Q \in \Gamma$, then $I(P) = 1$.

This is denoted by

$$\Gamma \models P$$
.

Show
$$\{(p_1 \land p_2)\} \models (p_1 \lor p_2).$$

p ₁	p ₂	$(p_0 \wedge p_1)$	$(p_0 \vee p_1)$
1	1		
1	0		
0	1		
0	0		

Show $\{p_1\} \not\models p_2$.

p ₁	p ₂
1	1
1	0
0	1
0	0

Show $\{p_1\} \models (p_1 \lor p_2)$.

<i>p</i> ₁	p ₂	$(p_1 \vee p_2)$
1	1	
1	0	
0	1	
0	0	

Logic and proof principles I

Modus Ponens
 Direct proof corresponds to the following semantic consequence

$$\{P, (P \Rightarrow Q)\} \models Q;$$

Reductio ad absurdumProof by contradiction corresponds to

$$\{(\neg P \Rightarrow \bot)\} \models P,$$

where \perp is a special proposition, which is false under every interpretation.

Logic and proof principles II

Modus TollensAnother look at proof by contradiction

$$\{(P \Rightarrow Q), \neg Q\} \models \neg P$$

Case analysis

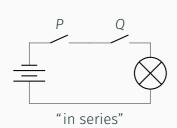
$$\{(P \Rightarrow Q), (R \Rightarrow Q), (P \lor R)\} \models Q$$

Proof theory

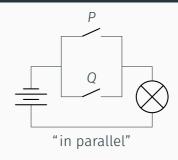
- We have studied proofs as carefully reasoned arguments to convince a sceptical listener that a given statement is true.
 - "Social" proofs
- Proof theory is a branch of mathematical logic dealing with proofs as mathematical objects
 - Strings of symbols
 - Rules for manipulation
 - Mathematics becomes a 'game' played with strings of symbols
 - Can be read and interpreted by computer

Application: Digital logic circuits

Logic and electric circuits



Р	Q	light
closed	closed	on
closed	open	off
open	closed	off
open	open	off



Q	Q	light
closed	closed	on
closed	open	on
open	closed	on
open	open	off

Modern computers use logic gates

Basic logic gates

AND gate

Р	Q	R
1	1	1
1	0	0
0	1	0
0	0	0

OR gate

Р	Q	R
1	1	1
1	0	1
0	1	1
0	0	0

NOT gate

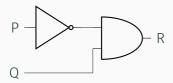
Р	R
1	0
0	1

Rules for a combinatorial circuit

- Never combine two input wires.
- A single input wire can be split partway and used as input for two separate gates.
- An output wire can be used as input.
- No output of a gate can eventually feed back into that gate.

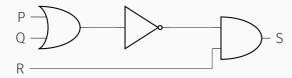
Determining output for a given circuit

Input signals: P = 0 and Q = 1



Boolean expression

Input signals: P = 1, Q = 1 and R = 1

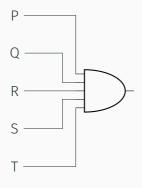


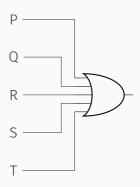
Constructing circuits for Boolean expressions

$$\blacksquare$$
 $(\neg P \land Q) \lor \neg Q$

$$\blacksquare$$
 $((P \land Q) \land (R \land S)) \land T$

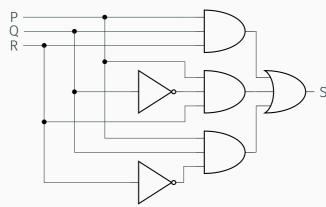
Multi-input AND and OR gates





Designing a circuit for a given input/output table

Input		Output	
Р	Q	R	S
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	0



$$(P \land Q \land R) \lor (P \land \neg Q \land R) \lor (P \land Q \land \neg R)$$

disjunctive normal form (DNF)

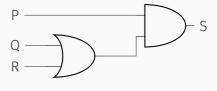
Another example

Input		Output	
Р	Q	R	S
1	1	1	1
1	1	0	0
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	0

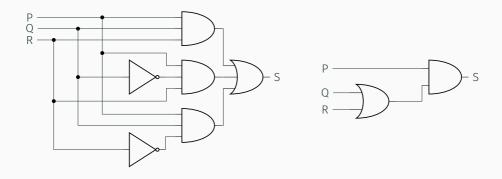
Reopen the first case

Input		Output	
Р	Q	R	S
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	0

$$P \wedge (Q \vee R)$$



Circuit equivalence



■ Two digital circuits are equivalent if they produce the same output given the same inputs.

Logical equivalence

Definition Two formulas P and Q are called equivalent if they have the same truth value under every possible interpretation. In other words, P and Q are equivalent if I(P) = I(Q) for every interpretation I. This is denoted by

$$P \equiv Q$$
.

$$(P \land Q \land R) \lor (R \land \neg Q \land R) \lor (P \land Q \land \neg R) \equiv P \land (Q \lor R)$$

On logical equivalence

Theorem The relation \equiv is an equivalence relation on \mathcal{P} .

Proof

- \blacksquare \equiv is reflexive, since, trivially, I(P) = I(P) for every interpretation I.
- \blacksquare \equiv is transitive, since $P \equiv Q$ and $Q \equiv R$ implies $P \equiv R$.
- \blacksquare \equiv is symmetric, since $P \equiv Q$ implies $Q \equiv P$.

Simplifying propositional formulae

Exercises:

$$\blacksquare (P \Leftrightarrow Q) \equiv (\neg P \Leftrightarrow \neg Q)$$

$$(P \land (P \lor Q)) \equiv P$$

Useful equivalences

The following equivalences can be checked by truth tables:

■ Associative laws:

$$(P \lor (Q \lor R)) \equiv ((P \lor Q) \lor R),$$
$$(P \land (Q \land R)) \equiv ((P \land Q) \land R);$$

■ Commutative laws:

$$(P \lor Q) \equiv (Q \lor P), \ (P \land Q) \equiv (Q \land P);$$

■ Identity laws:

$$(P \lor \bot) \equiv P, \ (P \lor \top) \equiv \top, \ (P \land \top) \equiv P, \ (P \land \bot) \equiv \bot;$$

■ Distributive laws:

$$(P \land (Q \lor R)) \equiv ((P \land Q) \lor (P \land R))$$
$$(P \lor (Q \land R)) \equiv ((P \lor Q) \land (P \lor R));$$

■ Complement laws:

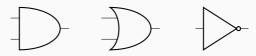
$$P \vee \neg P \equiv \top$$
, $\neg \top \equiv \bot$, $\neg \neg P \equiv P$, $P \wedge \neg P \equiv \bot$, $\neg \bot \equiv \top$;

■ De Morgan's laws:

$$\neg (P \lor Q) \equiv (\neg P \land \neg Q), \ \neg (P \land Q) \equiv (\neg P \lor \neg Q).$$

Boolean functions

- A function $F: \{0,1\}^k \to \{0,1\}$, where $k \in \mathbb{Z}^+$ is arity of F, is called a Boolean function
- \blacksquare Any Boolean function can be expressed as a combination of \land , \lor , \neg



■ Do we need all three types of gates?

Boolean functions of arity 2

Р	Q								
1	1	0	1	0	1	0	1	0	1
1	0	0	0	1	1	0	0	1	1
0	1	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0

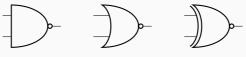
Р	Q								
1	1	0	1	0	1	0	1	0	1
1	0	0	0	1	1	0	0	1	1
0	1	0	0	0	0	1	1	1	1
0	0	1	1	1	1	1	1	1	1

Logic gates

■ AND, OR, NOT

XOR

■ NAND, NOR, XNOR



Universality of NAND and NOR

- NAND (AKA Sheffer stroke)
- and NOR (AKA Pierce arrow)

$$P \mid Q = \neg(P \land Q)$$

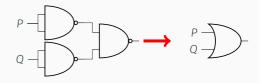
$$P \downarrow Q = \neg (P \lor Q)$$

are universal:

$$\neg P \equiv P \mid P$$

$$P \lor Q \equiv (P \mid P) \mid (Q \mid Q)$$

$$P \wedge Q \equiv (P \mid Q) \mid (P \mid Q)$$



$$P \longrightarrow Q$$

Application: Number systems and

circuits for addition

Binary number system

Positional system: multiply each digit by its place value

■ Decimal notation:

$$4268_{10} = 4 \cdot 10^3 + 2 \cdot 10^2 + 6 \cdot 10^1 + 8 \cdot 10^0$$

Binary notation

$$1100\ 0111_2 = 1 \cdot 2^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$
$$= 128 + 64 + 0 + 0 + 0 + 4 + 2 + 1 = 199_{10}$$

Here indices 10 and 2 are used to highlight the base of the number system

Convert decimal numbers to binaries: divide by 2

Rule: divide repeatedly by 2, writing down the reminder from each stage from right to left.

Example:	533/2 = 266	remainder = 1
	266/2 = 133	remainder = 0
	133/2 = 66	remainder = 1
	66/2 = 33	remainder = 0
	33/2 = 16	remainder = 1
	16/2 = 8	remainder = 0
	8/2 = 4	remainder = 0
	4/2 = 2	remainder = 0
	2/2 = 1	remainder = 0
	1/2 = 0	remainder = 1

$$533_{10} = 1000010101_2$$

Alternative method

■ If you know powers of 2, continually subtract largest power value from the number

$$123_{10} = 64 + (123 - 64) = 64 + 59$$

$$= 64 + 32 + (59 - 32) = 64 + 32 + 27$$

$$= 64 + 32 + 16 + (27 - 16) = 64 + 32 + 16 + 11$$

$$= 64 + 32 + 16 + 8 + (11 - 8) = 64 + 32 + 16 + 8 + 3 =$$

$$= 64 + 32 + 16 + 8 + 2 + (3 - 2)$$

$$= 64 + 32 + 16 + 8 + 2 + 1 =$$

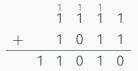
$$= 1 \cdot 2^{6} + 1 \cdot 2^{5} + 1 \cdot 2^{4} + 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0} =$$

$$= 1111011_{2}$$

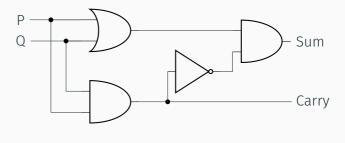
Binary addition

$$0_2 + 0_2 = 0_2$$
 $0_2 + 1_2 = 1_2$
 $1_2 + 0_2 = 1_2$ $1_2 + 1_2 = 10_2$

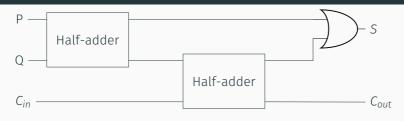
Half-adder



Р	Q	Carry	Sum
1	1	1	0
1	0	0	1
0	1	0	1
0	0	0	0

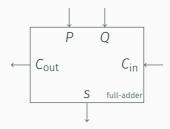


Full-adder

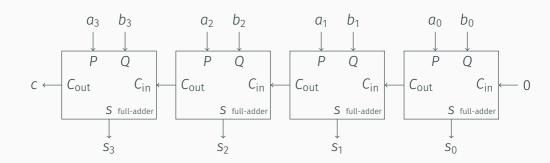


Р	Q	C _{in}	Cout	S
1	1	1	1	1
1	1	0	1	0
1	0	1	1	0
1	0	0	0	1
0	1	1	1	0
0	1	0	0	1
0	0	1	0	1
0	0	0	0	0

'Black box' notation



4-bit adder



Computer representation of negative integers

- Typically a fixed number of bits is used to represent integers: 8, 16, 32 or 64 bits
 - Unsigned integer can take all space available
- Signed integers
 - Leading sign

$$\begin{array}{rcl} \mathbf{0} \ 0000 \ 0001_2 & = & 1_{10} \\ \mathbf{1} \ 000 \ 0001_2 & = & -1_{10} \end{array}$$

but then

$$1\ 000\ 0000_2 = -0_{10}\ (?!)$$

■ Two's complement:

given a positive integer a, the **two's complement of** a **relative to a fixed bit length** n is the binary representation of

$$2^n - a$$
.

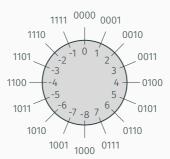
Example: 4-bit two's complement (n=4)

- $\blacksquare a = 1$, two's complement: $2^4 1 = 15 = 1111_2 = -1$
- a = 2, two's complement: $2^4 2 = 14 = 1110_2 = -2$
- a = 3, two's complement: $2^4 3 = 13 = 1101_2 = -3$
- **...**
- $\blacksquare a = 8$, two's complement: $2^4 8 = 8 = 1000_2 = -8$

Properties

- Positive numbers start with 0, negative numbers start with 1
- 0 is always represented as a string of zeros
- -1 is always represented as a string of ones

Example: 4-bits



- The number range is split unevenly between +ve and -ve numbers
- The range of numbers we can represent in n bits is -2^{n-1} to $2^{n-1} 1$

Addition

- Easy for computers
- Example: 2+3

- A carry that goes off the end can often be ignored
- Example: -1 + -3

Subtraction

- Treat as an addition by negating second operand
- Example: 4 3 = 4 + (-3)

Overflow

 \blacksquare Example: 4+7

- The correct result 9 is too big to fit into 4-bit representation
- Testing for overflow:

 If both inputs to an addition have the same sign, and the output sign is different, overflow has occurred
 - Overflow cannot occur if inputs have opposite sign.

Two's complement and bit negation

Example n = 4

$$2^4 - a = ((2^4 - 1) - a) + 1.$$

- The binary representation of $(2^4 1)$ is 1111_2
- Subtracting a 4-bit number a from 1111₂ just switches all the 0's in a to 1's and all the 1's to 0's.

For example,

■ So, to compute the two's complement of *a*, flip the bits and add 1.

Example

■ Find the 8-bit two's complement of 19.

■ Conversely, observe that

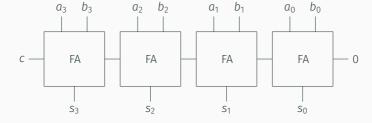
$$2^n - (2^n - a) = a$$

so to find the decimal representation of the integer with a given two's complement

- Find the two's complement of the given two's complement
- Write the decimal equivalent of the result

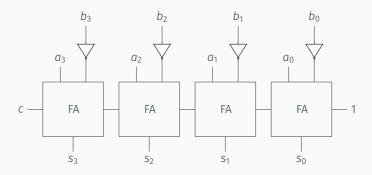
Example: Which number is represented by 1010 1001?

Recall: 4-bit adder

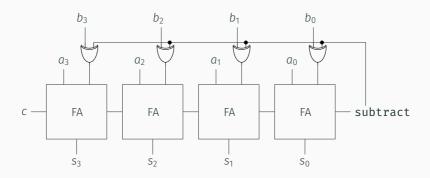


4-bit subtractor

■ Implementing a + b as the sum of a and two's complement of b



4-bit adder / subtractor



■ When **subtract** is 0:

$$b_i - b_i$$

■ When **subtract** is 1:

$$b_i \rightarrow b_i$$

Integer types in high-level languages

E.g. Java has the following integer data types, using 2's complement:

```
byte 8-bit -128 to +127
short 16-bit -32768 to +32767
int 32-bit -2147483648 to +2147483647
long 64-bit -2^{63} to +2^{63}-1
```

Floating point numbers

- It is not always possible to express numbers in integer form.
- Real, or floating point numbers are used in the computer when:
 - the number to be expressed is outside of the integer range of the computer, like

$$3.6 \times 10^{40} \text{ or } 1.6 \times 10^{-19}$$

or, when the number contains a decimal fraction, like

123.456

Scientific notation (AKA standard form)

The number is written in two parts:

- Just the digits (with the decimal point placed after the first digit), followed by
- ×10 to a power that puts the decimal point where it should be (i.e. it shows how many places to move the decimal point).

$$123.456 = 1.23456 \times 10^2$$

In this example, 123.456 is written as 1.23456×10^2 because $123.456 = 1.23456 \times 100 = 1.23456 \times 10^2$

Binary fractions

Likewise, fractions can be represented base 2.

$$10.01_2 = 1 \times 2^1 + 0 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2}$$
$$= 1 \times 2 + 0 + 0 + 1 \times 0.25$$
$$= 1.25_{10}$$

Scientific representation: $10.01_2 = 1.001 \times 2^1$

Note: in binary, for any non-zero number the leading digit is always 1

Computer representation

To represent a number in scientific notation:

- The sign of the number.
- The magnitude of the number, known as the mantissa or significand
- The sign of the exponent
- The magnitude of the exponent

Example: eight characters

SEEMMMMM

- **S** is the sign of the number
- EE are two characters encoding the exponent
 - both sign and magnitude
- MMMMM are five characters for the mantissa

IEEE 754

- IEEE standard for floating-point arithmetic
- Implemented in many hardware units
- Stipulates computer representation of numbers
- For binary:
 - 16 bit half precision numbers: 5 for exponent, 11 for mantissa
 - 32 bit single precision numbers: 8 for exponent, 24 for mantissa
 - 64 bit double precision numbers: 11 for exponent 53 for mantissa
 - 128 bit quadruple precision numbers: 15 for exponent 113 for mantissa
 - 256 bit octuple precision numbers: 19 for exponent 237 for mantissa