Pick any number, add 5, multiply by 4, subtract 6, divide by 2, and subtract twice the original number. The answer is 7.

Step	Visual Result	Algebraic Result
Pick a number.	3 5)5	х
Add 5.		x + 5
Multiply by 4.		$(x+5)\cdot 4 = 4x + 20$
Subtract 6.		(4x + 20) - 6 = 4x + 14
Divide by 2.		$\frac{4x + 14}{2} = 2x + 7$
Subtract twice the original number.		(2x+7) - 2x = 7

The most powerful technique for proving a universal statement is one that works regardless of the choice of values for *x*.

To show that every *x* satisfies a certain property, suppose *x* is a particular but arbitrarily chosen and show that *x* satisfies the property.

- Express the statement to be proved in the form $(\forall x, \text{ if } P(x) \text{ then } Q(x).")$ (This step is often done mentally.)
- Start the proof by supposing x is a particular but arbitrarily chosen element for which the hypothesis P(x) is true.
 (This step is often abbreviated "Suppose P(x).")
- Show that the conclusion *Q*(*x*) is true by using definitions, previously established results, and the rules for logical inference.

Q.E.D.

Prove that the sum of any two even integers is even

V X, y if X and y are even integers then Xty is even Proof Assume that X is even Then X=&k for some and y is even. Then y=&l for some integer L. Then X+y = 2K+2f = 2(K+1) By definition of even, Xty is even.

Prove that every integer is rational

Prove that the sum of any two rational numbers is rational

http://www.csc.liv.ac.uk/~konev/COMP109

intege Proof continued integer $\chi + \lambda = \frac{\omega}{w} + \frac{\kappa}{k} =$ LFO, Since N= 2 and 1.l = 0

By definition of a rational humber, X+y is rational.

Prove that the product of any two rational numbers is rational

Assume that X is rational,

$$2 = \frac{2}{1}$$
 is voctional
Thus QX is the peroduct of two voltional
humbers and to dx is rational.