Mathematical induction

m Mathematical induction is one of the more recently developed
techniques of proof in the history of mathematics.

m It is used to check conjectures about the outcomes of processes that
occur repeatedly and according to definite patterns.

m |n general, mathematical induction is a method for proving that a
property defined for integers n is true for all values of n that are
greater than or equal to some initial integer
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Example: Domino effect

One domino for each natural number, arranged in order.

m | will push domino 0 (the one at the front of the picture) towards the
others.

m For every natural number m, if the m'th domino falls, then the
(m + 1)st domino will fall.

Conclude: All of the Dominoes will fall.
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Proving by induction that a property holds for every natural number n

m Prove that the property holds for the natural number n = 0.

m Prove that if the property holds for n = m (for any natural number m)
then it holds forn =m + 1.

The validity of proof by mathematical induction is generally taken as an

axiom. That is why it is referred to as the principle of mathematical
—

induction rather than as a theorem.
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A proof of a property by induction looks like this

Base Case: Show that the property holds forn = 0.

-7 Inductive Step: Assume that the property holds for n = m. Show that it
holds forn=m + 1.

Conclusion:  You can now conclude that the property holds for every
natural number n.
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Example: Proof by induction

For every natural number n,

nn+1
O_|_1_|_..._|_n:(2+)‘

Base Case: Take n = 0. The left-hand-side and the right-hand-side are
both 0 so they are equal.

Inductive Step:  Assume that the property holds for n = m, so

m(m + 1
O+1+~-+m:<2+).

Now consider n = m + 1. We must show that

O+14+--4+m+(mMm+1) = (m+1)2(m+2)'
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Proof continued

Since

m(m 1
0+H~~+mzﬂi)‘

m4+m+m+m+nzﬂg;ﬁ
_ mm+1)+2(m+1)
2
(m+1)(m+2)
2

+m+1
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Other starting values

Suppose you want to prove a statement not for all natural numbers, but
for all integers greater than or equal to some particular natural number b

Base Case: Show that the property holds for n = b.

Inductive Step:  Assume that the property holds for n = m for any m > b.
Show that it holds forn =m + 1.

Conclusion:  You can now conclude that the property holds for every
integer n > b.
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Example: Proof by induction

For all integers n > 8, n¢ can be obtained using 3¢ and 5¢ coins.
Base Case: Forn =38, 8¢ = 3¢+ 5¢.

Inductive Step:  Suppose that m¢ can be obtained using 3¢ and 5¢ coins
for any m > 8. We must show that (m + 1)¢ can be obtained using 3¢ and
5¢ coins.

Consider cases

m There is a 5¢ coin among those used to make up the mg.
m Replace the 5¢ coin with two 3¢ coins. We obtain (m + 1)¢.
m There is no 5¢ coin among those used to make up the m¢.
m There are three 3¢ coins (m > 8).
B Replace the three 3¢ coins with two 5¢ coins
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