Class Test Problems

Test Information

The first (out of two) COMP109 class test will be held on **Wednesday, 8 November 2017 at 10:00** in SCTH-MR (that is, in the normal lecture time and location). The test duration is 50 minutes. The test is **closed book**, so no unauthorised materials including lecture notes, problem solutions, tutorial sheets, books, etc are permitted.

The test consists of two parts, written (contributing 30%) and multiple choice (contributing 70%).

Problems for the test (but not the multiple choice options) are made available in advance. All of the problems listed below will appear in the test; however, I *might* add one or two unseen problems and the formulation of some problems is subject change slightly (e.g. \cup in place of \cap).

Note: you will need an ordinary pencil to mark your answers on the computer answer sheet.

Written part

Prove that $\sqrt{3}$ is irrational

MCQs

- 1. Suppose that $U = \{1, 2, 3, 4, 5, 6, 7\}$ is the universal set, $A = \{x \in \mathbb{N} \mid 2 < x < 7\}$, $B = \{3, 7\}$, and $C = \{3, 4, 5, 6\}$.
 - List the elements of the set $B \cup (A \cap C)$.
 - What is the characteristic vector of $(A\Delta B) \cap C$?
- 2. Which of the following statements are true?
 - (a) $\{a, b, c\} \subseteq \{b, c, a\} \{b\}$ (c) $\{b, c\} \subseteq \{c, b\}$

 (b) $\{a\} \subseteq \{a, b\}$ (d) $\{a, b, c\}\Delta\{b\} = \{a, c\}$
- 3. Which of the following statements are true?
 - (a) $x \in \{x\}$ (c) $\{x\} \in \{x\}$ (e) $\emptyset \subseteq \{x\}$ (b) $\{x\} \subseteq \{x\}$ (d) $\{x\} \in \{\{x\}\}$ (f) $\emptyset \in \{x\}$
- 4. Which of the following are true for every negative integer x and every negative integer y?
 - (a) x y is a positive integer. (d) x/y is a rational.
 - (b) $x \times y$ is a natural number. (e) y/x is a rational.
 - (c) x + y is a negative integer.

- 5. How many prime numbers are odd?
- 6. Let $A = \{1, 3, 5\}$ and $B = \{x, y, z\}$. Define $f : A \to B$ by specifying that

$$f(1) = y, f(3) = z, f(5) = y$$

Determine whether f is injective, surjective or bijective (remember, it can have more than one property).

- 7. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = 2 \times x + 1$. Determine whether f is injective, surjective or bijective.
- 8. Let $X = \{1, 2, 3\}$, $Y = \{a, b, c, d, e\}$ and $Z = \{x, y, z\}$. Define functions $f : X \to Y$ and $g : Y \to Z$ by specifying that

$$f(1) = b, f(2) = a, f(3) = c$$

and

$$g(a) = x, g(b) = y, g(c) = y, g(d) = z, g(e) = z.$$

Determine $g \circ f$. What is the range of $g \circ f$?

9. Let $X = \{1, 2\}, Y = \{a, b, c\}$ and $Z = \{x, y, z\}$. Let $f : X \to Y$ and $g : Y \to Z$ be such that

$$g(a) = x, g(b) = y, g(c) = x,$$

and

$$g \circ f(1) = x, g \circ f(2) = x.$$

Determine f.

- 10. How many people do you need to have in a room in order to guarantee that at least two of them have a birthday on the same day of the week?
- 11. How many integers from 100 through 999 must you pick in order to be sure that at least two of them have a digit in common? (For example, 256 and 530 have the common digit 5.)