Foundations of Computer Science
Comp109

University of Liverpool

Boris Konev
konev@liverpool.ac.uk
http://www.csc.liv.ac.uk/~konev/COMP109

Module aims

To introduce the notation, terminology, and techniques underpinning
the discipline of Theoretical Computer Science.

To provide the mathematical foundation necessary for understanding
datatypes as they arise in Computer Science and for understanding
computation.

To introduce the basic proof techniques which are used for reasoning
about data and computation.

To introduce the basic mathematical tools needed for specifying
requirements and programs

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction

Lectures

We will have three lectures per week this term.
Your timetable is on Liverpool Life.

m Read the slides before (and after) the lecture.
m Take notes. (University is a lot different from school.)
m | will write on the slides.

m Notes often make no/little sense

PDFs will appear on
http://cgi.csc.liv.ac.uk/~konev/COMP109

m These notes are not a replacement for your own notes!

m Please study as you go along.

http://www.csc.liv.ac.uk/~konev/COMP109

Introduction

Comp109 Foundations of Computer Science

http://www.csc.liv.ac.uk/~konev/COMP109

Module outcomes

At the end of this module students should be able to:

m Understand how a computer represents simple numeric data types;
reason about simple data types using basic proof techniques;
Interpret set theory notation, perform operations on sets, and reason
about sets;

Understand, manipulate and reason about unary relations, binary
relations, and functions;

Apply logic to represent mathematical statement and digital circuit,
and to recognise, understand, and reason about formulas in
propositional and predicate logic;

Apply basic counting and enumeration methods as these arise in
analysing permutations and combinations.

http://www.csc.liv.ac.uk/~konev/COMP109

Tutorials

m The class will be divided into tutorial groups. You will be able to find
out which group you are in from your personal timetable.
m Each tutorial group meets once a week.
m Problem sheets will become available on the module web page
(https://intranet.csc.liv.ac.uk/~konev/COMP109).
Try to solve the problems before your tutorial. Part of your continuous
assessment mark will be based on your contribution during tutorials,
including
1. making reasonable attempts to solve the problems, and bringing these
(in writing) to tutorials, and
2. your contribution to group discussions in the tutorial group.
You will hand your work in at the end of each tutorial and get it back
the following week.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction

Introduction 1/28| http://www.csc.liv.ac.uk/~konev/COMP109

Information

Lecturer

m Prof Boris Konev
m Office: 115 Ashton building
m Email: konev@liverpool.ac.uk

m Course web page:
http://www.csc.liv.ac.uk:/~konev/COMP109

~30 lectures + 2 class tests + 11 tutorials

Introduction

Assessment

m Exam: 80%
m Multiple-choice test

m Continuous Assessment: 20%
m Assessment 1. Covers Parts 1-4
m Class test
m Your contribution during tutorials

B Assessment 2. Covers Parts 5-7

m Class test
m Your contribution during tutorials

28| http://www.csc.liv.ac.uk/~konev/COMP169

Core textbook

m K. Rosen. Discrete Mathematics and Its Applications, McGraw-Hill. 7th
edition, 2012.

(any edition, including the US edition, is OK)

www.csc.liv.ac.uk/~konev/COMP109 Introd

Recommended books

m E. Lehman, F. T. Leighton and A. R. Meyer Mathematics for Compute
Science. Free book

m S. Epp. Discrete Mathematics with Applications, Cengage Learning. 4th
edition, 2011.

m E. Bloch. Proofs and Fundamentals, Springer. 2nd edition, 2011

Proofs and
Fundamentals

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction

You do!

Comp108, Comp 202, Comp226, Comp304, Comp305, Comp309,...

) Time complexity
Exercise e ety ol a4 5,) i, Tha time compley of GREEOYAGTIVTY-SELEGTOR i

Va2t erenents an- ¥ con o, ween- s

To prove o
» Base case: whenn=1,LHS=1,RHS= IXIX‘:]:LHS — @ Choosing A L) me.
0 « Gonsuetng S tkes O(n) e
« Therestof e agorte aks 1) e, excopt orhe
o calon .

» Induction hypothesis: Assume property holds for -k
e 1 23t n gt n e L EGESTX2E 41

» Induction step: When n=ke1, farget is to prove’ X ® BuIS|Sn-1.
T e ot

RHS=.:LHS

» Then property holds for ncks1

» By principe of induction, holds for al ve integers ’ s (0= 1)+ (-2 4 20)

= rpr——

‘ o) = ensTin-1)
New valu ation nteln=1)+T(n-2)

W""Perceptron In practice.
€=0.25

it=

Let P be a set of aloms p,q, pu,pay- - Then £(P) or Lo is smallest
set:

it % € Lothen (p AD), (¢ = V)i © ¥)(p V) and
cco
Exerciso 2.1
(1) Which of the folowing are fomuas of Co, which are nof?
2

o p = (P2)
T

http://www.csc.liv.ac.uk/~konev/COMP169 Introduction

Number systems and proof techniques

m Proof Techniques

m Finding a counter-example
m Proof by contradiction
m Proof by Induction

These are used, for example, to reason about data types and to reason
about algorithms.

We use proof techniques, both to show that an algorithm is correct and to
show that it is efficient.

http://www.csc.liv.ac.ul e 9 Introduction

Course contents

Number Systems and Proof Techniques
Set Theory

Functions

Relations

Propositional Logic & Digital Circuits
Combinatorics & Probability

28 http://www.csc.liv.ac.uk/~konev/COMP109 Introduction

Datatypes

A datatype in a programming language is a set of values and the
operations on those values. The datatype states

m the possible values for the datatype

m the operations that can be performed on the values

m the way that values are stored.

http://www.csc.liv.ac.uk/~konev/COMP109

Data collections

Most applications work with collections of data items

m Price list

m Phonebook

m Climate change data
m Stock exchange data

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction

So, this is maths...

® The module does not depend upon A-level maths.
m You can get a first in this module even if you did badly at GCSE maths.

m To do well in this module, you have to work hard.

But Who Needs Maths?

0 /28| http://www.csc.liv.ac.uk/~konev/COMP109 Introduction

Number systems and datatypes

m The most basic datatypes
Natural Numbers
Integers
Rationals
Real Numbers
Prime Numbers

8 http://www.csc.liv.ac.uk/~konev/COMP109 Introduction

Sets

A set is a well-defined collection of objects. The objects in the set are
called the elements or members of the set.

m The set containing the numbers 1, 2, 3, 4 and 5 is written {1,2,3, 4,5}.
m The number 3 is an element of the set, that is, 3 € {1,2,3,4,5}.
m The number 6 is not an element of the set, that is, 6 ¢ {1,2,3,4,5}.

m The set {dog, cat, mouse} is a set with three elements: dog, cat and
mouse.

Young man, in mathematics you don't understand things. You just
get used to them. (John von Neumann)

www.csc.liv.ac.uk/~konev/COMP109 Introd

Some important sets Functions Family relations

m A function is just a map from a set of inputs to a set of outputs.
Fred and Mavis John and Mary

m This is exactly what an algorithm computes. / \ / \

m Functions can also be used to determine how long algorithms take to Alice Kenand Sue Mike Penny

m N ={0,1,2,3,...} (the natural numbers) run. / \
mZ=1{.,-2,-1012,...} (the integers) Jane Fiona Alan

m Q={p/q|p and g are integers,q # 0} (the rationals) e g
- : rite down
m R: (real numbers) T Examples:
)
my=x m R={(x,y)| xis agrandfather of y };
V4 |y = sin(X)
\

769 oupur m first letter of your name

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 8 /28 http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 19 /28| http://www.csc.liv.ac.uk/~konev/COMP109 Introduction

Relations and databases Logic and specification languages Propositional logic and digital circuits

Syntax: formulas and formal representations

Semantics: interpretations and truth tables
How can we specify what a program should do? Natural languages can be Logic and digital circuits

. . long-winded and ambiguous and are not appropriate for intricate . .
Most databases store information as relations over sets. We rsklEs. Computer arithmetic
need precise notation and terminology for sets and relations in order to Logical equivalence
talk about databases. Basic mathematical facts about relations and sets A formal language without ambiguous statements is required.

are required to understand how a database is designed and implemented. o) .
redicate Logic are the most important formal

languages for specifying programs. ¢ b
AND

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 21/28 http://www.csc.liv.ac.uk/~konev/COMP109 ntroduction 22 /28| http://www.csc.liv.ac.uk/~konev/COMP169 Introduction

Combinatorics Combinatorics Applications to discrete probability

The draw selects a set of six different numbers from 1,2, ..., 49. Each

Combinatorics includes the study of counting and also the study of m Notation for sums and products, including the factorial function. choice is equally likely.

discrete structures such as graphs. Itis essential for analysing the m Principles for counting permutations and combinations, for example,

efficiency of algorithms. to enable you to solve the problem on the following slide. You choose a set of six numbers in advance. If your numbers come up, you

win the jackpot. What is the probability of this event?

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction http://www.csc.liv.ac.uk/~konev/COMP109 Introduction http://www.csc.liv.ac.uk/~konev/COMP109 Introd

Reading mathematics' Appendix: Greek letters

Read with a purpose
Choose a book at the right level

]

- Apha a ota sigma Foundations of Computer Science
" Beta Kappa Tau
m Don't read it like a novel Gamma vy Lambda Upsilon Com p109
m |dentify what is important Delta Mu Phi
]

]

u

]

u

Read with pen and paper at hand

Stop periodically to review Epsilon Nu Chi
Zeta Omicron Psi
Eta Pi Omega

Theta Rho IBoms Kon.e\/ ‘
Reflect konev@liverpool.ac.uk

http://www.csc.liv.ac.uk/~konev/COMP109

Read statements first—proofs later University of Liverpool

Do the exercises and problems

Write a summary

"How to think like a mathematician by K. Houston.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 27 /28 http://www.csc.liv.ac.uk/~konev/COMP109 Introduction

Reading Contents

® The most basic datatypes
Natural Numbers
Integers
Rationals
Real Numbers
Prime Numbers

m Proof Techniques

Comp109 Foundations of Computer Science m E. Bloch. Proofs and Fundamentals m Direct proof and disproof

Chapter 2, Section 6.3. m Disproof by counterexample
m Existence proof
m K. Rosen. Discrete Mathematics and Its Applications B Generalising from the generic particular
Section 51. n .
m Indirect Proof
m Proof by contradiction
[.

) m S. Epp. Discrete Mathematics with Applications
Part 1. Number Systems and Proof Techniques Chapter 4, Sections 5.2 and 53,

m Proof by mathematical induction

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques /72 http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number ns and Proof Technigues 2/72| http://www.csc.liv.ac.uk/~konev/COMP169 Part 1. Numbi s and Proof Techniques

What is a number? The natural numbers Prime numbers

A prime number is a integer greater than 1 which has exactly two divisors

0,1,2,3,... T .
that are positive integers: 1and itself.

Key property: Any natural number can be obtained from 0 by applying the

- _ 2,3,5,7,11,13,17,19, 23,29, 31,37, 41,43,
operation S(n) = n+ 1some number times.

Examples: 5(0) = 1. Every natural number greater than 1 can be written as a unique product of
prime numbers.

Examples: 6 =2 x3.15=3 x 5. 1400 = 23 x 52 x 7.

http://www.csc.liv.ac.uk/~konev/COMP109 >: and Proof Techniques 4 http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number E http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Numb and Proof Technique:

Example: prime and composite numbers

1. Is 1 prime?

2. Is every integer greater than 1 either prime or composite?

3. Write the first six prime numbers.

4. Write the first six composite numbers.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques

Solving and computing

Mathematics underpins STEM subjects. In many cases, we are concerned
with solving and computing

Complete the table of values for y=3-x?

The quadratic equation 2x” + 6x + 7 = 0 has roots « and f.

Write down the value of « + 8 and the value of xf

Find the general solution, in degrees, of the equation
Work out

25sin(3x +45°) = 1

5 miles = 8 kilometres

Which is longer, 26 miles or 45 km?

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Sys

Example: Drivers behaviour'

do {
KeAcquireSpinLock();
nPacketsOld = nPackets;
if (request) {
request = request->Next; RelEzED
KeReleaseSpinLock();
nPackets++:

Does this code obey
the locking rules?

}
} while (nPackets != nPacketsOld);
KeReleaseSpinLock();

You don't need to understand the actual code!

from Microsoft presentations on Static Driver Verifier (part of Visual Studio)

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number s Proof Techniques

Beyond naturals

The Integers ..., —2,-1,0,1,2,...

.) m
The Rational Numbers all numbers that can be written as I
where m and n are integers and n is not 0.

72 http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques

Statements

Which of the following are true?

m “26 miles is longer than 45 km.”

m An integer doubled is larger than the integer.

® The sum of any two odd numbers is even.

2 http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Numbe s and Proof Techniques

Historical detour: Visual proofs

Visual proof of Visual “proof” of
(a+b)? = a?+2ab + b? 325=315

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Numbe

Reminder: Algebraic manipulation

72| http://www.csc.liv.ac.uk/~konev/COMP169 Part 1. Number Systems and Proof Technique

The moral of the story

m We can't believe a statement just because it appears to be true.

We need a proof that the statement is true or a proof that it is false.
Do we care?

2| http://www.csc.liv.ac.uk/~konev/COMP169 Part 1. Numbe Proof Techniques

Proofs

m A mathematical proof is as a carefully reasoned argument to convince
a sceptical listener (often yourself) that a given statement is true.

m Both discovery and proof are integral parts of problem solving. When
you think you have discovered that a certain statement is true, try to
figure out why it is true.

m If you succeed, you will know that your discovery is genuine. Even if
you fail, the process of trying will give you insight into the nature of
the problem and may lead to the discovery that the statement is false.

www. csc.liv.ac.uk/~konev/COMP109 Part 1. Numbe ems and Proof Techi

Example: Odd and even numbers

Definition
An integer n is even if, and only if, n equals twice some integer.
An integer n is odd if, and only if, n equals twice some integer plus 1.

Symbolically, if n is an integer, then
nis even < 3 an integer k such that n = 2k.
nis odd < 3 an integer k such that n = 2k + 1.

Notice theuseof < 3 V.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques

Existence proofs

Statements of the form 3x Q(x)

Examples:

1. Prove the following: 3 an even integer n that can be written in two
ways as a sum of two prime numbers.

2. Suppose that rand s are integers. Prove the following: 3 an integer k
such that 22r 4+ 18s = 2k.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques

Proving universal statements: The method of exhaustion

Some theorems can be proved by examining relatively small number of
examples.

m Prove that (n +1)3 > 3" if n is a positive integer with n < 4.
mn=1
mn=2
mn=3
mn==4

m Prove for every natural number n with n < 40 that n? +- n + 41 s prime.

http://www.csc.liv.ac.uk/~konev/COMP109 and Proof Techniques

/72 http://www.csc.liv.ac.uk/~konev/COMP109

2 http://www.csc.liv.ac.uk/~konev/COMP169

Example: Properties of odd and even numbers

Use the definitions of even and odd to justify your answers to the
following questions.

Definition
nis even < 3 an integer k such that n = 2k.
nis odd < 3 an integer k such that n = 2k + 1.

1. I1s 0 even?

2. 1s 301 odd?

Part 1. Number Systems and Proof Techniques

Constructive proof

m One way to prove
3Ix Q(x)

is to find an x in that makes Q(x) true.

Part 1. Number ns and Proof Technigues

Motivating example: “Mathematical trick”

Pick any number, add 5, multiply by 4, subtract 6, divide by 2, and subtract
twice the original number. The answer is 7.

Step Visual Result Algebraic Result

Pick a number. o x
Add 5. ol x+5
Multiply by 4. ol
arrt
I
atl
Subtract 6. ol

=]

arr
=

Divide by 2. oj|
Ot
Subtract twice the original number. 1

(x+5)-4=4x+20

(@x+20) —6=dx + 14

=2x+7

4x+14
2

@x+T)-2x=7

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number

/72| http://www.csc.liv.ac.uk/~konev/COMP109

72| http://www.csc.liv.ac.uk/~konev/COMP169

Example: Properties of odd and even numbers

Definition
nis even < 3 an integer k such that n = 2k.
nis odd < 3 an integer k such that n = 2k + 1.

3. Ifa and b are integers, is 6a’b even?

4. If aand b are integers, is 10a + 8b + 1 odd?

5. Is every integer either even or odd?

Part 1. Number Systems and Proof Technique

Proving universal statements

The vast majority of mathematical statements to be proved are universal.
In discussing how to prove such statements, it is helpful to imagine them
in a standard form:

vx if P(x) then Q(x)

For example,

m If a and b are integers then 6ab is even.

Part 1. Numbi s and Proof Techniques

Generalising from the Generic Particular

The most powerful technique for proving a universal statement is one that
works regardless of the choice of values for x.

To show that every x satisfies a certain property, suppose x is a particular
but arbitrarily chosen and show that x satisfies the property.

www.csc.liv.ac.uk/~konev/COMP109 Part 1. Numb and Proof Technique:

Method of direct proof

m Express the statement to be proved in the form
“Vx, if P(x) then Q(x)."
(This step is often done mentally.)

m Start the proof by supposing x is a particular but arbitrarily chosen
element for which the hypothesis P(x) is true.
(This step is often abbreviated “Suppose P(x).")

m Show that the conclusion Q(x) is true by using definitions, previously
established results, and the rules for logical inference.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques

Prove that the sum of any two rational numbers is rational

http://www.csc.liv.ac.uk/~konev/COMP169 Part 1. Number Systems and Pro

Prove for all integers n, if n is even then n? is even

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques

5/72 http://www.csc.liv.ac.uk/~konev/COMP109

2 http://www.csc.liv.ac.uk/~konev/COMP109

Prove that the sum of any two even integers is even

Part 1. Number Systems and Proof Techniques

Prove that the product of any two rational numbers is rational

Part 1. Number Systems and Proof Techniques

Prove by cases: Combine generic particulars and proof by exhaustion

lent: For all integers n, n? 4+ n is even

Case 1: nis even

Case 2: nis odd

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Numbe

26

Prove that every integer is rational

/72| http://www.csc.liv.ac.uk/~konev/COMP109

Part 1. Number Systems and Proof Technique

Prove that the double of a rational number is rational

72| http://www.csc.liv.ac.uk/~konev/COMP109

How about

www. csc.liv.ac.uk/~konev/COMP109

Part 1. Numbe

Part 1. Numbe

and Proof Techniques

Prove for all integers m and n, if m?> = n? then m = n?

ems and P

Sf Techniques

Indirect proofs

Disproving universal statements by counterexample Is it true that for every positive integer n, n> > 2n?

m In a direct proof you start with the hypothesis of a statement and

To disprove a statement means to show that it is false. Consider the
make one deduction after another until you reach the conclusion.

question of disproving a statement of the form
m Indirect proofs are more roundabout. One kind of indirect proof,

VX, if P(x) then Q(x). L . .
')) argument by contradiction, is based on the fact that either a
statement is true or it is false but not both.

m So if you can show that the assumption that a given statement is not
true leads logically to a contradiction, impossibility, or absurdity, then
that assumption must be false: and, hence, the given statement must

3x such that P(x) and not Q(x). be t . g

e true.

Showing that this statement is false is equivalent to showing that its
negation is true. The negation of the statement is existential:

34 /72 http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 35 /72| http://www.csc.liv.ac.uk/~konev/COMP169 Part 1. Number Systems and Proof Technique

Use proof by contradiction to show that there is no greatest integer Use proof by contradiction to show that there is no smallest positive ra-
tional number

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques

Motivating example: Trial and error

http://www.csc.liv.ac.uk/~konev/COMP169 Part 1. Numbel 2 http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 2| http://www.csc.liv.ac.uk/~konev/COMP169 Part 1. Numb s and Proof Techniques

Use proof by contradiction to show that no integer can be both even and Use proof by contradiction to show that there is no greatest prime number
odd

Let f(x) = 2x + 5. Prove that if x # y then f(x) # f(y)

Direct proof

Proof by contradiction

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Numb and Proof Techniques

http://www.csc.liv.ac.uk/~konev/COMP109 and Proof Techniques http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number

When to use indirect proof

m Many theorems can be proved either way. Usually, however, when
both types of proof are possible, indirect proof is clumsier than direct
proof.

m In the absence of obvious clues suggesting indirect argument, try first
to prove a statement directly. Then, if that does not succeed, look for
a counterexample.

m If the search for a counterexample is unsuccessful, look for a proof by
contradiction

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques

the proof continued

m Let x = 2w for some integer w.

m Then x? = 4w? so 4w? = 2y s0 y? = 2w? so y? is even so y is even.

m This contradicts the fact that x and y are not both even, so our original
assumption, that /2 is rational, must have been wrong.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques

Example: Domino effect

One domino for each natural number, arranged in order.

m | will push domino 0 (the one at the front of the picture) towards the
others.

m For every natural number m, if the m'th domino falls, then the
(m + 1)st domino will fall.

Conclude: All of the Dominoes will fall.

http://www.csc.liv.ac.uk/~konev/COMP109 = and Proof Techniques

/72 http://www.csc.liv.ac.uk/~konev/COMP109

2 http://www.csc.liv.ac.uk/~konev/COMP169

The real numbers

All (decimal) numbers — distances to points on a number line.
Examples.

m 3.0

m0

m 1.6

m 7 =23.14159...
A real number that is not rational is called irrational.

But are there any irrational numbers?

Part 1. Number Systems and Proof Techniques

Prove that 1+ 3 /2 is irrational

Part 1. Number ns and Proof Technigues

Proving by induction that a property holds for every natural number n

m Prove that the property holds for the natural number n = 0.

m Prove that if the property holds for n = m (for any natural number m)
then it holds forn=m +1.

The validity of proof by mathematical induction is generally taken as an
axiom. That is why it is referred to as the principle of mathematical
induction rather than as a theorem.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number

/72| http://www.csc.liv.ac.uk/~konev/COMP109

72| http://www.csc.liv.ac.uk/~konev/COMP169 Part 1. Numbi

Proving that /2 is not a rational number

Proof by contradiction.

m If /2 were rational then we could write it as v/2 = x/y where x and y
are integers and y is not 0.

m By repeatedly cancelling common factors, we can make sure that x
and y have no common factors so they are not both even.

m Then 2 = x?/y? so x> = 2y? s0 X% is even. This means x is even, because
the square of any odd number is odd.

Part 1. Number Systems and Proof Technique

Mathematical induction

m Mathematical induction is one of the more recently developed
techniques of proof in the history of mathematics.

m It is used to check conjectures about the outcomes of processes that
occur repeatedly and according to definite patterns.

m In general, mathematical induction is a method for proving that a
property defined for integers n is true for all values of n that are
greater than or equal to some initial integer

s and Proof Techniques

A proof of a property by induction looks like this

Base Case: Show that the property holds for n = 0.

Inductive Step: Assume that the property holds for n = m. Show that it
holds forn=m +1.

Conclusion: You can now conclude that the property holds for every
natural number n.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Numb and Proof Technique:

Example: Proof by induction

For every natural number n,

O+‘|+4..+n:n(nT+‘l)_

Base Case: Take n = 0. The left-hand-side and the right-hand-side are

both 0 so they are equal.

Inductive Step: Assume that the property holds for n = m, so
O+1+...+m:m'

Now consider n = m + 1. We must show that

O+1+~-~+m+(m+1):w'

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques

Example: Proof by induction

For all integers n > 8, n¢ can be obtained using 3¢ and 5¢ coins.
Base Case: For n =8, 8¢ = 3¢ + 5¢.

Inductive Step: Suppose that m¢ can be obtained using 3¢ and 5¢ coins
for any m > 8. We must show that (m + 1)¢ can be obtained using 3¢ and
5¢ coins.

Consider cases

m There is a 5¢ coin among those used to make up the mg¢.
m Replace the 5¢ coin with two 3¢ coins. We obtain (m + 1)¢.
m There is no 5¢ coin among those used to make up the mg¢.
m There are three 3¢ coins (m > 8).
m Replace the three 3¢ coins with two 5¢ coins

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques

Using induction to show that a program is correct

i=0
M=0
mylist = [1, 2, 6, 3, 4, 5]
while i < len(mylist):
M = max(M, mylist[i])
i=i+1
print M

Property: After the statement M = max(M , mylist[i]) gets executed, the
value of M is max(mylist[0],..,mylist[i]).

http://www.csc.liv.ac.uk/~konev/COMP109

/72 http://www.csc.liv.ac.uk/~konev/COMP109

2 http://www.csc.liv.ac.uk/~konev/COMP109

Proof continued

m(m—+1
0+1+-~~+m:%.

0+W+---+m+(m+1):w
_ m(m+1)+2(m+1)
2
(m+1)(m+2)
2

+m+1

Part 1. Number Systems and Proof Techniques

Example: Proof by induction

For every integer n > 3, 4" > 2142,
Base Case: Take n = 3. Then 4" = 43 = 64. Also, 2"*2 = 2° =32. So
P > P,

Inductive Step: For any m > 3, assume that the statement 4™ > 2M+2 js
true. (This is called the “inductive hypothesis”.) Now consider n = m 4 1.
We must show that 4M+1 > 2(m+1)+2 — ym+3,

Here is the calculation. 4™*" = 4 x 4™ But by the inductive hypothesis,
4 x 4™ > 4 x 2M+2_ Finally,

4 x 2m+2 > 2% 2m+2 — 2m+3'

Part 1. Number Systems and Proof Techniques

Proof by induction

Property: After the statement M = max(M, mylist[i]) gets executed, the value
of M is max(mylist[0],..,mylist[i]).

Base Case: Take i=0. Before the statement, M=0, so the statement
assigns M to be the maximum of 0 and mylist[0], which is mylist[0].

Inductive Step: Assume that the statement is true for i=m for some m>
0. Now consider i=m+1. The statement assigns M to be the maximum of
mylistim+1] and max(mylist[0],..,mylistim]), so after the statement, M is
max(mylist[0],..,mylist[m+1]).

http://www.csc.liv.a ~konev/COMP109 Part 1. Num

72| http://www.csc.liv.ac.uk/~konev/COMP109

72| http://www.csc.liv.ac.uk/~konev/COMP169

Other starting values

Suppose you want to prove a statement not for all natural numbers, but
for all integers greater than or equal to some particular natural number b

Base Case: Show that the property holds for n = b.

Inductive Step: Assume that the property holds for n = m for any m > b.
Show that it holds forn =m+1.

Conclusion: You can now conclude that the property holds for every
integer n > b.

Part 1. Number Systems and Proof Technique

Using induction to show that a program is correct

What does the following program do?

i=0
M=0
mylist =[1,2, 6,3, 4, 5]
while i < len(mylist):
M = max(M, mylist[i])
i=i+1

print M

Part 1. Number 1s and Proof Techniques

Strong induction

m Prove that the property holds for the natural number n = 0.

m Prove that if the property holds forn =0,2,...,m (and not just fo
m!) then it holds forn =m + 1.

Can also be used to prove a property for all integers greater than or equal
to some particular natural number b

/www. csc.liv.ac.uk/~konev/COMP109

Example: Proof by strong induction

Every natural number n > 2, is a prime or a product of primes.
Base Case: Take n=2. Then nisa prime number.

Inductive Step: Assume that the property holds for n = m so every
numberist. 2 <i<misa primeora produce of primes. Now consider
n=m+1.

http://www.csc.liv.ac.uk/~konev/COMP109

Bad proofs: Using the same letter to mean two different things

Consider the following “proof” fragment:

Suppose m and n are any odd integers. Then by definition of odd,
m =2k +1and n =2k + 1 for some integer k.

http://www.csc.liv.ac.uk/~konev/COMP169

Bad proofs: Confusion between what is known and what is still to be shown

Suppose m and n are any odd integers. We must show that mn is
odd. This means that there exists an integer s such that

mn =2s+1.
Also by definition of odd, there exist integers a and b such that
m=2a+1andn=2b+1.

Then
mn=2a+1)(2b+1)=2s+1.

So, since s is an integer, mn is odd by definition of odd.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques

Part 1. Number Systems and Proof Techniques 61/ 72

Part 1. Number Systems and Proof Techniques 64 [72

Example: Number of multiplications

For any integer n > 1, if x4, Xa,.., X, are n numbers, then no matter how the
parentheses are inserted into their product, the number of multiplications
used to compute the productis n —1.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques

Bad proofs: Jumping to a conclusion

To jump to a conclusion means to allege the truth of something without
giving an adequate reason.

Suppose m and n are any even integers. By definition of even,
m = 2r and n = 2s for some integers r and s. Then
m+n=2r+2s. Som+nis even.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Numbe s and Proof Techniques

Good proofs in practice’

State your game plan.

A good proof begins by explaining the general line of reasoning,
for example, “We use case analysis” or “We argue by
contradiction.”

*Mathematics for Computer Science by E. Lehman, F. T. Leighton, and A. R. Meyer.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Numbe

72 http://www.csc.liv.ac.uk/~konev/COMP109

72| http://www.csc.liv.ac.uk/~konev/COMP169

Bad proofs: Arguing from example

An incorrect “proof” of the fact that the sum of any two even integers is
even.

This is true because if m = 14 and n = 6, which are both even,
then m + n = 20, which is also even.

Part 1. Number Systems and Proof Technique

Bad proofs: Circular reasoning

To engage in circular reasoning means to assume what is to be proved.

Suppose m and n are any odd integers. When any odd integers
are multiplied, their product is odd. Hence mn is odd.

Part 1. Numbe and Proof Techniques

Good proofs in Practice

Keep a linear flow.

Sometimes proofs are written like mathematical mosaics, with
juicy titbits of independent reasoning sprinkled throughout. This
is not good. The steps of an argument should follow one another
in an intelligible order.

‘www. csc.liv.ac.uk/~konev/COMP109 Part 1. Numbe ems and Proof Technique:

Good proofs in practice

A proof is an essay, not a calculation.

Many students initially write proofs the way they compute
integrals. The result is a long sequence of expressions without
explanation, making it very hard to follow. This is bad. A good

proof usually looks like an essay with some equations thrown in.

Use complete sentences.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques

Reading

m K. H. Rosen. Discrete Mathematics and Its Applications
Chapter 2

http://www.csc.liv.ac.uk/~konev/COMP109

Good proofs in practice

Structure your proof

m Theorem—A very important true statement.
m Proposition—A less important but still interesting statement.
m Lemma—A true statement used to prove other statements.

m Corollary—A simple consequence of a theorem or a proposition.

/72 http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques

Foundations of Computer Science
Comp109

University of Liverpool

Boris Konev

konev@liverpool.ac.uk
http://www.csc.liv.ac.uk/~konev/COMP109

Contents

Notation for sets.
Important sets.

What is a subset of a set?
When are two sets equal?
Operations on sets.
Algebra of sets.

Bit strings.

Cardinality of sets.

Russell's paradox.

http://www.csc.liv.ac.uk/~konev/COMP109

Good proofs in practice

Finish
At some point in a proof, you'll have established all the essential
facts you need. Resist the temptation to quit and leave the reader

to draw the “obvious” conclusion. Instead, tie everything together
yourself and explain why the original claim follows.

/72| http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Technique

Part 2. (Naive) Set Theory

Comp109 Foundations of Computer Science

http://www.csc.liv.ac.uk/~konev/COMP169 Part 2. Set Theory

Notation

Aset is a collection of objects, called the elements of the set. For example:

m {7,5,3};

m {Liverpool, Manchester, Leeds}.

We have written down the elements of each set and contained them
between the braces { }.

We write a € S to denote that the object a is an element of the set S:

7€{7,53}, 4¢{7,53}

http://www.csc.liv.ac.uk/~konev/COMP109

m The order of elements does not matter

m Repeatitions do not count

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory

Important sets (notation)

The empty set has no elements. It is written as @ or as {}.

We have seen some other examples of sets in Part 1.

m N ={0,1,2,3,...} (the natural numbers)
mZ={..,-2,-10,12,...} (the integers)
m 2t ={1,2,3,...} (the positive integers)

m Q= {x/y|x€ZyeZy# 0} (the rationals)
m R: (real numbers)

m [a,b] = {x e R|a < x < b} the set of real numbers between a and b
(inclusive)

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory

Example

LetS={1,2,3,4,5}, A= {1,3,5} and B = {3, 4}.

m The characteristic vector of Ais (1,0,1,0,1).
m The characteristic vector of Bis (0,0,1,1,0).

m The set characterised by (1,1,1,0,1) is {1,2,3,5}.
m The set characterised by (1,1,1,1,1) is {1,2,3,4,5}.
m The set characterised by (0,0,0,0,0) is ...

http://www.csc.liv.ac.uk/~konev/COMP109

Notation

For a large set, especially an infinite set, we cannot write down all the
elements. We use a predicate P instead.

S ={x| P}
denotes the set of objects x for which the predicate P(x) is true.
Examples: Let S = {1,3,5,7,...}. Then

S={x| xisan odd positive integer}

S={2n—1] nis a positive integer }.

50 http://www.csc.liv.ac.uk/~konev/COMP169

5/50 http://www.csc.liv.ac.uk/~konev/COMP109

Detour: Sets in python

Sets are the ‘most elementary’ data structures (though they don't always
map well into the underlying hardware).

Some modern programming languages feature sets.

m For example, in Python one writes
empty = set()
m={'a’, 'b’, 'c'}
n=1{1, 2}
print 'a’

Part 2. Set Theory

Subsets

Definition A set B is called a subset of a set A if every element of B is an
element of A. This is denoted by B C A.

Examples:

{3,4,5} € {1,5,4,2,1,3}, {3,3,5} C {3,5}, {5,3} C {3,5}.

A

Figure 1: Venn diagram of B C A.

http://www.csc.liv.a ~konev/COMP109

6

More examples

Find simpler descriptions of the following sets by listing their elements:

m A= {x| xisaninteger and x> + 4x = 12};
m B = {x| xa day of the week not containing “u” };

m C={n?| nisan integer }.

/50| http://www.csc.liv.ac.uk/~konev/COMP109

Computer representation of sets

Only finite sets can be represented
m Number of elements not fixed: List (?) ava&Python do differently
m All elements of A are drawn from some ordered sequence

,...,Sp: the characteristic vecto
bn) where

of A is the sequence

1 if sieA
0 if s;i¢A

Sequences of zeros and ones of length n are called bit strings of length n.
AKA bit vectors AKA bit arrays

50 | http://www.csc.liv.ac.uk/~konev/COMP169 Part 2. Set Theory

Detour: Subsets in Python

def isSubset(A, B):
for x in A:
if x not in B:
return False
return True

Testing the method:

print isSubset(n,m)

But then there is a built-in operation:

print n<m

http://www.csc.liv.ac.uk/~konev/COMP109

Subsets and bit vectors

LetS={1,2,3,4,5}, A= {1,3,5} and B = {3, 4}.

mIsACB?

m Is the set C, represented by (1,0,0,0,1), a subset of the set D,

represented by (1,1,0,0,1)?

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory

Example

Suppose

A ={4,7,8}
and

B = {4,9,10}.

AUB={4,7,8,9,10}.

http://www.csc.liv.ac.uk/~konev/COMP169 Part 2. Set Theory

The intersection of two sets

Definition The intersection of two sets A and B is the set

ANB={x|xecAandxeB}.

Figure 3: Venn diagram of AN B.

http://www.csc.liv.ac.uk/~konev/COMP109

14

Equality

denoted by A = B.
Examples:
{1} ={1,1,1},
{1,2} ={2,1},
{5,4,4,3,5} = {3,4,5}.

/50 http://www.csc.liv.ac.uk/~konev/COMP109
Detour: Set union in Python

def union(A, B):
result = set()
for x in A:

result.add(x)
for x in B:

result.add(x)
return result

Testing the method:

print union(m, n)

But then there is a built-in operation:
print m.union(n)
50 http://www.csc.liv.ac.uk/~konev/COMP169 Part 2. Set Theory

Example

Suppose

A={4,7,8}
and

B = {4,9,10}.

ANB = {4}

http://www.csc.liv.ac.uk/~konev/COMP109

Definition A set A is called equal to aset Bif AC Band B C A. This is

15/

The union of two sets

Definition The union of two sets A and B is the set

AUB={x|xeAorxeB}.

Figure 2: Venn diagram of AU B.

50| http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory

Union of sets represented by bit vectors

LetS = {1,2,3,4,5}, A= {1,3,5} and B = {3, 4}.

m Compute AUB.

0| http://www.csc.liv.ac.uk/~konev/COMP169

Detour: Set intersection in Python

def intersection(A, B):
result = set()
for x in A:
if x in B:
result.add(x)
return result

Testing the method:

print intersection(m, n)
print intersection(n, {1})

But then there is a built-in operation:

print n.intersection ({1})

http://www.csc.liv.ac.uk/~konev/COMP109

m Compute the union of the set C, represented by (1,0,0,0,1), and the
set D, represented by (1,1,0,0,1).

Intersection of sets represented by bit vectors

LetS={1,2,3,4,5}, A= {1,3,5} and B = {3, 4}.

m Compute ANB.

m Compute the intersection of the set C, represented by (1,0, 0,0, 1), and
the set D, represented by (1,1,0,0,1).

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory

Detour: Set complement in Python

def complement(A, B):
result = set()
for x in A:
if x not in B:
result.add(x)

return result

Testing the method:

print complement(m, {’a’})

But then there is a built-in operation:

print m—{'a’}

http://www.csc.liv.ac.uk/~konev/COMP169 Part 2. Set Theory

Complement and bit vectors

LetS ={1,2,3,4,5}, A={1,3,5} and B = {3,4}.

m Compute ~ A.

m Compute ~ B.

m Compute the complement of the set C, represented by (1,0,0,0,1).

http://www.csc.liv.ac.uk/~konev/COMP109

The relative complement

Definition The relative complement of a set B relative to a set A is the set

A—B={x|xeAandx¢B}.

Figure 4: Venn diagram of A — B.

23/50 http://www.csc.liv.ac.uk/~konev/COMP109

Relative complement and bit vectors

LetS = {1,2,3,4,5}, A= {1,3,5} and B = {3, 4}.

m Compute A — B.

m Compute the relative complement of the set C, represented by
(1,0,0,0,1), related to the set D, represented by (1,1,0,0,1).

50 http://www.csc.liv.ac.uk/~konev/COMP169 Part 2. Set Theory

The symmetric difference

Definition The symmetric difference of two sets A and B is the set

AAB = {x|(xeAandx¢B)or(x¢AandxeB)}.

Figure 6: Venn diagram of AAB.

http://www.csc.liv.ac.uk/~konev/COMP109

24 /50 | http://www.csc.liv.ac.uk/~konev/COMP109

Example

Suppose

A={4,7,8}
and

B = {4,9,10}.

A—B={7,8}

Part 2. Set Theory

The complement

When we are dealing with subsets of some large set U, then we call U the
universal set for the problem in question.

Definition The complement of a set A is the set

~A={x|xX¢A}=U-A

Figure 5: Venn diagram of ~ A. (The rectangle is U)

0| http://www.csc.liv.ac.uk/~konev/COMP169

Example

Suppose

A={47,8}
and

B = {4,9,10}.

AAB = {7,8,9,10}

http://www.csc.liv.ac.uk/~konev/COMP109

The algebra of sets

Suppose that A, Band U are sets with A C U and B C U.

Commutative laws:

AUB=BUA, ANB=BNA;

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory

Proving the associative law AU (BUC) = (AUB)UC

This is almost as easy as proving the commutative law, but now there are 8
cases to check, depending on whether x € A, whether x € B and whether
xeC

Definition: XUY = {x | x e Xorx € Y}

Here is one case: Suppose x € A, x ¢ Band x ¢ C. Since x € A, we can use
the definition with X =A and Y = BU C to show that x € AU (BU ().

Since x € A, we can use the definition with X = A and Y = B to show that
X € AU B. Then we can use the definition with X =AU B and Y = C to show
thatx e (AUB)UC.

Writing out all eight cases is tedious, but it is not difficult.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory

The algebra of sets

Suppose that A and U are sets with A C U. Let ~ A= U — A. Then

Complement laws:

AU~A=U, ~U=0, ~(~A) =A AN ~A=0, ~0=U;

http://www.csc.liv.ac.uk/~konev/COMP109

Proving the commutative lawAUB =BUA

Definition: AUB={x|x€Aorxe B} BUA={x|xe BorxeA}
These are the same set. To see this, check all possible cases.

Case 1: Suppose x € A and x € B. Since x € A, the definitions above show that x is
in both AuBand BUA.

Case 2: Suppose x € Aand x ¢ B. Since x € A, the definitions above show that x is
in both AuBand BUA.

Case 3: Suppose x ¢ A and x € B. Since x € B, the definitions above show that x is
in both AuBand BUA.

Case 4: Suppose x ¢ A and x ¢ B. The definitions above show that x is not in AU B
and x is not in BUA.

So, for all possible x, either x is in both AU B and BUA, or it is in neither.
We conclude that the sets AU B and BU A are the same.

32/50 http://www.csc.liv.ac.uk/~konev/COMP109

The algebra of sets

Suppose that A and U are sets with A C U.

Identity laws:

AUD=A AUU=U, ANU=A, AND =1

50 http://www.csc.liv.ac.uk/~konev/COMP169 Part 2. Set Theory

The algebra of sets

Suppose that A, B.and U are sets with A C U, and B C U. Recall that
~X=U-XandAUB={x|xeAorxe B} and
ANB={x|xeAandxe B} Then

De Morgan’s laws:

~ (AUB) =~ AN~ B, ~ (AN B) =~ AU ~ B.

http://www.csc.liv.a ~konev/COMP109

The algebra of sets

Suppose that A, B, C, U are setswithAC U, BC U, and C C U.

Associative laws:

AU(BUC) =(AUB)UC, AN(BNC)=(ANB)NC;

33 /50 http://www.csc.liv.ac.uk/~konev/COMP109

The algebra of sets

Suppose that A, B, C, U are sets with A C U, BC U, and C C U.

Distributive laws:

AN(BUC) =ANB)UMANC), AUBNC) =(AUB)N(AUCQ);

50 | http://www.csc.liv.ac.uk/~konev/COMP169

Part 2. Set Theory

A proof of De Morgan’s law ~ (AN B) =~ AU ~ B

Case 1: Suppose x € A and x € B. From the definition of N, x € AN B. So from the
definition of ~, x ¢~ (AN B). From the definition of ~, x ¢~ A and also x ¢~ B. So
from the definition of U, x g~ AU ~ B.

Case 2: Suppose x € Aand x ¢ B. From the definition of N, x ¢ AN B. So from the
definition of ~, x e~ (AN B). From the definition of ~, x ¢~ A but x €~ B. So from
the definition of U, x e~ AU ~ B.

Case 3: Suppose x ¢ A and x € B. From the definition of N, x ¢ AN B. So from the
definition of ~, x e~ (AN B). From the definition of ~, x e~ A but x ¢~ B. So from
the definition of U, x e~ AU ~ B.

Case 4: Suppose x ¢ A and x ¢ B. From the definition of N, x ¢ AN B. So from the
definition of ~, x e~ (AN B). From the definition of ~, x e~ A and x €~ B. So from
the definition of U, x e~ AU ~ B.

http://www.csc.liv.ac.uk/~konev/COMP109

Using the algebra of sets Cardinality of sets

~ AU ~ B) De Morgan
~ B) distributive
(~ B (AUB)) commutative
B))
)

Prove that AAB = (AU B)N ~ (AN B). (See the next slide.)

U ((~ BNA)U(~ BN B)) distributive
U ((An ~ B) U (BN ~ B)) commutative Definition The cardinality of a finite set S is the number of elements in S,

(/U (BN ~ A)) U ((AN ~ B) U) complement and is denoted by |S].

= AAB definition

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 41/50 http://www.csc.liv.ac.uk/~konev/COMP109 Set Theory 42 [50 | http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory

Computing the cardinality of a union of two sets Example Computing the cardinality of a union of three sets

If A.and B are sets then

[AUBUC| =|Al+|B|+|C|—|ANB|—|]ANC|—|BNC|+|ANBNC(|
[AUB| = |Al+|B|—|ANB|.

Suppose there are 100 third-year students. 40 of them take the module
“Sequential Algorithms” and 80 of them take the module “Multi-Agent
Systems”. 25 of them took both modules. How many students took neither
modules?

These are special cases of the principle of inclusion and exclusion which
we will study later.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 44 [50 http://waw.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 5/50 http://www.csc.liv.ac.uk/~konev/COMP169

Proof (optional) Reflection Why is this set theory “naive”

We need lots of notation.

mA—(BUC)|=ngq |B=(AUQ)| =np, |C—(AUB)|=n,
m [(ANB) = C| = nap, (AN C) = B = N, (BN C) — Al = e,
B [ANBNC| = ngpe vl

) It suffers from paradoxes.
The following statements hold:

A{J B
‘ m e {0)butheo
m) C {5}
|[AUBUC| = Ng + Np + Nc + Nap + Nac + Nbe + Nabe m {2} ¢ {{2}} but {2} € {{2}};
= (Mg + Nap + Nac + Nave) + (N + Nab + Nbe + Nabe) m {3,{3}} = {3}
+ (Nc + Nac + Npe + Nabe) — (Nab + Nabe)

- (nac + nabc) - (nbc + nabc) + Nabe

http://www.csc.liv.ac.uk/~konev/COMP109 http://www.csc.liv.a ‘~konev/COMP109 z 4 http://www.csc.liv.ac.uk/~konev/COMP109

Why is this set theory “naive” Russell’s Paradox

Russell's paradox shows that the ‘object’ {x | P(x)} is not always FOU ndations Of Com puter SC|ence

It suffers from paradoxes. meaningful.

SetA={B|B¢B} Comp‘IO9

A leading example:

A barber is the man who shaves all those, and only those, men Problem: do we have A € A?

who do not shave themselves. . .))
Abbreviate, for any set C, by P(C) the statement C ¢ C. Then A = {B| P(B)}. University of Liverpool

Boris Konev
m Who shaves the barber? m If A € A then (from the definition of P), not P(A). Therefore A ¢ A. konev@liverpool.ac.uk

m [fA ¢ A then (from the definition of P), P(A). Therefore A € A. http://www.csc.liv.ac.uk/~konev/COMP109

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 49 /50 http://www.csc.liv.ac.uk/~konev/COMP109

Reading Contents

Functions: definitions and examples
Domain, codomain, and range

Part 4. Function Injective, surjective, and bijective functions
Comp109 Foundations of Computer Science m Discrete Mathematics and Its Applications K. Rosen, Section 2.3. Invertible functions

m Discrete Mathematics with Applications S. Epp, Chapter 7. Compositions of functions
Functions and cardinality
Pigeon hole principle

Cardinality of infinite sets

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function /42 http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 2/ 42| http://www.csc.liv.ac.uk/~konev/COMP169 Part 4. Function

Functions Functions/methods on programming Definition

A function from a set A to a set B is an assignment of exactly one element
of B to each element of A.

We write f(a) = b if b is the unique element of B assigned by the function f

Pl s G) to the element of a.

return x+5;

T Examples: 1

mput If fis a function from A to B we write f: A — B.

— 2
my=x int f(int x) {
V4 By =sin(x) return x+5;
* m first letter of your name } @ (&)
def f(int x): @ ®

return x+5 3 @

Figure 1: A function f: {1,2,3} — {4,5,6}

f) Output

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function http://www.csc.liv.a ‘~konev/COMP109 z http://www.csc.liv.ac.uk/~konev/COMP109

@

Figure 2: No function

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function

Codomain vs range

Figure 4: the range of f

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function

Injective (one-to-one) functions

Definition Let f: A — B be a function. We call fan in
function if
flar) =f(ap) = a1 =a; forall ar,a; € A.

This is logically equivalent to a; # a, = f(a1) # f(a2) and so injective
functions never repeat values. In other words, different inputs give
different outputs.

Examples
f:2Z — Z given by f(x) = x is not injective.

h:Z — Z given by h(x) = 2x is injective.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function

Figure 3: No function

/42 http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function

Composition of functions

Iff: X— Yand g:Y— Zare functions, then their composition gofis a
function from X to Z given by

(g o) = g(fx))-

2 http://www.csc.liv.ac.uk/~konev/COMP169 Part 4. Function

Surjective (or onto) functions

Definition f: A — Bis surjective (or onto) if the range of f coincides with
the codomain of f. This means that for every b € B there exists a € A with
b =f(a).

Examples

f:2Z — Z given by f(x) = x? is not surjective.

h:Z — Z given by h(x) = 2x is not surjective.

h":Q — Q given by h'(x) = 2x is surjective.

http://www.csc.liv.a ~konev/COMP109

Domain, codomain, and range

Suppose f: A — B.

m Ais called the domain of f. B is called the cod
m The range f(A) of fis
flA) = {f(x) | x € A}.

[42| http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function

Example

Consider the function f: R — R given by f(x) = x> and the function
g:R — R given by g(x) = 4x+ 3. Calculate gof, fog, fofand gog.

2| http://www.csc.liv.ac.uk/~konev/COMP169 Part 4. Function

Classify f: {a, b, c} — {1,2,3} given by

http://www.csc.liv.ac.uk/~konev/COMP109

Classify g : {a,b,c} — {1,2,3} given by

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function

Bijections

We call f e if fis both injective and surjective.

Examples

f:Q — Q given by f(x) = 2x is bijective.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function

Example

LetA={x|x€eR,x#1}and f:A— Abe given by

Show that f is bijective and determine the inverse function.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function

/42 http://www.csc.liv.ac.uk/~konev/COMP109

2 http://www.csc.liv.ac.uk/~konev/COMP169

Classify h : {a,b,c} — {1,2} given by

Part 4. Function

Inverse functions

If fis a bijection from a set X to a set Y, then there is a function f~' from Y
to X that “undoes” the action of f; that is, it sends each element of Y back
to the element of X that it came from. This function is called the inverse

function for f.

Then f(a) = b if, and only if, f~'(b) = a.

Part 4. Function

Bijections and representations

Let S={1,2,...,n} and let B" be the set of bit strings of length n. The

function
f: Pow(S) — B"

which assigns each subset A of S to its characteristic vector is a bijection.

http://www.csc.liv.ac.uk/~konev/COMP109

[42| http://www.csc.liv.ac.uk/~konev/COMP109

2| http://www.csc.liv.ac.uk/~konev/COMP169

Classify h’ : {a, b, c} — {1,2,3} given by

Part 4. Function

Example

k:R — R given by k(x) = 4x + 3 is invertible and

) = 720/~ 3).

Part 4. Function

Cardinality of finite sets and functions

Recall: The cardinality of a finite set S is the number of elements in S

A bijectionf: S — {1,...,n}.

For finite sets A and B
m |A| > |B] iff there is a surjective function from A to B.
m |A| < |B| iff there is a injective function from A to B.

m |A| = |B| iff there is a bijection from A to B.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function

The pigeonhole principle

Letf: A — B be afunction where A and B are finite sets.

The pigeonhole principle states that if |A| > |B| then at least one value of f
occurs more than once.

In other words, we have f(a) = f(b) for some distinct elements a, b of A.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function

Example

Problem. How many different surnames must appear in a telephone
directory to guarantee that at least two of the surnames begin with the
same letter of the alphabet and end with the same letter of the alphabet?

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function

Example

Problem. How many different surnames must appear in a telephone
directory to guarantee that at least five of the surnames begin with the
same letter of the alphabet and end with the same letter of the alphabet?

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function

2 http://www.csc.liv.ac.uk/~konev/COMP169

Pigeons and pigeonholes

If (N+1) pigeons occupy N holes, then some hole must have at
least 2 pigeons.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function

Example

Problem. Five numbers are selected from the numbers 1,2,3,4,5,6,7 and
8. Show that there will always be two of the numbers that sum to 9.

Part 4. Function

Example

Problem. Show that in any group of six people there are either three who
all know each other or three complete strangers.

http://www.csc.liv.ac.uk/~konev/COMP109

[42| http://www.csc.liv.ac.uk/~konev/COMP109

2| http://www.csc.liv.ac.uk/~konev/COMP169

Example

Problem. There are 15 people on a bus. Show that at least two of them
have a birthday in the same month of the year.

Part 4. Function

Extended pigeonhole principle

Consider a function f: A — B where A and B are finite sets and |A| > R|B|
for some natural number k. Then, there is a value of f which occurs at least
R+ 1times.

Part 4. Function

Bijections and cardinality
Recall that the cardinality of a finite set is the number of elements in the
set.

Sets A and B have the same cardinality iff there is a bijection from A to B.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function

Example: The cardinality of the power set.

Definition The power set Pow(A) of a set A is the set of all subsets of A. In
other words,
Pow(A) = {C| C C A}.

Forall n € Z* and all sets A: if |A| = n, then [Pow(A)| = 2".

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function

The number of n-bit vectors is 2"

Inductive Step: Assume that the property holds for n = m, so the
number of m-bit vectors is 2™. Now consider the set B of all (m + 1)-bit
vectors. We must show that |B| = 2M+".

Every (by, b, bm41) € B starts with an m-bit vector (bq, by, ..., bn)
followed by bp44, which can be either 0 or 1.

Thus
|8 =M 4am = msl

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function

Countable Sets:

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function

Power set and bit vectors

Recall that if all elements of a set A are drawn from some orderec
sequence S =sy,...,Sy: the characteristic vector of A is the sequence
(b1,...,bn) where

if s;eA
b=)
0 if si¢A

We use the correspondence between bit vectors and subsets: |Pow(A)] is
the number of bit vectors of length n.

/42 http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function

Infinite sets

Sets A and B have the same cardinality iff there is a bijection from A to B.
Examples:

m Z and even integers
m consider f(n) = 2n

m{xeR|0<x<1}andR*"
m consider g(x) = 1 —1

m{xeR|0<x<1}andR

Number line

2 http://www.csc.liv.ac.uk/~konev/COMP169 Part 4. Function

Uncountable sets

m Asetthat is not countable is called uncountable.
m S={xeR|0<x<1}isuncountable

http://www.csc.liv.ac.uk/~konev/COMP109

The number of n-bit vectors is 2"

We prove the statement by induction.

Base Case: Take n = 1. There are two bit vectors of length 1: (0) and (7).

[42| http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function

Countable sets

A set that is either finite or has the same cardinality as N is called
countable.

2| http://www.csc.liv.ac.uk/~konev/COMP169 Part 4. Function

Cantor’s diagonal argument

Suppose S is countable. Then the decimal representations of these
numbers can be written as a list

ay=0.anapa3... A .- -
a; =0.a21 A A23... Qop .. -
a3 =0.031 03 033... A3 ...

anp =0.001 A2 Ap3 ... Appy - - -

Letd:(ldj d2d3“.dn...

g [1ifai#
2, ifa; =1

Then d is not in the sequence a4, ay, as...

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function

Foundations of Computer Science
Comp109

University of Liverpool

Boris Konev

konev@liverpool.ac.uk
http://www.csc.liv.ac.uk/~konev/COMP109

Contents

The Cartesian product

Definition and examples

Representation of binary relations by directed graphs
Representation of binary relations by matrices
Properties of binary relations

Transitive closure

Equivalence relations and partitions

Partial orders and total orders.

Unary relations

http://www.csc.liv.ac.uk/~konev/COMP169

Ordered pairs

Definition The Cartesian product A x B of sets A and B is the set consisting
of all pairs (a,b) withae Aand b € B, ie,

AxB={(a,b)|aeAandb e B}.

Note that (a,b) = (c,d) ifand only ifa=cand b =d.

Note

m {1,2} = {2,1} but (1,2) # (2,1).

http://www.csc.liv.ac.uk/~konev/COMP109

Part 3. Relations

Comp109 Foundations of Computer Science

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations

Motivation

m Intuitively, there is a “relation” between two things if there is some
connection between them.
Eg.
m ‘friend of’
ma<b
m m divides n
m Relations are used in crucial ways in many branches of mathematics
m Equivalence
m Ordering

m Computer Science

http://www.csc.liv.ac.uk/~konev/COMP169 Part 3. Relations

Example

m LetA={1,2} and B = {a,b,c}. Then

AxB={(1,a),(2,a),(1,b),(2,b),(1,¢),(2,¢)}.

http://www.csc.liv.a ~konev/COMP109

/54| http://www.csc.liv.ac.uk/~konev/COMP109

Reading

Discrete Mathematics and Its Applications K. Rosen, Chapter 9.

Part 3. Relations

Databases and relations

A database table ~ relation

TABLE 1 Students.

Student_name ID_number Major

Ackermann 231455 Computer Science
Adams 888323 Physics

Chou 102147
Goodfriend 453876
Rao 678543
Stevens 786576

Computer Science
Mathematics
Mathematics
Psychology

http://www.csc.liv.ac.uk/~konev/COMP109 Relations

Relations

Definition A binary relation between two sets A and B is a subset R of the
Cartesian product A x B.

If A= B, then R is called a binary relation on A.

/www. csc.liv.ac.uk/~konev/COMP109

Example: Family tree

Fred and Mavis John and Mary

/

Alice Ken and Sue Mike Penny

Jane Fiona Alan

Write down

m R={(x,y) | xis agrandfather of y };

m S={(x,y)| xisasisterof y }.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations

Representation of binary relations: directed graphs

m Let A and B be two finite sets and R a binary relation between these
two sets (i.e, R C A x B).

m We represent the elements of these two sets as vertices of a graph.

m For each (a,b) € R, we draw an arrow linking the related elements.

m This is called the directed graph (or digraph) of R.

http://www.csc.liv.ac.uk/~konev/COMP169

Functions as relations

m Recall that a function f from a set A to a set B assigns exactly one
element of B to each element of A.

m Gives rise to the relation Rr = {(a,b) € Ax B| b = f(a)}

m If a relation S C A x B is such that for every a € A there exists at most
one b € Bwith (a,b) € S, relation S is functional.

m (Sometimes in the literature, functions are introduced through
functional relations.)

http://www.csc.liv.ac.uk/~konev/COMP109

Example 2

Write down the ordered pairs belonging to the following binary relations
between A ={1,3,5,7} and B = {2, 4,6}:

B U={(x,y) eAxB|x+y=9}

mV={(x,y) eAxB|x<y}.

/54 http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations

Example

Consider the relation V between A = {1,3,5,7} and B = {2, 4,6} such that
V={(x,y) eAxB|x <y}

@

Figure 1: digraph of vV

http://www.csc.liv.ac.uk/~konev/COMP169 Part 3. Relations

Inverse relation

Definition Given a relation R C A x B, we define the inverse relation
R-TCBxAby
R™ ={(b,a) | (a,b) € R}.

Example: The inverse of the relation is a parent of on the set of people is
the relation is a child of.

http://www.csc.liv.a ~konev/COMP109

/54| http://www.csc.liv.ac.uk/~konev/COMP109

Example 3

Let A ={1,2,3,4,5,6}. Write down the ordered pairs belonging to

R={(x,y) e AxA| xisadivisor of y }.

Part 3. Relations

Digraphs of binary relations on a single set
A binary relation between a set A and itself is called “a binary relation on
A"

To represent such a relation, we use a directed graph in which a single set
of vertices represents the elements of A and arrows link the related
elements.

Consider the relation V C A x A where A ={1,2,3,4,5} and
V=1{(1,2),(3,3), (5,5), (1,4), (4,1), (4,5)}.

http://www.csc.liv.ac.uk/~konev/COMP169 Part 3. Relations

Composition of relations

Definition Let R C A x Band S C B x C. The (functional) composition of R
and S, denoted by So R, is the binary relation between A and C given by

SoR={(a,c)| exists b € Bsuch that aRb and bSc}.
Example: If R is the relation is a sister of and S is the relation is a parent
of, then

m SoRisthe relation is an aunt of;
m SoSisthe relation is a grandparent of.

http://www.csc.liv.ac.uk/~konev/COMP109

Digraph representation of compositions

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations

Example 2

Let A= {a,b,c,d} and suppose that R C A x A has the following matrix
representation:

List the ordered pairs belonging to R.

http://www.csc.liv.ac.uk/~konev/COMP169

The formal description

Given two matrices with entries “T" and “F" representing the relations we
can form the matrix representing the composition. This is called the

logical (Boole

LetA={a,...,an}, B={by, bn}and C={a,...,cp}.

The logical matrix M representing R is given by:

- | T if (a,b)eR
M(”’)‘{F if (a,,bj)eR

The logical matrix N representing S is given by

NG, j) = { r

http://www.csc.liv.ac.uk/~konev/COMP109

Computer friendly representation of binary relations: matrices

m Another way of representing a binary relation between finite sets uses
an array.

m letA={ay,...,an},B={b1,...,bn}and RC A x B.

m We represent R by an array M of n rows and m columns. Such an array
is called a n by m matrix.

m The entry in row i and column j of this matrix is given by M(i,j) where

M@, j) :{

/54 http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations

Example

The binary relation R on A = {1,2,3, 4} has the following digraph
representation.

m The ordered pairs R =

m The matrix

m In words:

http://www.csc.liv.ac.uk/~konev/COMP169 Part 3. Relations

Matrix representation of compositions

Then the entries P(i,j) of the logical matrix P representing So R are given by
m P(i,j) = T if there exists [with 1 < [< m such that M(i,l) = T and
N(Lj) =T.

m P(i,j) = F, otherwise.

We write P = MN.

http://www.csc.liv.a ~konev/COMP109

Example 1

Let A ={1,3,5,7}, B= {2, 4,6}, and
U={(x,y) eAxB|x+y=29}

Assume an enumeration a; =1,a, =3,a3 =5,a, =7 and by =2, b, = 4,
bs = 6. Then M represents U, where

54| http://www.csc.liv.ac.uk/~konev/COMP109 3. Relations

Matrices and composition

Now let's go back and see how this works for matrices representing
relations

@ O @ X @ ®

® @@ @®

e[1TT] s
| FTF ’
TF

http://www.csc.liv.ac.uk/~konev/COMP169 Part 3. Relations

The example from before

Let R be the relation between A = {a, b} and B = {1,2,3} represented by
the matrix

mo [T TT
FTF

Similarly, let S be the relation between B and C = {x,y} represented by the
matrix

http://www.csc.liv.ac.uk/~konev/COMP109

Infix notation for binary relations Properties of binary relations (1)

Example

A binary relation R on a set A is

Then the matrix P = MN representing So R is m reflexive when xRx for all x € A.

If R is a binary relation then we write xRy whenever (x,y) € R. The WX A(X) —> XRX

TT ;] i
P= predicate xRy is read as x is R-related to y.

T F
m symmetric when xRy implies yRx for all x,y € A;

VX, ¥ XRy = yRx

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations / 54 http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 54| http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations

Properties of binary relations (2) Example Digraf representation

m reflexive XRx

m symmetric xRy = yRX) .)
In the directed graph representation, R is

A binary relation R on a setA is m antisymmetric xRy, yRx = x =y
m transitive xRy, yRz = xRz reflexive if there is always an arrow from every vertex to itself;

m antisymmetric when xRy and yRx imply x = y for all x,y € A; . .)
4 v J - ‘ ol symmetric if whenever there is an arrow from x to y there is also an

arrow from y to x;

-) antisymmetric if whenever there is an arrow from x to y and x # y,

m transitive when xRy and yRz imply xRz for all x,y,z € A. Ri={(1,1),(2,2),(3,3),(2,3),(3,2)} then there is no arrow from y to x;

transitive if whenever there is an arrow from x to y and from y to z

there is also an arrow from x to z.

X,y XRy and yRx =y = X LetA = {1,2,3}.

VX,V,Z XRy and yRZ = xRz R, ={(2,2),(2,3),(3,2),(3,3)}
Ry ={(1,1),(2,2),(3,3),(1,3)}

http://www.csc.liv.ac.uk/~konev/COMP109 http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations http://www.csc.liv.ac.uk/~konev/COMP169 Part 3. Relations

Example Transitive closure Example

Which of the following define a relation that is reflexive, symmetric, Given a binary relation R on a set A, the transitive closure R* of R is the
antisymmetric or transitive? (uniquely determined) relation on A with the following properties: Let A = {1,2,3}. Find the transitive closure of

m x divides y on the set Z* of positive integers; B R* is transitive;
4 P . R={(1,1),(1,2),(1,3),(2,3). 3.)}
m X # y on the set Z of integers; m R CR*%;

m x has the same age as y on the set of people. m If Sis a transitive relation on Aand R C S, then R* C S.

http://www.csc.liv.ac.uk/~konev/COMP109

http://www.csc.liv.ac.uk/~konev/COMP109 http://www.csc.liv.a ~konev/COMP109

Finding the transitive closure is easier with the digraph representation

Reachability relation

http://www.csc.liv.ac.uk/~konev/COMP109

Computation

RoR={(a,c) | exists b € Asuch that aRb and bRc}.

Note (in red) that there are pairs (a, c) that are in Ro R but not in R. Hence,
R is not transitive.

http://www.csc.liv.ac.uk/~konev/COMP169

Example

Define a relation R on the set R of real numbers by setting xRy if and only
if x —yisan integer. Prove that R is an equivalence relation. Moreover,

m Ey = Zis the equivalence class of 0;

= 21 _q1 114191 i i 1
lE;f{.M 25 —15,—3,3,13,25,...} is the equivalence class of ;.

http://www.csc.liv.ac.uk/~konev/COMP109

Transitivity and composition

A relation S is transitive if and only if So S C S.

This is because

SoS={(a,c)| exists b such that aSb and bSc}.

Let S be a relation. Set$'=5,52=5085,5* =S0S50S, and so on.

Theorem Denote by S* the transitive closure of S. Then xS*y if and only if
there exists n > 0 such that xS"y.

/54 http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations

Detour: Warshall's algorithm

def warshall(a):
assert (len(row) == len(a) for row in a)
n = len(a)
for k in range(n):
for i in range(n):
for j in range(n):
illjl or
and alkl[j])

(n
alilljl = ali
k]

(alill

return a

print warshall([[1,0,0,1,0],
[0,1,0,0,1],
[0,0,1,0,0],
[1,0,1,0,0],
[0,1,0,1,0]1])

http://www.csc.liv.ac.uk/~konev/COMP169 Part 3. Relations

Functions and equivalence relations

Letf: A — B be a function. Define a relation R on A by

aiRa; @f(aﬂ = f(az).

Then R is an equivalence relation on A. The equivalence class £, of a € A'is
given by

Eqo={d € A|f(d) =f(a)}.
Example: A is a set of cars, B is the set of real numbers, and f assigns to

any car in A its length. Then a;Ra; if and only if a; and a; are of the same
length.

http://www.csc.liv.a ~konev/COMP109

Transitive closure in matrix form

The relation R on the set A = {1,2,3, 4,5} is represented by the matrix

Determine the matrix R o R and hence explain why R is not transitive.

/54| http://www.csc.liv.ac.uk/~konev/COMP109

Part 3. Relations

Important relations: Equivalence relations

Definition A binary relation R on a set A is called an equivalence relation if
it is reflexive, transitive, and symmetric.

Examples:

m the relation R on the non-zero integers given by xRy if xy > 0;

m the relation has the same age on the set of people.
Definition The equivalence class Ex of any x € A is defined by

Ex={y | yRx}.

http://www.csc.liv.ac.uk/~konev/COMP169 Part 3. Relations

Partition of a set

on of a set A is a collection of non-empty subsets Aq, ..., A, of A
satisfying:

BA=AUAU---UAp
IA,‘QA/'=®]COI’I.¢}',

The A; are called the blocks of the partjtion.

NS

Figure 3: Partition of A

/www. csc.liv.ac.uk/~konev/COMP109 Part N

Connecting partitions and equivalence relations

Theorem Let R be an equivalence relation on a non-empty set A. Then the
equivalence classes {Ex | x € A} form a partition of A.

Proof (Optional)

The proofis in four parts:

(1) We show that the equivalence classes Ex = {y | yRx}, x € A, are
non-empty subsets of A: by definition, each Ey is a subset of A. Since R is
reflexive, xRx. Therefore x € Ex and so Ex is non-empty.

(2) We show that A is the union of the equivalence classes Ey,x € A: We
know that Ex C A, for all Ex, x € A. Therefore the union of the equivalence
classes is a subset of A. Conversely, suppose x € A. Then x € Ex. So,Ais a
subset of the union of the equivalence classes.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations

Important relations: Partial orders

Definition A binary relation R on a set A which is reflexive, transitive and
antisymmetric is called a partial order.

Partial orders are important in situations where we wish to characterise
precedence.

Examples:

m the relation < on the the set R of real numbers;
m the relation C on Pow(A);

m “is a divisor of’ on the set Z* of positive integers.

http://www.csc.liv.ac.uk/~konev/COMP169

Important relations: Total orders

Definition A binary relation R on a set A is a total order if it is a partial
order such that for any x,y € A, xRy or yRx.

The Hasse diagram of a total order is a chain.

Examples

m the relation < on the set R of real numbers;
m the usual lexicographical ordering on the words in a dictionary;

m the relation “is a divisor of” is not a total order.

http://www.csc.liv.ac.uk/~konev/COMP109

51

5/ 54 http://www.csc.liv.ac.uk/~konev/COMP109

(Optional) Proof (continued)

The purpose of the last two parts is to show that distinct equivalence
classes are disjoint, satisfying (ii) in the definition of partition.

(3) We show that if xRy then Ex = E,: Suppose that xRy and let z € E. Then,
zRx and xRy. Since R is a transitive relation, zRy. Therefore, z € E,. We have
shown that £x C Ey,. An analogous argument shows that £, C Ey. So, Ex = Ej,.

(4) We show that any two distinct equivalence classes are disjoint: To this
end we show that if two equivalence classes are not disjoint then they are
identical. Suppose ExNEy # (). Take a z € ExN E,. Then, zRx and zRy. Since R
is symmetric, XRz and zRy. But then, by transitivity of R, xRy. Therefore, by
(3), Ex =Ey.

Part 3. Relations

Example: Job scheduling

Immediately Preceding Tasks

Task 4
6 hours

Task 2
6 hours

Task 5
3 hours

Task 8
2 hours

Task 9
| 5hours

http://www.csc.liv.ac.uk/~konev/COMP169 Part 3. Relations

n-ary relations

The Cartesian product Ay x Ay x -+ x A, of sets Ay, Ay, ..., A, is defined by

/54 http://www.csc.liv.ac.uk/~konev/COMP109

6 /54| http://www.csc.liv.ac.uk/~konev/COMP109

Connecting partitions and equivalence relations

Theorem Suppose that Ay,..., A, is a partition of A. Define a relation R on
A by setting: xRy if and only if there exists i such that 1 <i < n and
X,y € A;. Then R is an equivalence relation.

Proof (Optional)

m Reflexivity: if x € A, then x € A; for some i. Therefore xRx.

m Transitivity: if xRy and yRz, then there exists A; and A; such that
x,y € Ajand y,z € A;. y € AinA; implies i = j. Therefore x,z € A; which
implies xRz.

m Symmetry: if xRy, then there exists A; such that x,y € A;. Therefore yRx.

Part 3. Relations

Predecessors in partial orders

If Ris a partial order on a set A and xRy, x # y we call x a predecessor of y.

If x is a predecessor of y and there is no z ¢ {x,y} for which xRz and zRy,
we call x an immediate predecessor of y.

http://www.csc.liv.ac.uk/~konev/COMP169 Part 3. Relations

Databases and relations

A database table ~ relation

TABLE 1 Students.

Student_name ID_number Major

231455
888323
Chou 102147
Goodfriend 453876
Rao 678543
786576

Ackermann
Adams

Computer Science
Physics

Computer Science
Mathematics
Mathematics

Stevens Psychology

Students = {

www.csc.liv.ac.uk/~konev/COMP109

Unary relations

Unary relations are just subsets of a set.

Example: The unary relation EvenPositiveIntegers on the set Z* of
positive integers is

{xezZ"|xiseven}.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations

