Example: Proof by induction

For all integers n > 8, n¢ can be obtained using 3¢ and 5¢ coins.
Base Case: Forn =38, 8¢ = 3¢+ 5¢.

Inductive Step:  Suppose that m¢ can be obtained using 3¢ and 5¢ coins
for any m > 8. We must show that (m + 1)¢ can be obtained using 3¢ and
5¢ coins.

Consider cases

m There is a 5¢ coin among those used to make up the mg.
m Replace the 5¢ coin with two 3¢ coins. We obtain (m + 1)¢.
m There is no 5¢ coin among those used to make up the m¢.
m There are three 3¢ coins (m > 8).
B Replace the three 3¢ coins with two 5¢ coins

http://www.csc.liv.ac.uk/~konev/COMP109 Part 1. Number Systems and Proof Techniques



Say case  dor n=g @ @

Cadn
be\(»]eq

Voad S coud 00U,

AN

me( Coceks.

@@“@



C‘V!"4/\/(~"Q"/%5¢CQ

54

—

e

2100



Example: Proof by induction

For every integer n > 3, 4" > 21+2,

Base Case: Take n = 3. Then 4" = 43 = 64. Also, 2"2 = 2° = 32. So
U s PR

Inductive Step:  For any m > 3, assume that the statement 4™ > 2M+2 js
true. (This is called the “inductive hypothesis”.) Now consider n = m + 1.
We must show that 4™+ > 2(m+1)+2 — om+3

Here is the calculation. 4™*1 = 4 x 4™. But by the inductive hypothesis,
4 x 4M > 4 x 2M+2 Finally,

4 % 2m+2 > 2 X 2m+2 — 2m+3_
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Using induction to show that a program is correct

What does the following program do?
" vian led

/ g

—> while i < len(mylist):
M = max(M, mylist[i]) 1 levadoons

=i O 112 |3[%(5]b6lF
print M ; o ‘ 23 \(Sé
MO [ 16 16|46
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Using induction to show that a program is correct

i=0
M=0
mylist = [1, 2, 6, 3, 4, 5]
while i < len(mylist):
M = max(M, mylist[i])
i=i+1
print M

Property: After the statement M = max(M , mylist[i]) gets executed, the
value of M is max(mylist[0],...,mylist[i]).
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Proof by induction

Property: After the statement M = max(M, mylist[i]) gets executed, the value
of M is max(mylist[0],...,mylist[i]).

Base Case: Take i=0. Before the statement, M=0, so the statement
assigns M to be the maximum of 0 and mylist[0], which is mylist[0].

Inductive Step:  Assume that the statement is true for i=m for some m>
0. Now consider i=m+1. The statement assigns M to be the maximum of
mylistfm+1] and max(mylist[0],..,mylist{m]), so after the statement, M is
max(mylist[0],..., mylist[m+1]).
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Strong induction

m Prove that the property holds for the natural number n = 0.

m Prove that if the property holds for n :%{fn (and not just for
m!) then it holds forn =m + 1. D/ L, 'Z, —m

Can also be used to prove a property for all integers greater than or equal
to some particular natural number b
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Example: Proof by strong induction

Every natural number n > 2, is a prime or a product of primes.
Base Case: Take n =2.Thennisa prime number.

Inductive Step:  Assume that the property holds for n = m so every
number st 2 <i<misaprimeora produce of primes. Now consider

n=m+1. ' -
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Example: Number of multiplications

For any integer n > 1, if X4, X2,..., Xn, are n numbers, then no matter how the
parentheses are inserted into their product, the number of multiplications
used to compute the productis n — 1.

"(X( %XQV‘XB S I
D LICI.
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Bad proofs: Arguing from example

An incorrect “proof” of the fact that the sum of any two even integers is
even.

This is true because if m = 14 and n = 6, which are both even,
then m + n = 20, which is also even.
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Bad proofs: Using the same letter to mean two different things

Consider the following “proof” fragment:

Suppose m and n are any odd integers. Then by definition of odd,
m =2k +1and n =2k + 1 for some integer R.
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Bad proofs: Jumping to a conclusion

To jump to a conclusion means to allege the truth of something without
giving an adequate reason.

Suppose m and n are any even integers. By definition of even,
m = 2r and n = 2s for some integers r and s. Then
m+n=2r+2s. Som-+niseven.
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Bad proofs: Circular reasoning

To engage in circular reasoning means to assume what is to be proved.

Suppose m and n are any odd integers. When any odd integers
are multiplied, their product is odd. Hence mn is odd.
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Bad proofs: Confusion between what is known and what is still to be shown

Suppose m and n are any odd integers. We must show that mn is
odd. This means that there exists an integer s such that

mn =2s+ 1.
Also by definition of odd, there exist integers a and b such that
m=2a+1andn=2b+1.

Then
mn=(2a+1)(2b+1) =2s+1.

So, since s is an integer, mn is odd by definition of odd.
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Good proofs in practice?

State your game plan.

A good proof begins by explaining the general line of reasoning,
for example, “We use case analysis” or “We argue by
contradiction.”

Mathematics for Computer Science by E. Lehman, F. T. Leighton, and A. R. Meyer.
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Good proofs in Practice

Keep a linear flow.

Sometimes proofs are written like mathematical mosaics, with
Jjuicy titbits of independent reasoning sprinkled throughout. This
is not good. The steps of an argument should follow one another
in an intelligible order.
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Good proofs in practice

A proof is an essay, not a calculation.

Many students initially write proofs the way they compute
integrals. The result is a long sequence of expressions without
explanation, maRing it very hard to follow. This is bad. A good
proof usually looRs like an essay with some equations thrown in.
Use complete sentences.
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Good proofs in practice

Structure your proof

m Theorem—A very important true statement.
m Proposition—A less important but still interesting statement.
B [emma—A true statement used to prove other statements.

m Corollary—A simple consequence of a theorem or a proposition.
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Good proofs in practice

Finish

At some point in a proof, you’ll have established all the essential
facts you need. Resist the temptation to quit and leave the reader
to draw the “obvious” conclusion. Instead, tie everything together
yourself and explain why the original claim follows.
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