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m Discrete Mathematics and Its Applications, K.H. Rosen, Sections 11-1.3.

m Discrete Mathematics with Applications, S. Epp, Chapter 2.
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The language of propositional logic
Semantics: interpretations and truth tables
Semantic consequence

Logical equivalence

Logic and digital circuits

Computer representation of numbers & computer arithmetic
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Logic is concerned with

m the truth and falsity of statements;

m the question: when does a statement follow from a set of statements?
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Propositional logic



A proposition is a statement that can be true or false.
(but not both in the same time!)

m Logic is easy;
m | eat toast;
m2+3=5
m2-2=05.
W 4+ 5

m What is the capital of UK?

m Logic is not easy;

m Logic is easy or | eat toast;
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Compound propositions

m More complex propositions formed using logical connectives (also
called Boolean connectives)
m Basic logical connectives:
1. —: negation (read "not”)
2. A: conjunction (read "and”),
3. v: disjunction (read "or”)
4. =: implication (read "if..then”)
5. < equivalence (read "if, and only if")
m Propositions formed using these logical connectives called compound
propositions; otherwise atomic propositions

m A propositional formula is either an atomic or compound proposition
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Giving meaning to propositions: Truth values

An interpretation I'is a function which assigns to any atomic proposition p;
a truth value

I(pi) € {0,1}.

m If [(pj) =1, then p; is called true under the interpretation |.
m If /(p;) = 0, then p; is called false under the interpretation I.

Given an assignment | we can compute the truth value of compound
formulas step by step using so-called truth tables.
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The negation =P of a formula P

It is not the case that P

Truth table:
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The conjunction (P A Q) of Pand Q.

both P and Q are true

Truth table:

(PAQ)

o O = T
o = O =0

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 9/ 67


http://www.csc.liv.ac.uk/~konev/COMP109

The disjunction (PV Q) of P and Q

at least one of P and Q Is true

Truth table:

(PV Q)

o O = T
o - O 20
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The equivalence (P < Q) of P and Q

P and Q take the same truth value

Truth table:

(P< Q)

o o = |
o = o = |0
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Implication

The implication (P < Q) of P and Q

If Pthen Q

Truth table:

(P=Q)

O O - - | T
O = O |0
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Truth under an interpretation

So, given an interpretation I/, we can compute the truth value of any
formula P under |.

m If /[(P) =1, then Pis called true under the interpretation I.

m If /[(P) =0, then Pis called false under the interpretation /.
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List the Interpretations | such that P = ((p1 vV —=p2) A p3) Is true under I.

pi1| p2| P3| p2| (p1V-p2) | P=((p1V—p2)Ap3)

For values see http://www.csc.liv.ac.uk/~konev/COMP109/lecturelog.html
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Logical puzzles

m Anisland has two kinds of inhabitants, knights, who always tell the
truth, and knaves, who always lie.
m You go to the island and meet A and B.
m Asays “Bis a knight”
m B says “The two of us are of opposite types.”

m What are A and B?
p: “Alis a knight”; and g: “B is a knight”

m Options for A.

m pistrue p=q

m p is false -p = —q
m Options for B.

m gistrue g=-p

m g is false -q = —p
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Truth table

P |G| pP=q | P=7q|q="P| =P

| OO |T
Ol 2|09
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Semantic consequence

Definition Suppose T is a finite set of formulas and P is a formula. Then P
follows from T" (“is a semantic consequence of I'") if the following
implication holds for every interpretation I

If 1(Q) =1forallQ €T, then I(P) =1.

This is denoted by
I =P
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Show {(p1 A p2)} |= (P1V p2).

p1| P2 | (PaAP1) | (PoVp1)

QOO = =
oO|—=|O| -
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Example

Show {p1} [~ pa.

p1| p2
1 1
1 0
0|1
0|0
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Example

Show {p1} = (p1V p2).

p1 | p2 | (p1V p2)

OO = =
Ol | O -
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Logic and proof principles |

m Modus Ponens
Direct proof corresponds to the following semantic consequence

{P,(P=0Q}FQ&

m Reductio ad absurdum
Proof by contradiction corresponds to

{(=P= L)} |-,

where L is a special proposition, which is false under every
interpretation.
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Logic and proof principles Il

m Modus Tollens
Another look at proof by contradiction

{(P=0Q),-Q} | -P

m Case analysis

{(P=0),(R=0Q),(PVR}FQ
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Proof theory

m We have studied proofs as carefully reasoned arguments to convince
a sceptical listener that a given statement is true.
m “Social” proofs
m Proof theory is a branch of mathematical logic dealing with proofs as
mathematical objects
m Strings of symbols
m Rules for manipulation
m Mathematics becomes a ‘game’ played with strings of symbols
m Can be read and interpreted by computer
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Application: Digital logic circuits




Logic and electric circuits

P Q
I
=

“in series” “in paralle

P Q light Q Q light
closed | closed | on closed | closed | on
closed | open off closed | open on
open | closed | off open | closed | on
open | open off open | open off

Modern computers use logic gates
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Basic logic gates

AND gate OR gate NOT gate

PIQ|R PlQ|R P|R
T 11 T 11 0
11010 1101 011
0|11]0 01111
010]0 0/01]0
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Rules for a combinatorial circuit

m Never combine two input wires.
m Asingle input wire can be split partway and used as input for two
separate gates.

m An output wire can be used as input.
m No output of a gate can eventually feed back into that gate.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 26 / 67


http://www.csc.liv.ac.uk/~konev/COMP109

Determining output for a given circuit

Input signals: P=0and Q =1 Boolean expression

Input signals: P=1,Q=1and R =1

EDD D
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Constructing circuits for Boolean expressions

[ | (ﬂP/\Q)\/_'Q

B (PAQA(RAS)AT
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Multi-input AND and OR gates
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Designing a circuit for a given input/output table

Input Output
P Q R S P
T 1 1 1 Q ? >
1 1 0 1 & '
7 0 1 1 L
10 0] 0 '%%E >
0O 1 1 0 F
0O 1 0 0
00 1] o0 >
0O 0 O 0 —{>"7

(PANQAR)V(PA=QAR)V (PAQA—R)

disjunctive normal form (DNF)
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Another example

Input Output

o
wn

OO OO A
OO |O|—|O| -

o|lo|lOo|O|=|—=2|—~|—~|T
Ol |||l —-|—
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Reopen the first case

Input Output

P Q R S

T 1 1 1

1T 1 0 1

17 0 1 1 p
10 0| 0 S
0o 1 1 0 Q
0O 1 0 0 R
0 0 1 0

0 0 0 0

PA(QVR)
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Circuit equivalence

DD iy D
>OT

OO

>

m Two digital circuits are equivalent if they produce the same output
given the same inputs.
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Logical equivalence

Definition Two formulas P and Q are called equivalent if they have the
same truth value under every possible interpretation. In other words, P
and Q are equivalent if [(P) = I(Q) for every interpretation . This is
denoted by

P=Q.

(PAQAR)V(RA-QAR)V(PAQA-R)=PA(QVR)
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On logical equivalence

Theorem The relation = is an equivalence relation on P.

Proof

is reflexive, since, trivially, I(P) = I(P) for every interpretation I.

is transitive, since P=Q and Q = R implies P =R.

m = is symmetric, since P = Q implies Q = P.
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Simplifying propositional formulae

Exercises:

m(P=0Q)=(-PVQ)
[ | —\(P:>Q)E(P/\_'Q)

B(PQ)=(P=QA(Q=P)
m(PsQ)= (ﬁP@ﬂQ)
m(PA(PVQ))=

m—(PV(=-PA Q)) = (=P A-Q)
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Useful equivalences

The following equivalences can be checked by truth tables:
m Associative laws:
(PV(QVR))=((PVQ)VR),

(PA(QAR)=((PAQ)AR);

m Commutative laws:
(PVQ)=(QVP), (PAQ)=(QAP);
m |dentity laws:

(PvLl)y=pP (PVvT)=T,(PANT)=P, (PANL)=1;
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m Distributive laws:

(PAN(QVR)=((PAQ)V(PAR))

(PV(QAR)=({(PVQ) A(PVR));

m Complement laws:

PV-P=T,-T=1, -=-P=P,PA-P=1, -1 =T,

m De Morgan’s laws:

=(PVvQ)=(-PA-Q), -(PAQ) = (=PV Q).
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Boolean functions

m A function F: {0,1}* — {0,1}, where k € Z* is arity of F, is called a
Boolean function

m Any Boolean function can be expressed as a combination of A, V, —

DDA P

m Do we need all three types of gates?
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Boolean functions of arity 2

O O - |0
S - O IO

o o o o
o o o R
o o r o
o O B
o r O O
o - O R
O R R O
o - b B

O O - | T
o~ O O

— O O O

[ o I S
m O - O
_ O = R
R - O O
[ N
N e}
O
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Logic gates
m AND, OR, NOT
m NAND, NOR, XNOR

DD D

m XOR
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Universality of NAND and NOR

m NAND (AKA Sheffer stroke) P|Q=-(PAQ)
m and NOR (AKA Pierce arrow) P|Q=-(PVQ)

are universal:

-P = P|P P{>ﬁp e

PvQ = (P|P)|(Q]Q

g
VARV

:
@

PAQ (P1Q[(P]Q) Q-
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Application: Number systems and
circuits for addition




Binary number system

Positional system: multiply each digit by its place value

m Decimal notation:
426810 = 4-10°+2-10°+6-10" + 8 - 10°
m Binary notation

11000111, = 1-2741-2°40-2240-240-224+1-22+1-2"+1.2°
= 128464+04+0+0+4+2+1=199

Here indices 10 and 2 are used to highlight the base of the number system
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Convert decimal numbers to binaries: divide by 2

Rule: divide repeatedly by 2, writing down the reminder from each stage
from right to left.

Example: 533/2 =266 remainder = 1
266/2 = 133 remainder = 0

133/2 = 66 remainder = 1

66/2 = 33 remainder = 0

33/2 =16 remainder = 1

16/2 =8 remainder = 0

8/2 =4 remainder = 0

42 =2 remainder = 0

2/2=1 remainder = 0

1/2=0 remainder = 1

53319 = 1000010101,
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Alternative method

m If you know powers of 2, continually subtract largest power value from
the number

12310 = 64+ (123 — 64) = 64 + 59
= 64432+ (59 — 32) = 64 + 32 + 27
= 64432416+ (27 —16) = 64+ 32416 + 11
= 644+32+164+8+(11—8)=64+32+16+8+3=
= 64+32+16+8+2+(3-2)
= 64+32+16+84+2+1=
)M () S S ) B < W I R ) O
= 1111011,
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Binary addition

0+ 0, =0, OL+TH="1
T,+02="1 12+ 12 =102
1711
T 1 1 1
+ T 0 1 1
71 0 1 0

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 46 [ 67


http://www.csc.liv.ac.uk/~konev/COMP109

Half-adder

N

T 1 11
+ T 0 1 1

T1 0 10 P —
Q — Sum

P Q| Carry | Sum
11 1 0 . Carry
1 0 0 1
0 1 0 1
0 O 0 0
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Full-adder

S

Half-adder

Half-adder
Cm Cout

Cout

O
S

O O O O K - | T
O O L b O O IO
O, kP OFr OO FrWOm!

o r O L OBk OB
O O O L O P K
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‘Black box’ notation

Half-adder

Half-adder

Cout

S

full-adder

I

http://www.csc.

iv.ac.uk/~konev/COMP109

Part 5. Propositional Logic, digital circuits & computer arithmetic 49 [ 67


http://www.csc.liv.ac.uk/~konev/COMP109

as 34 a7 Qo
+ bz by by bo
C S3 S S1 So
as b a, b ar b ao  bo
P Q P Q P Q P Q
¢« Cout Cin =1 Cout Cin =1 Cout Cin =1 Cout Cin
S full-adder S full-adder S full-adder S full-adder
S3 S S1 So
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Computer representation of negative integers

m Typically a fixed number of bits is used to represent integers:
8, 16, 32 or 64 bits

m Unsigned integer can take all space available

m Signed integers
m Leading sign

0 0000001, = Tho
10000001, = -1y

but then
10000000, = —040 (7]

m Two's complement:
given a positive integer a, the two's complement of a relative to a fixed
bit length n is the binary representation of

2" —a.
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Example: 4-bit two's complement (n=4)

ma=1, two'scomplement: 2*—1=15=1111, = —1
ma=2, two'scomplement: 2*—-2=14=1110, = 2
ma=23, two'scomplement: 2*-3=13=1101, = 3
..

ma=38, two'scomplement: 2 —8=8=1000, = 8
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m Positive numbers start with 0, negative numbers start with 1
m 0 is always represented as a string of zeros
m —1is always represented as a string of ones

Example: 4-bits 11m 9000 oo

1001 01

1000

m The number range is split unevenly between +ve and -ve numbers
m The range of numbers we can represent in n bits is —2"~"to 2"~1 —1
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m Easy for computers

m Example: 2+3

+

oo O
O O
ol =
- o

m A carry that goes off the end can often be ignored

m Example: -1+ -3

T1 11
+ T 1 0 1
11 0 0
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Subtraction

m Treat as an addition by negating second operand
m Example: 4 —3 =4+ (=3)

01 00
+ T 1 0 1
10 0 0 1
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m Example: 4 +7

+

- O O
ol 4
o O O
-~ = o

m The correct result 9 is too big to fit into 4-bit representation

m Testing for overflow:
If both inputs to an addition have the same sign, and the output sign
Is different, overflow has occurred

m Overflow cannot occur if inputs have opposite sign.
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Two’s complement and bit negation

Example n = 4

m2t—a=(2"-1)—-a)+1
m The binary representation of (2* — 1) is 1111,

m Subtracting a 4-bit number a from 1111, just switches all the 0's in a to
17s and all the 1's to 0’s.
For example,

|
QO = =

T 1
0 0
T 1

Ol =

m So, to compute the two’'s complement of g, flip the bits and add 1.
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m Find the 8-bit two’'s complement of 19.

m Conversely, observe that
2"—2"—a)=a

so to find the decimal representation of the integer with a given two’s
complement

m Find the two's complement of the given two's complement

m Write the decimal equivalent of the result

Example: Which number is represented by 101010017
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Recall: 4-bit adder

as bz a by a; by do  bo

S3 S2 S1 So
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4-bit subtractor

m Implementing a + b as the sum of a and two’s complement of b

bs b, by bo
as %( az a do
| |

c— FA —{ FA |~ FA 4 FA (1

S3 Sy MY So
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4-bit adder / subtractor

b3 bz b1 bO
| | |
as as aq do
| | |
c— FA — FA — FA — FA — subtract
| |
S3 Sy S1 So

m When subtract is 0: boi jD b;
. b;
m When subtract is 1: ] —b;
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Integer types in high-level languages

E.g. Java has the following integer data types, using 2's complement:

byte  8-bit  —128 to +127

short 16-bit —32768 to +32767

int 32-bit  —2147 483 648 to +2147 483 647
long  64-bit —2% to +25% —1
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Floating point numbers

m |t is not always possible to express numbers in integer form.
m Real, or floating point numbers are used in the computer when:

m the number to be expressed is outside of the integer range of the
computer, like
3.6 x 10°° or 1.6 x 10"

m or, when the number contains a decimal fraction, like

123.456
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Scientific notation (AKA standard form)

The number is written in two parts:

m Just the digits (with the decimal point placed after the first digit),
followed by

m x10 to a power that puts the decimal point where it should be (i.e. it
shows how many places to move the decimal point).

123.456 = 1.23456 x 10°

In this example, 123.456 is written as 1.23456 x 102 because
123.456 = 1.23456 x 100 = 1.23456 x 107
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Binary fractions

Likewise, fractions can be represented base 2.

10.01, = 1Tx2'4+0x204+0x27T4+1x 22
= 1x240+0+4+1x0.25
= 1.2510

Scientific representation: 10.01; = 1.001 x 2!

Note: in binary, for any non-zero number the leading digit is always 1
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Computer representation

To represent a number in scientific notation:

m The sign of the number.
m The magnitude of the number, known as the mantissa or significand
m The sign of the exponent

m The magnitude of the exponent

Example: eight characters
SEE MMMMM
m S is the sign of the number

m EE are two characters encoding the exponent
m both sign and magnitude

B MMMMM are five characters for the mantissa
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IEEE 754

m |EEE standard for floating-point arithmetic
m Implemented in many hardware units

m Stipulates computer representation of numbers
m For binary:
m 16 bit half precision numbers: 5 for exponent, 11 for mantissa
m 32 bit single precision numbers: 8 for exponent, 24 for mantissa
m 64 bit double precision numbers: 11 for exponent 53 for mantissa
m 128 bit quadruple precision numbers: 15 for exponent 113 for mantissa
m 256 bit octuple precision numbers: 19 for exponent 237 for mantissa

http://www.csc.liv.ac.uk/~konev/COMP109 Part 5. Propositional Logic, digital circuits & computer arithmetic 67 | 67


http://www.csc.liv.ac.uk/~konev/COMP109

	Propositional logic
	Application: Digital logic circuits
	Application: Number systems and circuits for addition

