The algebra of sets

Suppose that A, B and U are sets with A C U and B C U.

Commutative laws:
(_/_/_/'

AUB=BUA, ANB=BNA;
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Proving the commutative law AUB = BUA

Definition: AUB={x|xc€Aorxe B} BUA={x|xeBorxeA}

These are the same set. To see this, check all possible cases.

Case 1: Suppose x € A and x € B. Since x € A, the definitions above show that x is
in both AUB and BUA.

Case 2: Suppose x € Aand x ¢ B. Since x € A, the definitions above show that x is
in both AUB and BUA.

Case 3: Suppose x ¢ Aand x € B. Since x € B, the definitions above show that x is
in both AUBand BUA.

Case 4: Suppose x ¢ A and x ¢ B. The definitions above show that x is notin AUB
and x is not in BUA.

So, for all possible x, either x is in both AU B and BUA, or itis in neither.
We conclude that the sets AU B and BUA are the same.
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The algebra of sets

Suppose that A, B, C, U are sets with A C U, B C U, and C C U.

Associative laws:

Au(gug)@m(smq(ms)mc;
274
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Proving the associative law AU (BUC) = (AUB)UC

This is almost as easy as proving the commutative law, but now there are 8
cases to check, depending on whether x € A, whether x € B and whether
x e C.

Definition: XUY = {x|x e Xorx e Y}

ere is one case: Suppose x € A, X X¢B B and x ¢ C. Since x € A, we can use
the definition with X = A and Y=BU Cto show thatx € AU (BUCQ).

Since x € A, we can use the definition with X = A and Y = B to show that
X € AU B. Then we can use the definition with X =AU B and Y = C to show
thatx e (AUB)UC.

Writing out all eight cases is tedious, but it is not difficult.
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The algebra of sets

Suppose that A and U are sets with A C U.

Identity laws: _
(simi\av :0~+0’Q')
AUD=A, igih=, ANU=A, AND = 0;
(Sw .. O+ (+00) - +ob)
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The algebra of sets

Suppose that A, B, C, U are setswith A C U, BC U, and C C U.

Distributive laws:

AN(BUC)=(ANB)UANC), AUBNC) = (AUB)N(AUC);

-
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The algebra of sets

Suppose that A and U are sets with A C U. Let ~ A = U — A. Then

Complement laws:

U’~u=®7~<~A>=AAm~A= 0=y
S

[ N

5 \
Yy

= ?S A ~
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The algebra of sets

Suppose that A, B and U are sets with A C U, and B C U. Recall that
~X=U-XandAUB={x|xeAorxeB}and
ANB={x|xeAandxe B}. Then

De Morgan'’s |
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A proof of De Morgan’s law ~ (AN B) =~ AU ~ B

Case 1: Suppose x € A and x € B. From the definition of N, x € AN B. So from the
definition of ~, x ¢~ (AN B). From the definition of ~, x ¢~ A and also x ¢~ B. So
from the definition of U, x ¢~ AU ~ B.

Case 2: Suppose x € Aand x ¢ B. From the definition of N, x ¢ AN B. So from the

definition of ~, x e~ (AN B). From the definition of ~, x ¢~ A but x e~ B. So from
the definition of U, x e~ AU ~ B.

Case 3: Suppose x ¢ A and x € B. From the definition of N, x ¢ AN B. So from the

definition of ~, x €~ (AN B). From the definition of ~, x €~ A but x ¢~ B. So from
the definition of U, x e~ AU ~ B.

Case 4: Suppose x ¢ A and x ¢ B. From the definition of N, x ¢ AN B. So from the

definition of ~, x e~ (AN B). From the definition of ~, x e~ A and x €~ B. So from
e definition of U, x e~ AU ~ B.
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Using the algebra of sets

Prove that AAB =\(A U B)N ~ (AN B). #See the next slide.)
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(AUB)N~ (ANB)=(AUuB)n(~ AU ~ B) De Morgan
AUB)N ~A) U ((AUB)N ~ B) distributive
~AN(AUB))U (~ BN (AUB)) commutative

B
(
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((~ANA)U(~ANB))U((~BNA)U (~ BN B)) distributive
((
(
= (
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U (~
(AN ~A)U (BN ~A)) U ((An ~ B)U (BN ~ B)) commutative
U (BN~ A))U((AN ~ B)u®) complement
AN ~ B) U (BN ~ A) commutative and identity
AAB definition
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Cardinality of sets
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Definition The cardinality of a finite set S is the number of elements in S,
and is denoted by |S].
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