
Foundations of Computer Science
Comp109

University of Liverpool
Boris Konev
konev@liverpool.ac.uk
http://www.csc.liv.ac.uk/~konev/COMP109

Introduction
Comp109 Foundations of Computer Science

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 1 / 28

Information

Lecturer

Prof Boris Konev
Office: 1.15 Ashton building
Email: konev@liverpool.ac.uk
Course web page:
http://www.csc.liv.ac.uk:/~konev/COMP109

∼30 lectures + 2 class tests + 11 tutorials

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 2 / 28

Module aims

To introduce the notation, terminology, and techniques underpinning
the discipline of Theoretical Computer Science.
To provide the mathematical foundation necessary for understanding
datatypes as they arise in Computer Science and for understanding
computation.
To introduce the basic proof techniques which are used for reasoning
about data and computation.
To introduce the basic mathematical tools needed for specifying
requirements and programs

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 3 / 28

Module outcomes

At the end of this module students should be able to:

Understand how a computer represents simple numeric data types;
reason about simple data types using basic proof techniques;
Interpret set theory notation, perform operations on sets, and reason
about sets;
Understand, manipulate and reason about unary relations, binary
relations, and functions;
Apply logic to represent mathematical statement and digital circuit,
and to recognise, understand, and reason about formulas in
propositional and predicate logic;
Apply basic counting and enumeration methods as these arise in
analysing permutations and combinations.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 4 / 28

Assessment

Exam: 80%
Multiple-choice test

Continuous Assessment: 20%
Assessment 1. Covers Parts 1-4

Class test
Your contribution during tutorials

Assessment 2. Covers Parts 5-7
Class test
Your contribution during tutorials

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 5 / 28

Lectures

We will have three lectures per week this term.
Your timetable is on Liverpool Life.

Read the slides before (and after) the lecture.
Take notes. (University is a lot different from school.)
I will write on the slides.
Notes often make no/little sense

PDFs will appear on
http://cgi.csc.liv.ac.uk/~konev/COMP109

These notes are not a replacement for your own notes!

Please study as you go along.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 6 / 28

Tutorials

The class will be divided into tutorial groups. You will be able to find
out which group you are in from your personal timetable.
Each tutorial group meets once a week.
Problem sheets will become available on the module web page
(https://intranet.csc.liv.ac.uk/~konev/COMP109).
Try to solve the problems before your tutorial. Part of your continuous
assessment mark will be based on your contribution during tutorials,
including
1. making reasonable attempts to solve the problems, and bringing these
(in writing) to tutorials, and

2. your contribution to group discussions in the tutorial group.

You will hand your work in at the end of each tutorial and get it back
the following week.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 7 / 28

Core textbook

K. Rosen. Discrete Mathematics and Its Applications, McGraw-Hill. 7th
edition, 2012.

(any edition, including the US edition, is OK)

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 8 / 28

Recommended books

E. Lehman, F. T. Leighton and A. R. Meyer Mathematics for Computer
Science. Free book
S. Epp. Discrete Mathematics with Applications, Cengage Learning. 4th
edition, 2011.
E. Bloch. Proofs and Fundamentals, Springer. 2nd edition, 2011
K. Houston. How to Think Like a Mathematician, Cambridge University
Press. 2009

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 9 / 28

Course contents

Part 1. Number Systems and Proof Techniques
Part 2. Set Theory
Part 3. Functions
Part 4. Relations
Part 5. Propositional Logic & Digital Circuits
Part 6. Combinatorics & Probability

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 10 / 28

So, this is maths…

The module does not depend upon A-level maths.
You can get a first in this module even if you did badly at GCSE maths.
To do well in this module, you have to work hard.

But Who Needs Maths?

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 11 / 28

You do!

Comp108, Comp 202, Comp226, Comp304, Comp305, Comp309,...

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 12 / 28

Datatypes

A datatype in a programming language is a set of values and the
operations on those values. The datatype states

the possible values for the datatype
the operations that can be performed on the values
the way that values are stored.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 13 / 28

Number systems and datatypes

The most basic datatypes
Natural Numbers
Integers
Rationals
Real Numbers
Prime Numbers

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 14 / 28

Number systems and proof techniques

Proof Techniques
Finding a counter-example
Proof by contradiction
Proof by Induction

These are used, for example, to reason about data types and to reason
about algorithms.

We use proof techniques, both to show that an algorithm is correct and to
show that it is efficient.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 15 / 28

Data collections

Most applications work with collections of data items

Price list
Phonebook
Climate change data
Stock exchange data
…

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 16 / 28

Sets

A set is a well-defined collection of objects. The objects in the set are
called the elements or members of the set.

The set containing the numbers 1, 2, 3, 4 and 5 is written {1, 2, 3, 4, 5}.
The number 3 is an element of the set, that is, 3 ∈ {1, 2, 3, 4, 5}.
The number 6 is not an element of the set, that is, 6 < {1, 2, 3, 4, 5}.
The set {dog, cat, mouse} is a set with three elements: dog, cat and
mouse.

Young man, in mathematics you don’t understand things. You just
get used to them. (John von Neumann)

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 17 / 28

Some important sets

N = {0, 1, 2, 3, . . .} (the natural numbers)
Z = {. . . ,−2,−1, 0, 1, 2, . . .} (the integers)
Q = {p/q | p and q are integers,q , 0} (the rationals)
R: (real numbers)

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 18 / 28

Functions

A function is just a map from a set of inputs to a set of outputs.
This is exactly what an algorithm computes.

Functions can also be used to determine how long algorithms take to
run.

20 Chapter 1 Speaking Mathematically

function machine

Input
x

f (x) Output

Figure 1.3.1

Example 1.3.6 Functions Defined by Formulas

The squaring function f from R to R is defined by the formula f (x) = x2 for all real
numbers x . This means that no matter what real number input is substituted for x , the
output of f will be the square of that number. This idea can be represented by writing
f (!) = !2. In other words, f sends each real number x to x2, or, symbolically,
f : x → x2. Note that the variable x is a dummy variable; any other symbol could replace
it, as long as the replacement is made everywhere the x appears.

The successor function g from Z to Z is defined by the formula g(n) = n + 1. Thus,
no matter what integer is substituted for n, the output of g will be that number plus
one: g(!) = !+ 1. In other words, g sends each integer n to n + 1, or, symbolically,
g: n → n + 1.

An example of a constant function is the function h from Q to Z defined by the
formula h(r) = 2 for all rational numbers r . This function sends each rational number
r to 2. In other words, no matter what the input, the output is always 2: h(!) = 2 or
h: r → 2.

The functions f, g, and h are represented by the function machines in Figure 1.3.2.

squaring
function

x

f (x) = x2

(a)

successor
function

n

g(n) = n + 1

(b)

constant
function

r

h(r) = 2

(c)

Figure 1.3.2 ■

A function is an entity in its own right. It can be thought of as a certain relationship
between sets or as an input/output machine that operates according to a certain rule. This
is the reason why a function is generally denoted by a single symbol or string of symbols,
such as f, G, of log, or sin.

A relation is a subset of a Cartesian product and a function is a special kind of relation.
Specifically, if f and g are functions from a set A to a set B, then

f = {(x, y) ∈ A × B | y = f (x)} and g = {(x, y) ∈ A × B | y = g(x)}.
It follows that

f equals g, written f = g, if, and only if, f (x) = g(x) for all x in A.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Examples:
y = x2

y = sin(x)
first letter of your name

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 19 / 28

Family relations

Fred and Mavis

Alice Ken and

Jane Fiona Alan

John and Mary

Sue Mike Penny

Write down

R = {(x, y) | x is a grandfather of y };

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 20 / 28

Relations and databases

Databases: Most databases store information as relations over sets. We
need precise notation and terminology for sets and relations in order to
talk about databases. Basic mathematical facts about relations and sets
are required to understand how a database is designed and implemented.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 21 / 28

Logic and specification languages

How can we specify what a program should do? Natural languages can be
long-winded and ambiguous and are not appropriate for intricate
problems.

A formal language without ambiguous statements is required.

Propositional and Predicate Logic are the most important formal
languages for specifying programs.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 22 / 28

Propositional logic and digital circuits

Syntax: formulas and formal representations
Semantics: interpretations and truth tables
Logic and digital circuits
Computer arithmetic
Logical equivalence

82 Chapter 2 The Logic of Compound Statements

Circuits for Computer Addition
Consider the question of designing a circuit to produce the sum of two binary digits P
and Q. Both P and Q can be either 0 or 1. And the following facts are known:

12 + 12 = 102,

12 + 02 = 12 = 012,

02 + 12 = 12 = 012,

02 + 02 = 02 = 002.

It follows that the circuit to be designed must have two outputs—one for the left
binary digit (this is called the carry) and one for the right binary digit (this is called
the sum). The carry output is 1 if both P and Q are 1; it is 0 otherwise. Thus the carry
can be produced using the AND-gate circuit that corresponds to the Boolean expression
P ∧ Q. The sum output is 1 if either P or Q, but not both, is 1. The sum can, therefore,
be produced using a circuit that corresponds to the Boolean expression for exclusive or:
(P ∨ Q)∧ ∼(P ∧ Q). (See Example 2.4.3(a).) Hence, a circuit to add two binary digits
P and Q can be constructed as in Figure 2.5.1. This circuit is called a half-adder.

HALF-ADDER

Circuit Input/Output Table

P

Q
NOT

AND

AND

OR
Sum

Carry

P Q Carry Sum

1 1 1 0

1 0 0 1

0 1 0 1

0 0 0 0

Figure 2.5.1 Circuit to Add P + Q, Where P and Q Are Binary Digits

Now consider the question of how to construct a circuit to add two binary integers,
each with more than one digit. Because the addition of two binary digits may result in
a carry to the next column to the left, it may be necessary to add three binary digits at
certain points. In the following example, the sum in the right column is the sum of two
binary digits, and, because of the carry, the sum in the left column is the sum of three
binary digits.

1 ← carry row

1 12
+ 1 12

1 1 02

Thus, in order to construct a circuit that will add multidigit binary numbers, it is
necessary to incorporate a circuit that will compute the sum of three binary digits. Such a
circuit is called a full-adder. Consider a general addition of three binary digits P, Q, and
R that results in a carry (or left-most digit) C and a sum (or right-most digit) S.

P
+ Q
+ R

C S

The operation of the full-adder is based on the fact that addition is a binary operation:
Only two numbers can be added at one time. Thus P is first added to Q and then the

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 23 / 28

Combinatorics

Combinatorics includes the study of counting and also the study of
discrete structures such as graphs. It is essential for analysing the
efficiency of algorithms.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 24 / 28

Combinatorics

Notation for sums and products, including the factorial function.
Principles for counting permutations and combinations, for example,
to enable you to solve the problem on the following slide.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 25 / 28

Applications to discrete probability

The draw selects a set of six different numbers from 1, 2, . . . , 49. Each
choice is equally likely.

You choose a set of six numbers in advance. If your numbers come up, you
win the jackpot. What is the probability of this event?

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 26 / 28

Reading mathematics1

Read with a purpose
Choose a book at the right level
Read with pen and paper at hand
Don’t read it like a novel
Identify what is important
Stop periodically to review
Read statements first—proofs later
Do the exercises and problems
Reflect
Write a summary

1How to think like a mathematician by K. Houston.

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 27 / 28

Appendix: Greek letters

Alpha α A Iota ι I Sigma σ Σ

Beta β B Kappa κ K Tau τ T
Gamma γ Γ Lambda λ Λ Upsilon υ Υ

Delta δ ∆ Mu µ M Phi ϕ Φ

Epsilon ϵ E Nu ν N Chi χ X
Zeta ζ Z Omicron o O Psi ψ Ψ

Eta η E Pi π Π Omega ω Ω

Theta θ Θ Rho ρ R

http://www.csc.liv.ac.uk/~konev/COMP109 Introduction 28 / 28

Foundations of Computer Science
Comp109

University of Liverpool
Boris Konev
konev@liverpool.ac.uk
http://www.csc.liv.ac.uk/~konev/COMP109

Part 1. Number Systems and Proof Techniques
Comp109 Foundations of Computer Science

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 1 / 72

Reading

S. Epp. Discrete Mathematics with Applications
Chapter 4, Sections 5.2 and 5.3.
E. Bloch. Proofs and Fundamentals
Chapter 2, Section 6.3.
K. Rosen. Discrete Mathematics and Its Applications
Section 5.1.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 2 / 72

Contents

The most basic datatypes
Natural Numbers
Integers
Rationals
Real Numbers
Prime Numbers

Proof Techniques
Direct proof and disproof

Disproof by counterexample
Existence proof
Generalising from the generic particular
…

Indirect Proof
Proof by contradiction
…

Proof by mathematical induction

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 3 / 72

What is a number?

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 4 / 72

The natural numbers

0, 1, 2, 3, . . .

Key property: Any natural number can be obtained from 0 by applying the
operation S(n) = n+ 1 some number times.

Examples: S(0) = 1.

S(S(0)) = 2.

S(S(S(0))) = 3.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 5 / 72

Prime numbers

A prime number is a integer greater than 1 which has exactly two divisors
that are positive integers: 1 and itself.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, . . .

Every natural number greater than 1 can be written as a unique product of
prime numbers.

Examples: 6 = 2× 3. 15 = 3× 5. 1400 = 23 × 52 × 7.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 6 / 72

Example: prime and composite numbers

1. Is 1 prime?

2. Is every integer greater than 1 either prime or composite?

3. Write the first six prime numbers.

4. Write the first six composite numbers.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 7 / 72

Beyond naturals

The Integers . . . , −2, −1, 0, 1, 2, . . .

The Rational Numbers all numbers that can be written as m
n

where m and n are integers and n is not 0.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 8 / 72

Reminder: Algebraic manipulation

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 9 / 72

Solving and computing

Mathematics underpins STEM subjects. In many cases, we are concerned
with solving and computing

2

Answer all questions.

Answer each question in the space provided for that question.

1 The quadratic equation 2x2 þ 6xþ 7 ¼ 0 has roots a and b.

(a) Write down the value of a þ b and the value of ab.
[2 marks]

(b) Find a quadratic equation, with integer coefficients, which has roots a2 # 1 and
b2 # 1 .

[5 marks]

(c) Hence find the values of a2 and b2.
[2 marks]

Answer space for question 1

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Do not write
outside the

box

P/Jun15/MFP1

QUESTION
PART

REFERENCE

(02)

12 Do not write
outside the

box

(12)
WMP/Nov15/43603H

8 (a) Complete the table of values for y = 3 – x2

[2 marks]

8 (b) Draw the graph of y = 3 – x2 for values of x from – 3 to 3
[2 marks]

x – 3 – 2 – 1 0 1 2 3

y – 1 2 2 – 6

– 4

–2

–6

O

2

–1 1 2–2

y

x3–3

–5

–3

–1

3

1

7 Do not write
outside the

box

(07)
Turn over !

6 (a) Work out – of 45
[2 marks]

..

..

Answer ..

6 (b) Work out – × –
[1 mark]

..

..

Answer ..

*7 A company has 8 minibuses.
Each minibus can carry 14 passengers.

The company wants to take 98 people on a trip.

Does the company have enough minibuses?
You must show your working.

[2 marks]

..

..

..

..

..

..

Answer ..

8

WMP/Nov15/43602F

3
5

1
3

1
5

8

4 (a) Find the general solution, in degrees, of the equation

2 sinð3xþ 45!Þ ¼ 1
[5 marks]

(b) Use your general solution to find the solution of 2 sinð3xþ 45!Þ ¼ 1 that is closest to
200!.

[1 mark]

Answer space for question 4

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Do not write
outside the

box

P/Jun15/MFP1

QUESTION
PART

REFERENCE

(08)

11 Do not write
outside the

box

(11)
Turn over !

7 The diagram shows the net of a cube.

Put numbers on the blank faces so that opposite faces of the cube add up to 7
[2 marks]

8 5 miles = 8 kilometres

Which is longer, 26 miles or 45 km?
You must show your working.

[2 marks]

..

..

..

..

Answer ..

7

WMP/Nov15/43603F

6

5 3

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 10 / 72

Statements

Which of the following are true?

“26 miles is longer than 45 km.”

An integer doubled is larger than the integer.

The sum of any two odd numbers is even.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 11 / 72

The moral of the story

We can’t believe a statement just because it appears to be true.

We need a proof that the statement is true or a proof that it is false.
Do we care?

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 12 / 72

Example: Drivers behaviour1

do {
KeAcquireSpinLock();
nPacketsOld = nPackets;
if (request) {

request = request->Next;
KeReleaseSpinLock();
nPackets++;

}
} while (nPackets != nPacketsOld);
KeReleaseSpinLock();

Does this code obey
the locking rules?

Unlocked	
 Locked	

Release

Acquire

Error	

R
elease Ac

qu
ire

You don’t need to understand the actual code!

1from Microsoft presentations on Static Driver Verifier (part of Visual Studio)

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 13 / 72

Historical detour: Visual proofs

Visual proof of
(a+ b)2 = a2 + 2ab+ b2

Visual “proof” of
32.5 = 31.5

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 14 / 72

Proofs

A mathematical proof is as a carefully reasoned argument to convince
a sceptical listener (often yourself) that a given statement is true.
Both discovery and proof are integral parts of problem solving. When
you think you have discovered that a certain statement is true, try to
figure out why it is true.
If you succeed, you will know that your discovery is genuine. Even if
you fail, the process of trying will give you insight into the nature of
the problem and may lead to the discovery that the statement is false.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 15 / 72

Example: Odd and even numbers

Definition
An integer n is even if, and only if, n equals twice some integer.
An integer n is odd if, and only if, n equals twice some integer plus 1.

Symbolically, if n is an integer, then
n is even ⇔ ∃ an integer k such that n = 2k.
n is odd ⇔ ∃ an integer k such that n = 2k+ 1.

Notice the use of ⇔ ∃ ∀.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 16 / 72

Example: Properties of odd and even numbers

Use the definitions of even and odd to justify your answers to the
following questions.

Definition
n is even ⇔ ∃ an integer k such that n = 2k.
n is odd ⇔ ∃ an integer k such that n = 2k+ 1.

1. Is 0 even?

2. Is 301 odd?

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 17 / 72

Example: Properties of odd and even numbers

Definition
n is even ⇔ ∃ an integer k such that n = 2k.
n is odd ⇔ ∃ an integer k such that n = 2k+ 1.

3. If a and b are integers, is 6a2b even?

4. If a and b are integers, is 10a+ 8b+ 1 odd?

5. Is every integer either even or odd?

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 18 / 72

Existence proofs

Statements of the form ∃x Q(x)

Examples:

1. Prove the following: ∃ an even integer n that can be written in two
ways as a sum of two prime numbers.

2. Suppose that r and s are integers. Prove the following: ∃ an integer k
such that 22r+ 18s = 2k.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 19 / 72

Constructive proof

One way to prove
∃x Q(x)

is to find an x in that makes Q(x) true.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 20 / 72

Proving universal statements

The vast majority of mathematical statements to be proved are universal.
In discussing how to prove such statements, it is helpful to imagine them
in a standard form:

∀x if P(x) then Q(x)

For example,

If a and b are integers then 6a2b is even.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 21 / 72

Proving universal statements: The method of exhaustion

Some theorems can be proved by examining relatively small number of
examples.

Prove that (n+ 1)3 ≥ 3n if n is a positive integer with n ≤ 4.
n = 1
n = 2
n = 3
n = 4

Prove for every natural number n with n < 40 that n2 + n+ 41 is prime.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 22 / 72

Motivating example: “Mathematical trick”

Pick any number, add 5, multiply by 4, subtract 6, divide by 2, and subtract
twice the original number. The answer is 7.

4.1 Direct Proof and Counterexample I: Introduction 151

Even when the domain is finite, it may be infeasible to use the method of exhaustion.
Imagine, for example, trying to check by exhaustion that the multiplication circuitry of a
particular computer gives the correct result for every pair of numbers in the computer’s
range. Since a typical computer would require thousands of years just to compute all
possible products of all numbers in its range (not to mention the time it would take to
check the accuracy of the answers), checking correctness by the method of exhaustion is
obviously impractical.

The most powerful technique for proving a universal statement is one that works
regardless of the size of the domain over which the statement is quantified. It is called
the method of generalizing from the generic particular. Here is the idea underlying the
method:

Method of Generalizing from the Generic Particular

To show that every element of a set satisfies a certain property, suppose x is a
particular but arbitrarily chosen element of the set, and show that x satisfies the
property.

Example 4.1.6 Generalizing from the Generic Particular

At some time you may have been shown a “mathematical trick” like the following. You
ask a person to pick any number, add 5, multiply by 4, subtract 6, divide by 2, and subtract
twice the original number. Then you astound the person by announcing that their final
result was 7. How does this “trick” work? Let an empty box ! or the symbol x stand
for the number the person picks. Here is what happens when the person follows your
directions:

Step Visual Result Algebraic Result

Pick a number. ! x

Add 5. ! | | | | | x + 5

Multiply by 4. ! | | | | |
(x + 5) ·4 = 4x + 20

! | | | | |
! | | | | |
! | | | | |

Subtract 6. ! | |
(4x + 20)− 6 = 4x + 14

! | |
! | | | | |
! | | | | |

Divide by 2. ! | | 4x + 14
2

= 2x + 7! | | | | |
Subtract twice the original number. | |

(2x + 7)− 2x = 7| | | | |

Thus no matter what number the person starts with, the result will always be 7. Note that
the x in the analysis above is particular (because it represents a single quantity), but it
is also arbitrarily chosen or generic (because any number whatsoever can be put in its
place). This illustrates the process of drawing a general conclusion from a particular but
generic object. ■

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 23 / 72

Generalising from the Generic Particular

The most powerful technique for proving a universal statement is one that
works regardless of the choice of values for x.

To show that every x satisfies a certain property, suppose x is a particular
but arbitrarily chosen and show that x satisfies the property.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 24 / 72

Method of direct proof

Express the statement to be proved in the form
“∀x, if P(x) then Q(x).”

(This step is often done mentally.)

Start the proof by supposing x is a particular but arbitrarily chosen
element for which the hypothesis P(x) is true.
(This step is often abbreviated “Suppose P(x).”)

Show that the conclusion Q(x) is true by using definitions, previously
established results, and the rules for logical inference.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 25 / 72

Prove that the sum of any two even integers is even

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 26 / 72

Prove that every integer is rational

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 27 / 72

Prove that the sum of any two rational numbers is rational

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 28 / 72

Prove that the product of any two rational numbers is rational

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 29 / 72

Prove that the double of a rational number is rational

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 30 / 72

Prove for all integers n, if n is even then n2 is even

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 31 / 72

Prove by cases: Combine generic particulars and proof by exhaustion

Statement: For all integers n, n2 + n is even

Case 1: n is even

Case 2: n is odd

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 32 / 72

How about

Prove for all integers m and n, if m2 = n2 then m = n?

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 33 / 72

Disproving universal statements by counterexample

To disprove a statement means to show that it is false. Consider the
question of disproving a statement of the form

∀x, if P(x) then Q(x).

Showing that this statement is false is equivalent to showing that its
negation is true. The negation of the statement is existential:

∃x such that P(x) and not Q(x).

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 34 / 72

Is it true that for every positive integer n, n2 ≥ 2n?

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 35 / 72

Indirect proofs

In a direct proof you start with the hypothesis of a statement and
make one deduction after another until you reach the conclusion.
Indirect proofs are more roundabout. One kind of indirect proof,
argument by contradiction, is based on the fact that either a
statement is true or it is false but not both.
So if you can show that the assumption that a given statement is not
true leads logically to a contradiction, impossibility, or absurdity, then
that assumption must be false: and, hence, the given statement must
be true.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 36 / 72

Motivating example: Trial and error

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 37 / 72

Use proof by contradiction to show that there is no greatest integer

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 38 / 72

Use proof by contradiction to show that there is no smallest positive ra-
tional number

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 39 / 72

Use proof by contradiction to show that no integer can be both even and
odd

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 40 / 72

Use proof by contradiction to show that there is no greatest prime number

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 41 / 72

Let f(x) = 2x+ 5. Prove that if x , y then f(x) , f(y)

Direct proof

Proof by contradiction

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 42 / 72

When to use indirect proof

Many theorems can be proved either way. Usually, however, when
both types of proof are possible, indirect proof is clumsier than direct
proof.
In the absence of obvious clues suggesting indirect argument, try first
to prove a statement directly. Then, if that does not succeed, look for
a counterexample.
If the search for a counterexample is unsuccessful, look for a proof by
contradiction

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 43 / 72

The real numbers

All (decimal) numbers — distances to points on a number line.

Examples.

−3.0
0
1.6
π = 3.14159 . . .

A real number that is not rational is called irrational.

But are there any irrational numbers?

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 44 / 72

Proving that
√
2 is not a rational number

Proof by contradiction.

If
√
2 were rational then we could write it as

√
2 = x/y where x and y

are integers and y is not 0.
By repeatedly cancelling common factors, we can make sure that x
and y have no common factors so they are not both even.
Then 2 = x2/y2 so x2 = 2y2 so x2 is even. This means x is even, because
the square of any odd number is odd.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 45 / 72

the proof continued

Let x = 2w for some integer w.
Then x2 = 4w2 so 4w2 = 2y2 so y2 = 2w2 so y2 is even so y is even.
This contradicts the fact that x and y are not both even, so our original
assumption, that

√
2 is rational, must have been wrong.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 46 / 72

Prove that 1+ 3
√
2 is irrational

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 47 / 72

Mathematical induction

Mathematical induction is one of the more recently developed
techniques of proof in the history of mathematics.
It is used to check conjectures about the outcomes of processes that
occur repeatedly and according to definite patterns.
In general, mathematical induction is a method for proving that a
property defined for integers n is true for all values of n that are
greater than or equal to some initial integer

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 48 / 72

Example: Domino effect

One domino for each natural number, arranged in order.

I will push domino 0 (the one at the front of the picture) towards the
others.
For every natural number m, if the m’th domino falls, then the
(m+ 1)st domino will fall.

Conclude: All of the Dominoes will fall.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 49 / 72

Proving by induction that a property holds for every natural number n

Prove that the property holds for the natural number n = 0.
Prove that if the property holds for n = m (for any natural number m)
then it holds for n = m+ 1.

The validity of proof by mathematical induction is generally taken as an
axiom. That is why it is referred to as the principle of mathematical
induction rather than as a theorem.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 50 / 72

A proof of a property by induction looks like this

Base Case: Show that the property holds for n = 0.

Inductive Step: Assume that the property holds for n = m. Show that it
holds for n = m+ 1.

Conclusion: You can now conclude that the property holds for every
natural number n.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 51 / 72

Example: Proof by induction

For every natural number n,

0+ 1+ · · · + n =
n(n+ 1)

2 .

Base Case: Take n = 0. The left-hand-side and the right-hand-side are
both 0 so they are equal.

Inductive Step: Assume that the property holds for n = m, so

0+ 1+ · · · +m =
m(m+ 1)

2 .

Now consider n = m+ 1. We must show that

0+ 1+ · · · +m+ (m+ 1) = (m+ 1)(m+ 2)
2 .

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 52 / 72

Proof continued

Since
0+ 1+ · · · +m =

m(m+ 1)
2 .

0+ 1+ · · · +m+ (m+ 1) = m(m+ 1)
2 +m+ 1

=
m(m+ 1) + 2(m+ 1)

2

=
(m+ 1)(m+ 2)

2

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 53 / 72

Other starting values

Suppose you want to prove a statement not for all natural numbers, but
for all integers greater than or equal to some particular natural number b

Base Case: Show that the property holds for n = b.

Inductive Step: Assume that the property holds for n = m for any m ≥ b.
Show that it holds for n = m+ 1.

Conclusion: You can now conclude that the property holds for every
integer n ≥ b.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 54 / 72

Example: Proof by induction

For all integers n ≥ 8, nc can be obtained using 3c and 5c coins.

Base Case: For n = 8, 8c = 3c+ 5c.

Inductive Step: Suppose that mc can be obtained using 3c and 5c coins
for any m ≥ 8. We must show that (m+ 1)c can be obtained using 3c and
5c coins.

Consider cases

There is a 5c coin among those used to make up the mc.
Replace the 5c coin with two 3c coins. We obtain (m+ 1)c.

There is no 5c coin among those used to make up the mc.
There are three 3c coins (m ≥ 8).

Replace the three 3c coins with two 5c coins

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 55 / 72

Example: Proof by induction

For every integer n ≥ 3, 4n > 2n+2.

Base Case: Take n = 3. Then 4n = 43 = 64. Also, 2n+2 = 25 = 32. So
4n > 2n+2.

Inductive Step: For any m ≥ 3, assume that the statement 4m > 2m+2 is
true. (This is called the “inductive hypothesis”.) Now consider n = m+ 1.
We must show that 4m+1 > 2(m+1)+2 = 2m+3.

Here is the calculation. 4m+1 = 4× 4m. But by the inductive hypothesis,
4× 4m > 4× 2m+2. Finally,

4× 2m+2 > 2× 2m+2 = 2m+3.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 56 / 72

Using induction to show that a program is correct

What does the following program do?

i = 0
M = 0
mylist = [1, 2, 6, 3, 4, 5]
while i < len(mylist):

M = max(M, mylist[i])
i = i + 1

print M

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 57 / 72

Using induction to show that a program is correct

i = 0
M = 0
mylist = [1, 2, 6, 3, 4, 5]
while i < len(mylist):

M = max(M, mylist[i])
i = i + 1

print M

Property: After the statement M = max(M , mylist[i]) gets executed, the
value of M is max(mylist[0],…,mylist[i]).

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 58 / 72

Proof by induction

Property: After the statement M = max(M, mylist[i]) gets executed, the value
of M is max(mylist[0],…,mylist[i]).

Base Case: Take i=0. Before the statement, M=0, so the statement
assigns M to be the maximum of 0 and mylist[0], which is mylist[0].

Inductive Step: Assume that the statement is true for i=m for some m≥
0. Now consider i=m+1. The statement assigns M to be the maximum of
mylist[m+1] and max(mylist[0],…,mylist[m]), so after the statement, M is
max(mylist[0],…,mylist[m+1]).

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 59 / 72

Strong induction

Prove that the property holds for the natural number n = 0.
Prove that if the property holds for n = 0, 2, . . . ,m (and not just for
m!) then it holds for n = m+ 1.

Can also be used to prove a property for all integers greater than or equal
to some particular natural number b

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 60 / 72

Example: Proof by strong induction

Every natural number n ≥ 2, is a prime or a product of primes.

Base Case: Take n = 2. Then n is a prime number.

Inductive Step: Assume that the property holds for n = m so every
number i s.t. 2 ≤ i ≤ m is a prime or a produce of primes. Now consider
n = m+ 1.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 61 / 72

Example: Number of multiplications

For any integer n ≥ 1, if x1, x2,…, xn are n numbers, then no matter how the
parentheses are inserted into their product, the number of multiplications
used to compute the product is n− 1.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 62 / 72

Bad proofs: Arguing from example

An incorrect “proof” of the fact that the sum of any two even integers is
even.

This is true because if m = 14 and n = 6, which are both even,
then m+ n = 20, which is also even.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 63 / 72

Bad proofs: Using the same letter to mean two different things

Consider the following “proof” fragment:

Suppose m and n are any odd integers. Then by definition of odd,
m = 2k+ 1 and n = 2k+ 1 for some integer k.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 64 / 72

Bad proofs: Jumping to a conclusion

To jump to a conclusion means to allege the truth of something without
giving an adequate reason.

Suppose m and n are any even integers. By definition of even,
m = 2r and n = 2s for some integers r and s. Then
m+ n = 2r+ 2s. So m+ n is even.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 65 / 72

Bad proofs: Circular reasoning

To engage in circular reasoning means to assume what is to be proved.

Suppose m and n are any odd integers. When any odd integers
are multiplied, their product is odd. Hence mn is odd.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 66 / 72

Bad proofs: Confusion betweenwhat is known andwhat is still to be shown

Suppose m and n are any odd integers. We must show that mn is
odd. This means that there exists an integer s such that

mn = 2s+ 1.

Also by definition of odd, there exist integers a and b such that

m = 2a+ 1 and n = 2b+ 1.

Then
mn = (2a+ 1)(2b+ 1) = 2s+ 1.

So, since s is an integer, mn is odd by definition of odd.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 67 / 72

Good proofs in practice2

State your game plan.

A good proof begins by explaining the general line of reasoning,
for example, “We use case analysis” or “We argue by
contradiction.”

2Mathematics for Computer Science by E. Lehman, F. T. Leighton, and A. R. Meyer.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 68 / 72

Good proofs in Practice

Keep a linear flow.

Sometimes proofs are written like mathematical mosaics, with
juicy titbits of independent reasoning sprinkled throughout. This
is not good. The steps of an argument should follow one another
in an intelligible order.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 69 / 72

Good proofs in practice

A proof is an essay, not a calculation.

Many students initially write proofs the way they compute
integrals. The result is a long sequence of expressions without
explanation, making it very hard to follow. This is bad. A good
proof usually looks like an essay with some equations thrown in.
Use complete sentences.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 70 / 72

Good proofs in practice

Structure your proof

Theorem—A very important true statement.
Proposition—A less important but still interesting statement.
Lemma—A true statement used to prove other statements.
Corollary—A simple consequence of a theorem or a proposition.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 71 / 72

Good proofs in practice

Finish

At some point in a proof, you’ll have established all the essential
facts you need. Resist the temptation to quit and leave the reader
to draw the “obvious” conclusion. Instead, tie everything together
yourself and explain why the original claim follows.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques 72 / 72

3.36pt

Foundations of Computer Science
Comp109

University of Liverpool
Boris Konev
konev@liverpool.ac.uk
http://www.csc.liv.ac.uk/~konev/COMP109

Part 2. (Naive) Set Theory
Comp109 Foundations of Computer Science

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 1 / 50

Reading

K. H. Rosen. Discrete Mathematics and Its Applications
Chapter 2

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 2 / 50

Contents

Notation for sets.
Important sets.
What is a subset of a set?
When are two sets equal?
Operations on sets.
Algebra of sets.
Bit strings.
Cardinality of sets.
Russell’s paradox.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 3 / 50

Notation

A set is a collection of objects, called the elements of the set. For example:

{7, 5, 3};
{Liverpool,Manchester, Leeds}.

We have written down the elements of each set and contained them
between the braces { }.

We write a ∈ S to denote that the object a is an element of the set S:

7 ∈ {7, 5, 3}, 4 < {7, 5, 3}.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 4 / 50

Notes

The order of elements does not matter
Repeatitions do not count

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 5 / 50

Notation

For a large set, especially an infinite set, we cannot write down all the
elements. We use a predicate P instead.

S = {x | P(x)}

denotes the set of objects x for which the predicate P(x) is true.

Examples: Let S = {1, 3, 5, 7, . . .}. Then

S = {x | x is an odd positive integer}

and
S = {2n− 1 | n is a positive integer }.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 6 / 50

More examples

Find simpler descriptions of the following sets by listing their elements:

A = {x | x is an integer and x2 + 4x = 12};
B = {x | x a day of the week not containing “u” };
C = {n2 | n is an integer }.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 7 / 50

Important sets (notation)

The empty set has no elements. It is written as ∅ or as {}.

We have seen some other examples of sets in Part 1.

N = {0, 1, 2, 3, . . .} (the natural numbers)
Z = {. . . , −2, −1, 0, 1, 2, . . .} (the integers)
Z+ = {1, 2, 3, . . .} (the positive integers)
Q = {x/y | x ∈ Z, y ∈ Z, y , 0} (the rationals)
R: (real numbers)

[a,b] = {x ∈ R | a ≤ x ≤ b} the set of real numbers between a and b
(inclusive)

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 8 / 50

Detour: Sets in python

Sets are the ‘most elementary’ data structures (though they don’t always
map well into the underlying hardware).

Some modern programming languages feature sets.

For example, in Python one writes

empty = set ()
m = { ’ a ’ , ’ b ’ , ’ c ’ }
n = { 1 , 2 }
pr in t ’ a ’ in m

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 9 / 50

Computer representation of sets

Only finite sets can be represented

Number of elements not fixed: List (?) Java&Python do differently

All elements of A are drawn from some ordered sequence
S = s1, . . . , sn: the characteristic vector of A is the sequence
(b1, . . . ,bn) where

bi =
{
1 if si ∈ A
0 if si < A

Sequences of zeros and ones of length n are called bit strings of length n.
AKA bit vectors AKA bit arrays

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 10 / 50

Example

Let S = {1, 2, 3, 4, 5}, A = {1, 3, 5} and B = {3, 4}.

The characteristic vector of A is (1, 0, 1, 0, 1).
The characteristic vector of B is (0, 0, 1, 1, 0).

The set characterised by (1, 1, 1, 0, 1) is {1, 2, 3, 5}.
The set characterised by (1, 1, 1, 1, 1) is {1, 2, 3, 4, 5}.
The set characterised by (0, 0, 0, 0, 0) is . . .

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 11 / 50

Subsets

Definition A set B is called a subset of a set A if every element of B is an
element of A. This is denoted by B ⊆ A.

Examples:

{3, 4, 5} ⊆ {1, 5, 4, 2, 1, 3}, {3, 3, 5} ⊆ {3, 5}, {5, 3} ⊆ {3, 5}.

BA

Figure 1: Venn diagram of B ⊆ A.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 12 / 50

Detour: Subsets in Python

def i sSubset (A , B) :
for x in A :

i f x not in B :
return False

return True

Testing the method:

pr in t i sSubset (n ,m)

But then there is a built-in operation:

pr in t n<m

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 13 / 50

Subsets and bit vectors

Let S = {1, 2, 3, 4, 5}, A = {1, 3, 5} and B = {3, 4}.

Is A ⊆ B?

Is the set C, represented by (1, 0, 0, 0, 1), a subset of the set D,
represented by (1, 1, 0, 0, 1)?

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 14 / 50

Equality

Definition A set A is called equal to a set B if A ⊆ B and B ⊆ A. This is
denoted by A = B.

Examples:
{1} = {1, 1, 1},

{1, 2} = {2, 1},

{5, 4, 4, 3, 5} = {3, 4, 5}.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 15 / 50

The union of two sets

Definition The union of two sets A and B is the set

A ∪ B = {x | x ∈ A or x ∈ B}.

A B

Figure 2: Venn diagram of A ∪ B.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 16 / 50

Example

Suppose
A = {4, 7, 8}

and
B = {4, 9, 10}.

Then
A ∪ B = {4, 7, 8, 9, 10}.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 17 / 50

Detour: Set union in Python

def union (A , B) :
r e su l t = set ()
for x in A :

r e su l t . add (x)
for x in B :

r e su l t . add (x)
return r e su l t

Testing the method:

pr in t union (m, n)

But then there is a built-in operation:

pr in t m. union (n)

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 18 / 50

Union of sets represented by bit vectors

Let S = {1, 2, 3, 4, 5}, A = {1, 3, 5} and B = {3, 4}.

Compute A ∪ B.

Compute the union of the set C, represented by (1, 0, 0, 0, 1), and the
set D, represented by (1, 1, 0, 0, 1).

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 19 / 50

The intersection of two sets

Definition The intersection of two sets A and B is the set

A ∩ B = {x | x ∈ A and x ∈ B}.

A B

Figure 3: Venn diagram of A ∩ B.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 20 / 50

Example

Suppose
A = {4, 7, 8}

and
B = {4, 9, 10}.

Then
A ∩ B = {4}

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 21 / 50

Detour: Set intersection in Python

def i n t e r sec t i on (A , B) :
r e su l t = set ()
for x in A :

i f x in B :
r e su l t . add (x)

return r e su l t

Testing the method:

pr in t i n t e r sec t i on (m, n)
pr in t i n t e r sec t i on (n , { 1 })

But then there is a built-in operation:

pr in t n . i n t e r sec t i on ({ 1 })

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 22 / 50

Intersection of sets represented by bit vectors

Let S = {1, 2, 3, 4, 5}, A = {1, 3, 5} and B = {3, 4}.

Compute A ∩ B.

Compute the intersection of the set C, represented by (1, 0, 0, 0, 1), and
the set D, represented by (1, 1, 0, 0, 1).

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 23 / 50

The relative complement

Definition The relative complement of a set B relative to a set A is the set

A− B = {x | x ∈ A and x < B}.

A B

Figure 4: Venn diagram of A− B.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 24 / 50

Example

Suppose
A = {4, 7, 8}

and
B = {4, 9, 10}.

Then
A− B = {7, 8}

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 25 / 50

Detour: Set complement in Python

def complement (A , B) :
r e su l t = set ()
for x in A :

i f x not in B :
r e su l t . add (x)

return r e su l t

Testing the method:

pr in t complement (m, { ’ a ’ })

But then there is a built-in operation:

pr in t m−{ ’ a ’ }

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 26 / 50

Relative complement and bit vectors

Let S = {1, 2, 3, 4, 5}, A = {1, 3, 5} and B = {3, 4}.

Compute A− B.

Compute the relative complement of the set C, represented by
(1, 0, 0, 0, 1), related to the set D, represented by (1, 1, 0, 0, 1).

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 27 / 50

The complement

When we are dealing with subsets of some large set U, then we call U the
universal set for the problem in question.

Definition The complement of a set A is the set

∼ A = {x | x < A} = U− A.

A

Figure 5: Venn diagram of ∼ A. (The rectangle is U)

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 28 / 50

Complement and bit vectors

Let S = {1, 2, 3, 4, 5}, A = {1, 3, 5} and B = {3, 4}.

Compute ∼ A.

Compute ∼ B.

Compute the complement of the set C, represented by (1, 0, 0, 0, 1).

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 29 / 50

The symmetric difference

Definition The symmetric difference of two sets A and B is the set

A∆B = {x | (x ∈ A and x < B) or (x < A and x ∈ B)}.

A B

Figure 6: Venn diagram of A∆B.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 30 / 50

Example

Suppose
A = {4, 7, 8}

and
B = {4, 9, 10}.

Then
A∆B = {7, 8, 9, 10}

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 31 / 50

The algebra of sets

Suppose that A, B and U are sets with A ⊆ U and B ⊆ U.

Commutative laws:

A ∪ B = B ∪ A, A ∩ B = B ∩ A;

A B

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 32 / 50

Proving the commutative law A ∪ B = B ∪ A

Definition: A ∪ B = {x | x ∈ A or x ∈ B} B ∪ A = {x | x ∈ B or x ∈ A}.

These are the same set. To see this, check all possible cases.

Case 1: Suppose x ∈ A and x ∈ B. Since x ∈ A, the definitions above show that x is
in both A ∪ B and B ∪ A.

Case 2: Suppose x ∈ A and x < B. Since x ∈ A, the definitions above show that x is
in both A ∪ B and B ∪ A.

Case 3: Suppose x < A and x ∈ B. Since x ∈ B, the definitions above show that x is
in both A ∪ B and B ∪ A.

Case 4: Suppose x < A and x < B. The definitions above show that x is not in A ∪ B
and x is not in B ∪ A.

So, for all possible x, either x is in both A ∪ B and B ∪ A, or it is in neither.
We conclude that the sets A ∪ B and B ∪ A are the same.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 33 / 50

The algebra of sets

Suppose that A,B, C,U are sets with A ⊆ U, B ⊆ U, and C ⊆ U.

Associative laws:

A ∪ (B ∪ C) = (A ∪ B) ∪ C, A ∩ (B ∩ C) = (A ∩ B) ∩ C;

A B

C

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 34 / 50

Proving the associative law A ∪ (B ∪ C) = (A ∪ B) ∪ C

This is almost as easy as proving the commutative law, but now there are 8
cases to check, depending on whether x ∈ A, whether x ∈ B and whether
x ∈ C.

Definition: X ∪ Y = {x | x ∈ X or x ∈ Y}

Here is one case: Suppose x ∈ A, x < B and x < C. Since x ∈ A, we can use
the definition with X = A and Y = B ∪ C to show that x ∈ A ∪ (B ∪ C).

Since x ∈ A, we can use the definition with X = A and Y = B to show that
x ∈ A ∪ B. Then we can use the definition with X = A ∪ B and Y = C to show
that x ∈ (A ∪ B) ∪ C.

Writing out all eight cases is tedious, but it is not difficult.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 35 / 50

The algebra of sets

Suppose that A and U are sets with A ⊆ U.

Identity laws:

A ∪ ∅ = A, A ∪ U = U, A ∩ U = A, A ∩ ∅ = ∅;

A

U

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 36 / 50

The algebra of sets

Suppose that A,B, C,U are sets with A ⊆ U, B ⊆ U, and C ⊆ U.

Distributive laws:

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C);

A B

C

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 37 / 50

The algebra of sets

Suppose that A and U are sets with A ⊆ U. Let ∼ A = U− A. Then

Complement laws:

A∪ ∼ A = U, ∼ U = ∅, ∼ (∼ A) = A,A∩ ∼ A = ∅, ∼ ∅ = U;

A

U

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 38 / 50

The algebra of sets

Suppose that A, B and U are sets with A ⊆ U, and B ⊆ U. Recall that
∼ X = U− X and A ∪ B = {x | x ∈ A or x ∈ B} and
A ∩ B = {x | x ∈ A and x ∈ B}. Then

De Morgan’s laws:

∼ (A ∪ B) =∼ A∩ ∼ B, ∼ (A ∩ B) =∼ A∪ ∼ B.

A B

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 39 / 50

A proof of De Morgan’s law ∼ (A ∩ B) =∼ A∪ ∼ B

Case 1: Suppose x ∈ A and x ∈ B. From the definition of ∩, x ∈ A ∩ B. So from the
definition of ∼, x <∼ (A ∩ B). From the definition of ∼, x <∼ A and also x <∼ B. So
from the definition of ∪, x <∼ A∪ ∼ B.

Case 2: Suppose x ∈ A and x < B. From the definition of ∩, x < A ∩ B. So from the
definition of ∼, x ∈∼ (A ∩ B). From the definition of ∼, x <∼ A but x ∈∼ B. So from
the definition of ∪, x ∈∼ A∪ ∼ B.

Case 3: Suppose x < A and x ∈ B. From the definition of ∩, x < A ∩ B. So from the
definition of ∼, x ∈∼ (A ∩ B). From the definition of ∼, x ∈∼ A but x <∼ B. So from
the definition of ∪, x ∈∼ A∪ ∼ B.

Case 4: Suppose x < A and x < B. From the definition of ∩, x < A ∩ B. So from the
definition of ∼, x ∈∼ (A∩ B). From the definition of ∼, x ∈∼ A and x ∈∼ B. So from
the definition of ∪, x ∈∼ A∪ ∼ B.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 40 / 50

Using the algebra of sets

Prove that A∆B = (A ∪ B)∩ ∼ (A ∩ B). (See the next slide.)

A B

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 41 / 50

(A ∪ B) ∩ ∼ (A ∩ B) = (A ∪ B) ∩ (∼ A∪ ∼ B) De Morgan
= ((A ∪ B)∩ ∼ A) ∪ ((A ∪ B)∩ ∼ B) distributive
= (∼ A ∩ (A ∪ B)) ∪ (∼ B ∩ (A ∪ B)) commutative
= ((∼ A ∩ A) ∪ (∼ A ∩ B)) ∪ ((∼ B ∩ A) ∪ (∼ B ∩ B)) distributive
= ((A∩ ∼ A) ∪ (B∩ ∼ A)) ∪ ((A∩ ∼ B) ∪ (B∩ ∼ B)) commutative
= (∅ ∪ (B∩ ∼ A)) ∪ ((A∩ ∼ B) ∪ ∅) complement
= (A∩ ∼ B) ∪ (B∩ ∼ A) commutative and identity
= A∆B definition

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 42 / 50

Cardinality of sets

Definition The cardinality of a finite set S is the number of elements in S,
and is denoted by |S|.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 43 / 50

Computing the cardinality of a union of two sets

If A and B are sets then

|A ∪ B| = |A| + |B| − |A ∩ B|.

A B

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 44 / 50

Example

Suppose there are 100 third-year students. 40 of them take the module
“Sequential Algorithms” and 80 of them take the module “Multi-Agent
Systems”. 25 of them took both modules. How many students took neither
modules?

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 45 / 50

Computing the cardinality of a union of three sets

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C| + |A ∩ B ∩ C|

A B

C

These are special cases of the principle of inclusion and exclusion which
we will study later.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 46 / 50

Proof (optional)

We need lots of notation.

|A− (B ∪ C)| = na, |B− (A ∪ C)| = nb, |C− (A ∪ B)| = nc,
|(A ∩ B) − C| = nab, |(A ∩ C) − B| = nac, |(B ∩ C) − A| = nbc,
|A ∩ B ∩ C| = nabc.

A B

C
Then

|A ∪ B ∪ C| = na + nb + nc + nab + nac + nbc + nabc
= (na + nab + nac + nabc) + (nb + nab + nbc + nabc)
+ (nc + nac + nbc + nabc) − (nab + nabc)
− (nac + nabc) − (nbc + nabc) + nabc

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 47 / 50

Reflection

The following statements hold:

∅ ∈ {∅} but ∅ < ∅;
∅ ⊆ {5};
{2} ⊈ {{2}} but {2} ∈ {{2}};
{3, {3}} , {3}.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 48 / 50

Why is this set theory “naive”

It suffers from paradoxes.

A leading example:

A barber is the man who shaves all those, and only those, men
who do not shave themselves.

Who shaves the barber?

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 49 / 50

Why is this set theory “naive”

It suffers from paradoxes.

A leading example:

A barber is the man who shaves all those, and only those, men
who do not shave themselves.

Who shaves the barber?

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 49 / 50

Russell’s Paradox

Russell’s paradox shows that the ‘object’ {x | P(x)} is not always
meaningful.

Set A = {B | B < B}

Problem: do we have A ∈ A?

Abbreviate, for any set C, by P(C) the statement C < C. Then A = {B | P(B)}.

If A ∈ A, then (from the definition of P), not P(A). Therefore A < A.
If A < A, then (from the definition of P), P(A). Therefore A ∈ A.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory 50 / 50

Foundations of Computer Science
Comp109

University of Liverpool
Boris Konev
konev@liverpool.ac.uk
http://www.csc.liv.ac.uk/~konev/COMP109

Part 4. Function
Comp109 Foundations of Computer Science

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 1 / 42

Reading

Discrete Mathematics and Its Applications K. Rosen, Section 2.3.
Discrete Mathematics with Applications S. Epp, Chapter 7.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 2 / 42

Contents

Functions: definitions and examples
Domain, codomain, and range
Injective, surjective, and bijective functions
Invertible functions
Compositions of functions
Functions and cardinality
Pigeon hole principle
Cardinality of infinite sets

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 3 / 42

Functions

20 Chapter 1 Speaking Mathematically

function machine

Input
x

f (x) Output

Figure 1.3.1

Example 1.3.6 Functions Defined by Formulas

The squaring function f from R to R is defined by the formula f (x) = x2 for all real
numbers x . This means that no matter what real number input is substituted for x , the
output of f will be the square of that number. This idea can be represented by writing
f (!) = !2. In other words, f sends each real number x to x2, or, symbolically,
f : x → x2. Note that the variable x is a dummy variable; any other symbol could replace
it, as long as the replacement is made everywhere the x appears.

The successor function g from Z to Z is defined by the formula g(n) = n + 1. Thus,
no matter what integer is substituted for n, the output of g will be that number plus
one: g(!) = !+ 1. In other words, g sends each integer n to n + 1, or, symbolically,
g: n → n + 1.

An example of a constant function is the function h from Q to Z defined by the
formula h(r) = 2 for all rational numbers r . This function sends each rational number
r to 2. In other words, no matter what the input, the output is always 2: h(!) = 2 or
h: r → 2.

The functions f, g, and h are represented by the function machines in Figure 1.3.2.

squaring
function

x

f (x) = x2

(a)

successor
function

n

g(n) = n + 1

(b)

constant
function

r

h(r) = 2

(c)

Figure 1.3.2 ■

A function is an entity in its own right. It can be thought of as a certain relationship
between sets or as an input/output machine that operates according to a certain rule. This
is the reason why a function is generally denoted by a single symbol or string of symbols,
such as f, G, of log, or sin.

A relation is a subset of a Cartesian product and a function is a special kind of relation.
Specifically, if f and g are functions from a set A to a set B, then

f = {(x, y) ∈ A × B | y = f (x)} and g = {(x, y) ∈ A × B | y = g(x)}.
It follows that

f equals g, written f = g, if, and only if, f (x) = g(x) for all x in A.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Examples:
y = x2

y = sin(x)
first letter of your name

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 4 / 42

Functions/methods on programming

Java public int f(int x) {
return x+5;

}
C/C++ int f(int x) {

return x+5;
}

Python def f(int x):
return x+5

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 5 / 42

Definition

A function from a set A to a set B is an assignment of exactly one element
of B to each element of A.

We write f(a) = b if b is the unique element of B assigned by the function f
to the element of a.

If f is a function from A to B we write f : A → B.

1

2

3

4

5

6

Figure 1: A function f : {1, 2, 3} → {4, 5, 6}

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 6 / 42

1

3

5

7

2

4

6

Figure 2: No function

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 7 / 42

1

3

5

7

2

4

6

Figure 3: No function

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 8 / 42

Domain, codomain, and range

Suppose f : A → B.

A is called the domain of f. B is called the codomain of f.
The range f(A) of f is

f(A) = {f(x) | x ∈ A}.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 9 / 42

Codomain vs range

f(A)

BA

f

Figure 4: the range of f

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 10 / 42

Composition of functions

If f : X → Y and g : Y → Z are functions, then their composition g ◦ f is a
function from X to Z given by

(g ◦ f)(x) = g(f(x)).

7.3 Composition of Functions 417

to the squaring function, then they work together to operate as one larger machine. In
this larger machine, an integer n is first increased by 1 to obtain n + 1; then the quantity
n + 1 is squared to obtain (n + 1)2. This is illustrated in the following drawing.

successor function

n

n + 1

squaring function

(n + 1)2

Combining functions in this way is called composing them; the resulting function is
called the composition of the two functions. Note that the composition can be formed
only if the output of the first function is acceptable input to the second function. That is,
the range of the first function must be contained in the domain of the second function.

Note We put the f first
when we say “the
composition of f and g”
because an element x is
acted upon first by f and
then by g.

• Definition

Let f : X → Y ′ and g: Y → Z be functions with the property that the range of f is
a subset of the domain of g. Define a new function g◦ f : X → Z as follows:

(g◦ f)(x) = g(f (x)) for all x ∈ X,

where g◦ f is read “g circle f ” and g(f (x)) is read “g of f of x .” The function g◦ f
is called the composition of f and g.

This definition is shown schematically below.

Y ZX
f

x
f (x)

g(f (x)) =
(g % f)(x)Y'

g % f

g

!
Caution! Be careful not
to confuse g ◦ f and
g(f (x)): g ◦ f is the name
of the function whereas
g(f (x)) is the value of
the function at x .

Example 7.3.1 Composition of Functions Defined by Formulas

Let f : Z → Z be the successor function and let g: Z → Z be the squaring function. Then
f (n)= n + 1 for all n ∈ Z and g(n) = n2 for all n ∈ Z.

a. Find the compositions g◦ f and f ◦g.

b. Is g◦ f = f ◦g? Explain.

Solution

a. The functions g◦ f and f ◦g are defined as follows:

(g◦ f)(n) = g(f (n)) = g(n + 1) = (n + 1)2 for all n ∈ Z,

and

(f ◦g)(n) = f (g(n)) = f (n2) = n2 + 1 for all n ∈ Z.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 11 / 42

Example

Consider the function f : R→ R given by f(x) = x2 and the function
g : R→ R given by g(x) = 4x+ 3. Calculate g ◦ f, f ◦ g, f ◦ f and g ◦ g.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 12 / 42

Injective (one-to-one) functions

Definition Let f : A → B be a function. We call f an injective (or one-to-one)
function if

f(a1) = f(a2) ⇒ a1 = a2 for all a1,a2 ∈ A.

This is logically equivalent to a1 , a2 ⇒ f(a1) , f(a2) and so injective
functions never repeat values. In other words, different inputs give
different outputs.

Examples

f : Z→ Z given by f(x) = x2 is not injective.

h : Z→ Z given by h(x) = 2x is injective.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 13 / 42

Surjective (or onto) functions

Definition f : A → B is surjective (or onto) if the range of f coincides with
the codomain of f. This means that for every b ∈ B there exists a ∈ A with
b = f(a).

Examples

f : Z→ Z given by f(x) = x2 is not surjective.

h : Z→ Z given by h(x) = 2x is not surjective.

h′ : Q→ Q given by h′(x) = 2x is surjective.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 14 / 42

Classify f : {a,b, c} → {1, 2, 3} given by

a

b

c

1

2

3

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 15 / 42

Classify g : {a,b, c} → {1, 2, 3} given by

a

b

c

1

2

3

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 16 / 42

Classify h : {a,b, c} → {1, 2} given by

a

b

c

1

2

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 17 / 42

Classify h′ : {a,b, c} → {1, 2, 3} given by

a

b

1

2

3

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 18 / 42

Bijections

We call f bijective if f is both injective and surjective.

Examples

f : Q→ Q given by f(x) = 2x is bijective.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 19 / 42

Inverse functions

If f is a bijection from a set X to a set Y, then there is a function f−1 from Y
to X that “undoes” the action of f; that is, it sends each element of Y back
to the element of X that it came from. This function is called the inverse
function for f.

Then f(a) = b if, and only if, f−1(b) = a.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 20 / 42

Example

k : R→ R given by k(x) = 4x+ 3 is invertible and

k−1(y) = 1
4(y− 3).

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 21 / 42

Example

Let A = {x | x ∈ R, x , 1} and f : A → A be given by

f(x) = x
x− 1 .

Show that f is bijective and determine the inverse function.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 22 / 42

Bijections and representations

Let S = {1, 2, . . . ,n} and let Bn be the set of bit strings of length n. The
function

f : Pow(S) → Bn

which assigns each subset A of S to its characteristic vector is a bijection.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 23 / 42

Cardinality of finite sets and functions

Recall: The cardinality of a finite set S is the number of elements in S

A bijection f : S → {1, . . . ,n}.

For finite sets A and B

|A| ≥ |B| iff there is a surjective function from A to B.
|A| ≤ |B| iff there is a injective function from A to B.
|A| = |B| iff there is a bijection from A to B.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 24 / 42

The pigeonhole principle

Let f : A → B be a function where A and B are finite sets.

The pigeonhole principle states that if |A| > |B| then at least one value of f
occurs more than once.

In other words, we have f(a) = f(b) for some distinct elements a,b of A.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 25 / 42

Pigeons and pigeonholes

If (N+1) pigeons occupy N holes, then some hole must have at
least 2 pigeons.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 26 / 42

Example

Problem. There are 15 people on a bus. Show that at least two of them
have a birthday in the same month of the year.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 27 / 42

Example

Problem. How many different surnames must appear in a telephone
directory to guarantee that at least two of the surnames begin with the
same letter of the alphabet and end with the same letter of the alphabet?

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 28 / 42

Example

Problem. Five numbers are selected from the numbers 1, 2, 3, 4, 5, 6, 7 and
8. Show that there will always be two of the numbers that sum to 9.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 29 / 42

Extended pigeonhole principle

Consider a function f : A → B where A and B are finite sets and |A| > k|B|
for some natural number k. Then, there is a value of f which occurs at least
k+ 1 times.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 30 / 42

Example

Problem. How many different surnames must appear in a telephone
directory to guarantee that at least five of the surnames begin with the
same letter of the alphabet and end with the same letter of the alphabet?

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 31 / 42

Example

Problem. Show that in any group of six people there are either three who
all know each other or three complete strangers.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 32 / 42

Bijections and cardinality

Recall that the cardinality of a finite set is the number of elements in the
set.

Sets A and B have the same cardinality iff there is a bijection from A to B.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 33 / 42

Example: The cardinality of the power set.

Definition The power set Pow(A) of a set A is the set of all subsets of A. In
other words,

Pow(A) = {C | C ⊆ A}.

For all n ∈ Z+ and all sets A: if |A| = n, then |Pow(A)| = 2n.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 34 / 42

Power set and bit vectors

Recall that if all elements of a set A are drawn from some ordered
sequence S = s1, . . . , sn: the characteristic vector of A is the sequence
(b1, . . . ,bn) where

bi =
{
1 if si ∈ A
0 if si < A

We use the correspondence between bit vectors and subsets: |Pow(A)| is
the number of bit vectors of length n.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 35 / 42

The number of n-bit vectors is 2n

We prove the statement by induction.

Base Case: Take n = 1. There are two bit vectors of length 1: (0) and (1).

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 36 / 42

The number of n-bit vectors is 2n

Inductive Step: Assume that the property holds for n = m, so the
number of m-bit vectors is 2m. Now consider the set B of all (m+ 1)-bit
vectors. We must show that |B| = 2m+1.

Every (b1,b2, . . . ,bm+1) ∈ B starts with an m-bit vector (b1,b2, . . . ,bm)
followed by bm+1, which can be either 0 or 1.

Thus
|B| = 2m + 2m = 2m+1.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 37 / 42

Infinite sets

Sets A and B have the same cardinality iff there is a bijection from A to B.

Examples:

Z and even integers
consider f(n) = 2n

{x ∈ R | 0 < x < 1} and R+
consider g(x) = 1

x − 1

{x ∈ R | 0 < x < 1} and R

7.4 Cardinality with Applications to Computability 437

Define a function F: S → R as follows:
Draw a number line and place the interval, S, somewhat enlarged and bent into a

circle, tangent to the line above the point 0. This is shown below.

Number line

0–1–2–3 1 2 3

x

L

F(x)

For each point x on the circle representing S, draw a straight line L through the top-
most point of the circle and x . Let F(x) be the point of intersection of L and the number
line. (F(x) is called the projection of x onto the number line.)

It is clear from the geometry of the situation that distinct points on the circle go to
distinct points on the number line, so F is one-to-one. In addition, given any point y on
the number line, a line can be drawn through y and the top-most point of the circle. This
line must intersect the circle at some point x , and, by definition, y = F(x). Thus F is
onto. Hence F is a one-to-one correspondence from S to R, and so S and R have the
same cardinality. ■

You know that every positive integer is a real number, so putting Example 7.4.5
together with Cantor’s theorem (Theorem 7.4.2) shows that the infinity of the set of all
real numbers is “greater” than the infinity of the set of all positive integers. In exercise 35,
you are asked to show that any set and its power set have different cardinalities. Because
there is a one-to-one function from any set to its power set (the function that takes each
element a to the singleton set {a}), this implies that the cardinality of any set is “less
than” the cardinality of its power set. As a result, you can create an infinite sequence of
larger and larger infinities! For example, you could begin with Z, the set of all integers,
and take Z, P(Z), P(P(Z)), P(P(P(Z))), and so forth.

Application: Cardinality and Computability
Knowledge of the countability and uncountability of certain sets can be used to answer a
question of computability. We begin by showing that a certain set is countable.

Example 7.4.6 Countability of the Set of Computer Programs in a Computer Language

Show that the set of all computer programs in a given computer language is countable.

Solution This result is a consequence of the fact that any computer program in any
language can be regarded as a finite string of symbols in the (finite) alphabet of the lan-
guage.

Given any computer language, let P be the set of all computer programs in the lan-
guage. Either P is finite or P is infinite. If P is finite, then P is countable and we are
done. If P is infinite, set up a binary code to translate the symbols of the alphabet of
the language into strings of 0’s and 1’s. (For instance, either the seven-bit American
Standard Code for Information Interchange, known as ASCII, or the eight-bit Extended
Binary-Coded Decimal Interchange Code, known as EBCDIC, might be used.)

For each program in P , use the code to translate all the symbols in the program into
0’s and 1’s. Order these strings by length, putting shorter before longer, and order all

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 38 / 42

Countable sets

A set that is either finite or has the same cardinality as N is called
countable.

Z

. . . −4 −3 −2 −1 0 1 2 3 4 . . .

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 39 / 42

Countable Sets: Q

1
1

1
2

1
3

1
4

1
5

1
6 . . .

2
1

2
2

2
3

2
4

2
5

2
6 . . .

3
1

3
2

3
3

3
4

3
5

3
6 . . .

4
1

4
2

4
3

4
4

4
5

4
6 . . .

5
1

5
2

5
3

5
4

5
5

5
6 . . .

6
1

6
2

6
3

6
4

6
5

6
6 . . .

.
. . .

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 40 / 42

Uncountable sets

A set that is not countable is called uncountable.
S = {x ∈ R | 0 < x < 1} is uncountable

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 41 / 42

Cantor’s diagonal argument

Suppose S is countable. Then the decimal representations of these
numbers can be written as a list

a1 = 0.a11 a12 a13 . . . a1n . . .

a2 = 0.a21 a22 a23 . . . a2n . . .

a3 = 0.a31 a32 a33 . . . a3n . . .
...

an = 0.an1 an2 an3 . . . ann . . .
...

Let d = 0.d1 d2 d3 . . .dn . . . where

di =
{
1, if aii , 1
2, if aii = 1

Then d is not in the sequence a1, a2, a3…

http://www.csc.liv.ac.uk/~konev/COMP109 Part 4. Function 42 / 42

Foundations of Computer Science
Comp109

University of Liverpool
Boris Konev
konev@liverpool.ac.uk
http://www.csc.liv.ac.uk/~konev/COMP109

Part 3. Relations
Comp109 Foundations of Computer Science

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 1 / 54

Reading

Discrete Mathematics and Its Applications K. Rosen, Chapter 9.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 2 / 54

Contents

The Cartesian product
Definition and examples
Representation of binary relations by directed graphs
Representation of binary relations by matrices
Properties of binary relations
Transitive closure
Equivalence relations and partitions
Partial orders and total orders.
Unary relations

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 3 / 54

Motivation

Intuitively, there is a “relation” between two things if there is some
connection between them.
E.g.

‘friend of’
a < b
m divides n

Relations are used in crucial ways in many branches of mathematics
Equivalence
Ordering

Computer Science

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 4 / 54

Databases and relations

A database table ≈ relation
9.2 n-ary Relations and Their Applications 585

TABLE 1 Students.

Student_name ID_number Major GPA

Ackermann 231455 Computer Science 3.88
Adams 888323 Physics 3.45
Chou 102147 Computer Science 3.49
Goodfriend 453876 Mathematics 3.45
Rao 678543 Mathematics 3.90
Stevens 786576 Psychology 2.99

are represented as 4-tuples of the form (Student_name, ID_number, Major, GPA). A sample
database of six such records is

(Ackermann, 231455, Computer Science, 3.88)
(Adams, 888323, Physics, 3.45)
(Chou, 102147, Computer Science, 3.49)
(Goodfriend, 453876, Mathematics, 3.45)
(Rao, 678543, Mathematics, 3.90)
(Stevens, 786576, Psychology, 2.99).

Relations used to represent databases are also called tables, because these relations are often
displayed as tables. Each column of the table corresponds to an attribute of the database. For
instance, the same database of students is displayed in Table 1. The attributes of this database
are Student Name, ID Number, Major, and GPA.

A domain of an n-ary relation is called a primary key when the value of the n-tuple from
this domain determines the n-tuple. That is, a domain is a primary key when no two n-tuples in
the relation have the same value from this domain.

Records are often added to or deleted from databases. Because of this, the property that a
domain is a primary key is time-dependent. Consequently, a primary key should be chosen that
remains one whenever the database is changed. The current collection of n-tuples in a relation
is called the extension of the relation. The more permanent part of a database, including the
name and attributes of the database, is called its intension. When selecting a primary key, the
goal should be to select a key that can serve as a primary key for all possible extensions of the
database. To do this, it is necessary to examine the intension of the database to understand the
set of possible n-tuples that can occur in an extension.

EXAMPLE 5 Which domains are primary keys for the n-ary relation displayed in Table 1, assuming that no
n-tuples will be added in the future?

Solution: Because there is only one 4-tuple in this table for each student name, the domain
of student names is a primary key. Similarly, the ID numbers in this table are unique, so the
domain of ID numbers is also a primary key. However, the domain of major fields of study
is not a primary key, because more than one 4-tuple contains the same major field of study.
The domain of grade point averages is also not a primary key, because there are two 4-tuples
containing the same GPA. ▲

Combinations of domains can also uniquely identify n-tuples in an n-ary relation. When
the values of a set of domains determine an n-tuple in a relation, the Cartesian product of these
domains is called a composite key.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 5 / 54

Ordered pairs

Definition The Cartesian product A× B of sets A and B is the set consisting
of all pairs (a,b) with a ∈ A and b ∈ B, i.e.,

A× B = {(a,b) | a ∈ A and b ∈ B}.

Note that (a,b) = (c,d) if and only if a = c and b = d.

Note

{1, 2} = {2, 1} but (1, 2) , (2, 1).

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 6 / 54

Example

Let A = {1, 2} and B = {a,b, c}. Then

A× B = {(1,a), (2,a), (1,b), (2,b), (1, c), (2, c)}.

B× A =

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 7 / 54

Relations

Definition A binary relation between two sets A and B is a subset R of the
Cartesian product A× B.

If A = B, then R is called a binary relation on A.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 8 / 54

Example: Family tree

Fred and Mavis

Alice Ken and

Jane Fiona Alan

John and Mary

Sue Mike Penny

Write down

R = {(x, y) | x is a grandfather of y };

S = {(x, y) | x is a sister of y }.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 9 / 54

Example 2

Write down the ordered pairs belonging to the following binary relations
between A = {1, 3, 5, 7} and B = {2, 4, 6}:

U = {(x, y) ∈ A× B | x+ y = 9};

V = {(x, y) ∈ A× B | x < y}.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 10 / 54

Example 3

Let A = {1, 2, 3, 4, 5, 6}. Write down the ordered pairs belonging to

R = {(x, y) ∈ A× A | x is a divisor of y }.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 11 / 54

Representation of binary relations: directed graphs

Let A and B be two finite sets and R a binary relation between these
two sets (i.e., R ⊆ A× B).
We represent the elements of these two sets as vertices of a graph.
For each (a,b) ∈ R, we draw an arrow linking the related elements.
This is called the directed graph (or digraph) of R.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 12 / 54

Example

Consider the relation V between A = {1, 3, 5, 7} and B = {2, 4, 6} such that
V = {(x, y) ∈ A× B | x < y}.

1

3

5

7

2

4

6

Figure 1: digraph of V

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 13 / 54

Digraphs of binary relations on a single set

A binary relation between a set A and itself is called “a binary relation on
A”.

To represent such a relation, we use a directed graph in which a single set
of vertices represents the elements of A and arrows link the related
elements.

Consider the relation V ⊆ A× A where A = {1, 2, 3, 4, 5} and
V = {(1, 2), (3, 3), (5, 5), (1, 4), (4, 1), (4, 5)}.

1 2

3

4

5

Figure 2: digraph of Vhttp://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 14 / 54

Functions as relations

Recall that a function f from a set A to a set B assigns exactly one
element of B to each element of A.

Gives rise to the relation Rf = {(a,b) ∈ A× B | b = f(a)}

If a relation S ⊆ A× B is such that for every a ∈ A there exists at most
one b ∈ B with (a,b) ∈ S, relation S is functional.

(Sometimes in the literature, functions are introduced through
functional relations.)

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 15 / 54

Inverse relation

Definition Given a relation R ⊆ A× B, we define the inverse relation
R−1 ⊆ B× A by

R−1 = {(b,a) | (a,b) ∈ R}.

Example: The inverse of the relation is a parent of on the set of people is
the relation is a child of.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 16 / 54

Composition of relations

Definition Let R ⊆ A× B and S ⊆ B× C. The (functional) composition of R
and S, denoted by S ◦ R, is the binary relation between A and C given by

S ◦ R = {(a, c) | exists b ∈ B such that aRb and bSc}.

Example: If R is the relation is a sister of and S is the relation is a parent
of, then

S ◦ R is the relation is an aunt of;
S ◦ S is the relation is a grandparent of.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 17 / 54

Digraph representation of compositions

a

b

1

2

3

R

1

2

3

x

y

S

a

b

x

y

S ◦ R

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 18 / 54

Computer friendly representation of binary relations: matrices

Another way of representing a binary relation between finite sets uses
an array.
Let A = {a1, . . . ,an}, B = {b1, . . . ,bm} and R ⊆ A× B.
We represent R by an array M of n rows and m columns. Such an array
is called a n by m matrix.
The entry in row i and column j of this matrix is given by M(i, j) where

M(i, j) =
{
T if (ai,bj) ∈ R
F if (ai,bj) < R

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 19 / 54

Example 1

Let A = {1, 3, 5, 7}, B = {2, 4, 6}, and

U = {(x, y) ∈ A× B | x+ y = 9}

Assume an enumeration a1 = 1, a2 = 3, a3 = 5, a4 = 7 and b1 = 2, b2 = 4,
b3 = 6. Then M represents U, where

M =




F F F
F F T
F T F
T F F




http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 20 / 54

Example 2

Let A = {a,b, c,d} and suppose that R ⊆ A× A has the following matrix
representation:

M =




F T T F
F F T T
F T F F
T T F T




List the ordered pairs belonging to R.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 21 / 54

Example

The binary relation R on A = {1, 2, 3, 4} has the following digraph
representation.

1 2

34

The ordered pairs R =

The matrix 


. . . .

. . . .

. . . .

. . . .




In words:

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 22 / 54

Matrices and composition

Now let’s go back and see how this works for matrices representing
relations

a

b

1

2

3

R :

[
T T T
F T F

]

1

2

3

x

y

S :



F T
T F
T F




a

b

x

y

S ◦ R :

[
T T
T F

]

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 23 / 54

The formal description

Given two matrices with entries “T” and “F” representing the relations we
can form the matrix representing the composition. This is called the
logical (Boolean) matrix product.

Let A = {a1, . . . ,an}, B = {b1, . . . ,bm} and C = {c1, . . . , cp}.

The logical matrix M representing R is given by:

M(i, j) =
{
T if (ai,bj) ∈ R
F if (ai,bj) < R

The logical matrix N representing S is given by

N(i, j) =
{
T if (bi, cj) ∈ S
F if (bi, cj) < S

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 24 / 54

Matrix representation of compositions

Then the entries P(i, j) of the logical matrix P representing S◦R are given by

P(i, j) = T if there exists l with 1 ≤ l ≤ m such that M(i, l) = T and
N(l, j) = T.
P(i, j) = F, otherwise.

We write P = MN.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 25 / 54

The example from before

Let R be the relation between A = {a,b} and B = {1, 2, 3} represented by
the matrix

M =

[
T T T
F T F

]

Similarly, let S be the relation between B and C = {x, y} represented by the
matrix

N =



F T
T F
T F




http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 26 / 54

Example

Then the matrix P = MN representing S ◦ R is

P =

[
T T
T F

]

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 27 / 54

Infix notation for binary relations

If R is a binary relation then we write xRy whenever (x, y) ∈ R. The
predicate xRy is read as x is R-related to y.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 28 / 54

Properties of binary relations (1)

A binary relation R on a set A is

reflexive when xRx for all x ∈ A.

∀x A(x) =⇒ xRx

symmetric when xRy implies yRx for all x, y ∈ A;

∀x, y xRy =⇒ yRx

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 29 / 54

Properties of binary relations (2)

A binary relation R on a set A is

antisymmetric when xRy and yRx imply x = y for all x, y ∈ A;

∀x, y xRy and yRx =⇒ y = x

transitive when xRy and yRz imply xRz for all x, y, z ∈ A.

∀x, y, z xRy and yRz =⇒ xRz

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 30 / 54

Example

reflexive xRx
symmetric xRy =⇒ yRx
antisymmetric xRy, yRx =⇒ x = y
transitive xRy, yRz =⇒ xRz

Let A = {1, 2, 3}.

R1 = {(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)}

R2 = {(2, 2), (2, 3), (3, 2), (3, 3)}

R3 = {(1, 1), (2, 2), (3, 3), (1, 3)}

R4 = {(1, 3), (3, 2), (2, 3)}

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 31 / 54

Digraf representation

In the directed graph representation, R is

reflexive if there is always an arrow from every vertex to itself;
symmetric if whenever there is an arrow from x to y there is also an
arrow from y to x;
antisymmetric if whenever there is an arrow from x to y and x , y,
then there is no arrow from y to x;
transitive if whenever there is an arrow from x to y and from y to z
there is also an arrow from x to z.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 32 / 54

Example

Which of the following define a relation that is reflexive, symmetric,
antisymmetric or transitive?

x divides y on the set Z+ of positive integers;
x , y on the set Z of integers;
x has the same age as y on the set of people.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 33 / 54

Transitive closure

Given a binary relation R on a set A, the transitive closure R∗ of R is the
(uniquely determined) relation on A with the following properties:

R∗ is transitive;
R ⊆ R∗;
If S is a transitive relation on A and R ⊆ S, then R∗ ⊆ S.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 34 / 54

Example

Let A = {1, 2, 3}. Find the transitive closure of

R = {(1, 1), (1, 2), (1, 3), (2, 3), (3, 1)}.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 35 / 54

Finding the transitive closure is easier with the digraph representation

Reachability relation
1 2

3

4

5

6

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 36 / 54

Transitivity and composition

A relation S is transitive if and only if S ◦ S ⊆ S.

This is because

S ◦ S = {(a, c) | exists b such that aSb and bSc}.

Let S be a relation. Set S1 = S, S2 = S ◦ S, S3 = S ◦ S ◦ S, and so on.

Theorem Denote by S∗ the transitive closure of S. Then xS∗y if and only if
there exists n > 0 such that xSny.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 37 / 54

Transitive closure in matrix form

The relation R on the set A = {1, 2, 3, 4, 5} is represented by the matrix




T F F T F
F T F F T
F F T F F
T F T F F
F T F T F




Determine the matrix R ◦ R and hence explain why R is not transitive.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 38 / 54

Computation




T F F T F
F T F F T
F F T F F
T F T F F
F T F T F







T F F T F
F T F F T
F F T F F
T F T F F
F T F T F



=




T F T T F
F T F T T
F F T F F
T F T T F
T T T F T




R ◦ R = {(a, c) | exists b ∈ A such that aRb and bRc}.

Note (in red) that there are pairs (a, c) that are in R ◦ R but not in R. Hence,
R is not transitive.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 39 / 54

Detour: Warshall’s algorithm

def warshal l (a) :
asser t (len (row) == len (a) for row in a)
n = len (a)
for k in range (n) :

for i in range (n) :
for j in range (n) :

a [i] [j] = a [i] [j] or
(a [i] [k] and a [k] [j])

return a

pr in t warshal l ([[1 , 0 , 0 , 1 , 0] ,
[0 , 1 , 0 , 0 , 1] ,
[0 , 0 , 1 , 0 , 0] ,
[1 , 0 , 1 , 0 , 0] ,
[0 , 1 , 0 , 1 , 0]])

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 40 / 54

Important relations: Equivalence relations

Definition A binary relation R on a set A is called an equivalence relation if
it is reflexive, transitive, and symmetric.

Examples:

the relation R on the non-zero integers given by xRy if xy > 0;
the relation has the same age on the set of people.

Definition The equivalence class Ex of any x ∈ A is defined by

Ex = {y | yRx}.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 41 / 54

Example

Define a relation R on the set R of real numbers by setting xRy if and only
if x− y is an integer. Prove that R is an equivalence relation. Moreover,

E0 = Z is the equivalence class of 0;
E 1
2
= {. . . , −2 12 − 1 12 , − 1

2 ,
1
2 , 1

1
2 , 2

1
2 , . . .} is the equivalence class of 12 .

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 42 / 54

Functions and equivalence relations

Let f : A → B be a function. Define a relation R on A by

a1Ra2 ⇔ f(a1) = f(a2).

Then R is an equivalence relation on A. The equivalence class Ea of a ∈ A is
given by

Ea = {a′ ∈ A | f(a′) = f(a)}.

Example: A is a set of cars, B is the set of real numbers, and f assigns to
any car in A its length. Then a1Ra2 if and only if a1 and a2 are of the same
length.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 43 / 54

Partition of a set

A partition of a set A is a collection of non-empty subsets A1, . . . ,An of A
satisfying:

A = A1 ∪ A2 ∪ · · · ∪ An;
Ai ∩ Aj = ∅ for i , j.

The Ai are called the blocks of the partition.

AA1

A2

A3

A4

Figure 3: Partition of A
http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 44 / 54

Connecting partitions and equivalence relations

Theorem Let R be an equivalence relation on a non-empty set A. Then the
equivalence classes {Ex | x ∈ A} form a partition of A.

Proof (Optional)

The proof is in four parts:

(1) We show that the equivalence classes Ex = {y | yRx}, x ∈ A, are
non-empty subsets of A: by definition, each Ex is a subset of A. Since R is
reflexive, xRx. Therefore x ∈ Ex and so Ex is non-empty.

(2) We show that A is the union of the equivalence classes Ex, x ∈ A: We
know that Ex ⊆ A, for all Ex, x ∈ A. Therefore the union of the equivalence
classes is a subset of A. Conversely, suppose x ∈ A. Then x ∈ Ex. So, A is a
subset of the union of the equivalence classes.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 45 / 54

(Optional) Proof (continued)

The purpose of the last two parts is to show that distinct equivalence
classes are disjoint, satisfying (ii) in the definition of partition.

(3) We show that if xRy then Ex = Ey: Suppose that xRy and let z ∈ Ex. Then,
zRx and xRy. Since R is a transitive relation, zRy. Therefore, z ∈ Ey. We have
shown that Ex ⊆ Ey. An analogous argument shows that Ey ⊆ Ex. So, Ex = Ey.

(4) We show that any two distinct equivalence classes are disjoint: To this
end we show that if two equivalence classes are not disjoint then they are
identical. Suppose Ex ∩ Ey , ∅. Take a z ∈ Ex ∩ Ey. Then, zRx and zRy. Since R
is symmetric, xRz and zRy. But then, by transitivity of R, xRy. Therefore, by
(3), Ex = Ey.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 46 / 54

Connecting partitions and equivalence relations

Theorem Suppose that A1, . . . ,An is a partition of A. Define a relation R on
A by setting: xRy if and only if there exists i such that 1 ≤ i ≤ n and
x, y ∈ Ai. Then R is an equivalence relation.

Proof (Optional)

Reflexivity: if x ∈ A, then x ∈ Ai for some i. Therefore xRx.
Transitivity: if xRy and yRz, then there exists Ai and Aj such that
x, y ∈ Ai and y, z ∈ Aj. y ∈ Ai ∩ Aj implies i = j. Therefore x, z ∈ Ai which
implies xRz.
Symmetry: if xRy, then there exists Ai such that x, y ∈ Ai. Therefore yRx.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 47 / 54

Important relations: Partial orders

Definition A binary relation R on a set A which is reflexive, transitive and
antisymmetric is called a partial order.

Partial orders are important in situations where we wish to characterise
precedence.

Examples:

the relation ≤ on the the set R of real numbers;
the relation ⊆ on Pow(A);
“is a divisor of” on the set Z+ of positive integers.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 48 / 54

Example: Job scheduling

8.5 Partial Order Relations 511

Example 8.5.12 A Job Scheduling Problem

At an automobile assembly plant, the job of assembling an automobile can be broken
down into these tasks:

1. Build frame.

2. Install engine, power train components, gas tank.

3. Install brakes, wheels, tires.

4. Install dashboard, floor, seats.

5. Install electrical lines.

6. Install gas lines.

7. Install brake lines.

8. Attach body panels to frame.

9. Paint body.

Certain of these tasks can be carried out at the same time, whereas some cannot be started
until other tasks are finished. Table 8.5.1 summarizes the order in which tasks can be
performed and the time required to perform each task.

Table 8.5.1

Time Needed to
Task Immediately Preceding Tasks Perform Task

1 7 hours
2 1 6 hours
3 1 3 hours
4 2 6 hours
5 2, 3 3 hours
6 4 1 hour
7 2, 3 1 hour
8 4, 5 2 hours
9 6, 7, 8 5 hours

Let T be the set of all tasks, and consider the partial order relation ≼ defined on T as
follows: For all tasks x and y in T ,

x ≼ y ⇔ x = y or x precedes y.

If the Hasse diagram of this relation is turned sideways (as is customary in PERT and
CPM analysis), it has the appearance shown below.

Task 4
6 hours Task 6

1 hour

Task 8
2 hours Task 9

5 hours
Task 1
7 hours

Task 5
3 hours

Task 2
6 hours

Task 7
1 hour

Task 3
3 hours

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.5 Partial Order Relations 511

Example 8.5.12 A Job Scheduling Problem

At an automobile assembly plant, the job of assembling an automobile can be broken
down into these tasks:

1. Build frame.

2. Install engine, power train components, gas tank.

3. Install brakes, wheels, tires.

4. Install dashboard, floor, seats.

5. Install electrical lines.

6. Install gas lines.

7. Install brake lines.

8. Attach body panels to frame.

9. Paint body.

Certain of these tasks can be carried out at the same time, whereas some cannot be started
until other tasks are finished. Table 8.5.1 summarizes the order in which tasks can be
performed and the time required to perform each task.

Table 8.5.1

Time Needed to
Task Immediately Preceding Tasks Perform Task

1 7 hours
2 1 6 hours
3 1 3 hours
4 2 6 hours
5 2, 3 3 hours
6 4 1 hour
7 2, 3 1 hour
8 4, 5 2 hours
9 6, 7, 8 5 hours

Let T be the set of all tasks, and consider the partial order relation ≼ defined on T as
follows: For all tasks x and y in T ,

x ≼ y ⇔ x = y or x precedes y.

If the Hasse diagram of this relation is turned sideways (as is customary in PERT and
CPM analysis), it has the appearance shown below.

Task 4
6 hours Task 6

1 hour

Task 8
2 hours Task 9

5 hours
Task 1
7 hours

Task 5
3 hours

Task 2
6 hours

Task 7
1 hour

Task 3
3 hours

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 49 / 54

Predecessors in partial orders

If R is a partial order on a set A and xRy, x , y we call x a predecessor of y.

If x is a predecessor of y and there is no z < {x, y} for which xRz and zRy,
we call x an immediate predecessor of y.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 50 / 54

Important relations: Total orders

Definition A binary relation R on a set A is a total order if it is a partial
order such that for any x, y ∈ A, xRy or yRx.

The Hasse diagram of a total order is a chain.

Examples

the relation ≤ on the set R of real numbers;
the usual lexicographical ordering on the words in a dictionary;
the relation “is a divisor of” is not a total order.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 51 / 54

n-ary relations

The Cartesian product A1 × A2 × · · · × An of sets A1,A2, . . . ,An is defined by

A1 × A2 × · · · × An = {(a1, . . . ,an) | a1 ∈ A1, . . . ,an ∈ An}.

Here (a1, . . . ,an) = (b1, . . . ,bn) if and only if ai = bi for all 1 ≤ i ≤ n.

An n-ary relation is a subset of A1 ×An

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 52 / 54

Databases and relations

A database table ≈ relation 9.2 n-ary Relations and Their Applications 585

TABLE 1 Students.

Student_name ID_number Major GPA

Ackermann 231455 Computer Science 3.88
Adams 888323 Physics 3.45
Chou 102147 Computer Science 3.49
Goodfriend 453876 Mathematics 3.45
Rao 678543 Mathematics 3.90
Stevens 786576 Psychology 2.99

are represented as 4-tuples of the form (Student_name, ID_number, Major, GPA). A sample
database of six such records is

(Ackermann, 231455, Computer Science, 3.88)
(Adams, 888323, Physics, 3.45)
(Chou, 102147, Computer Science, 3.49)
(Goodfriend, 453876, Mathematics, 3.45)
(Rao, 678543, Mathematics, 3.90)
(Stevens, 786576, Psychology, 2.99).

Relations used to represent databases are also called tables, because these relations are often
displayed as tables. Each column of the table corresponds to an attribute of the database. For
instance, the same database of students is displayed in Table 1. The attributes of this database
are Student Name, ID Number, Major, and GPA.

A domain of an n-ary relation is called a primary key when the value of the n-tuple from
this domain determines the n-tuple. That is, a domain is a primary key when no two n-tuples in
the relation have the same value from this domain.

Records are often added to or deleted from databases. Because of this, the property that a
domain is a primary key is time-dependent. Consequently, a primary key should be chosen that
remains one whenever the database is changed. The current collection of n-tuples in a relation
is called the extension of the relation. The more permanent part of a database, including the
name and attributes of the database, is called its intension. When selecting a primary key, the
goal should be to select a key that can serve as a primary key for all possible extensions of the
database. To do this, it is necessary to examine the intension of the database to understand the
set of possible n-tuples that can occur in an extension.

EXAMPLE 5 Which domains are primary keys for the n-ary relation displayed in Table 1, assuming that no
n-tuples will be added in the future?

Solution: Because there is only one 4-tuple in this table for each student name, the domain
of student names is a primary key. Similarly, the ID numbers in this table are unique, so the
domain of ID numbers is also a primary key. However, the domain of major fields of study
is not a primary key, because more than one 4-tuple contains the same major field of study.
The domain of grade point averages is also not a primary key, because there are two 4-tuples
containing the same GPA. ▲

Combinations of domains can also uniquely identify n-tuples in an n-ary relation. When
the values of a set of domains determine an n-tuple in a relation, the Cartesian product of these
domains is called a composite key.

Students = {

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 53 / 54

Unary relations

Unary relations are just subsets of a set.

Example: The unary relation EvenPositiveIntegers on the set Z+ of
positive integers is

{x ∈ Z+ | x is even}.

http://www.csc.liv.ac.uk/~konev/COMP109 Part 3. Relations 54 / 54

