Foundations of Computer Science (COMP109)

Tutorial VIII (bring solutions between 20.11.2017 – 24.11.2017)

VIII.1. For each of the following relations on the set $A = \{1, 2, 3, 4\}$ determine whether they are functional, reflexive, symmetric, anti-symmetric or transitive.

Explain your answer in each case, showing why your answer is correct.

- (a) $\{(4,2),(2,1),(1,2),(3,3)\},\$
- (b) $\{(2,1), (3,3), (4,2)\},\$
- (c) $\{(4,1), (4,2), (3,1), (3,2), (1,2)\}.$
- (d) $\{(x, y) \mid x > y\}.$
- VIII.2. Let $A = \{1, 2, 3, 4\}$ and the relation R on A be given by

 $R = \{(1,3), (3,2), (2,1), (4,4)\}.$

What is the transitive closure of *R*?

- VIII.3. For each of the following equivalence relations R on a given set A, describe the equivalence classes E_x into which the relation partitions the set A:
 - (a) A is the set of books in a library; R is given by xRy if, and only if, the colour of x's cover is the same as the colour of y's cover.
 - (b) $A = \mathbb{Z}$; *R* is given by *xRy* if, and only if, x y is even.
 - (c) *A* is the set of people; *R* is given by *xRy* if, and only if, *x* has the same sex as *y*.
 - (d) $A = \{0, 1, 2, 3, 4\}$ and $\mathbb{R} = \{(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)\}.$
- VIII.4. Is there a mistake in the following proof that any transitive and symmetric relation *R* is reflexive? If so, what is it?

Let *aRb*. By symmetry, *bRa*. By transitivity, if *aRb* and *bRa*, then *aRa*. This proves reflexivity.

- VIII.5. Determine for the following relations on the set of people if the relation is an equivalence relation, a partial order, both an equivalence relation and a partial order, or neither an equivalence relation nor a partial order.
 - (a) 'has the same parents (both) as'
 - (b) 'has at least one parent same as'
 - (c) 'is a brother of'
 - (d) 'is at least as clever as'.
- VIII.6. Let *R* and *S* be relations on a set *A*. Use proof by contradiction to show that if *R* and *S* are partial orders then $R \cap S$ is also a partial order.