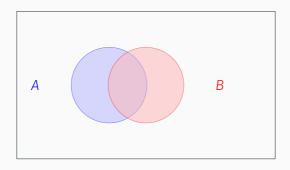
Suppose that A, B and U are sets with $A \subseteq U$ and $B \subseteq U$.

Commutative laws:

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$;



Proving the commutative law $A \cup B = B \cup A$

Definition: $A \cup B = \{x \mid x \in A \text{ or } x \in B\} \ B \cup A = \{x \mid x \in B \text{ or } x \in A\}.$

These are the same set. To see this, check all possible cases.

Case 1: Suppose $x \in A$ and $x \in B$. Since $x \in A$, the definitions above show that x is in both $A \cup B$ and $B \cup A$.

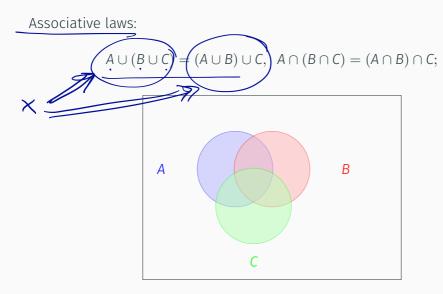
Case 2: Suppose $x \in A$ and $x \notin B$. Since $x \in A$, the definitions above show that x is in both $A \cup B$ and $B \cup A$.

Case 3: Suppose $x \notin A$ and $x \in B$. Since $x \in B$, the definitions above show that x is in both $A \cup B$ and $B \cup A$.

Case 4: Suppose $x \notin A$ and $x \notin B$. The definitions above show that x is not in $A \cup B$ and x is not in $B \cup A$.

So, for all possible x, either x is in both $A \cup B$ and $B \cup A$, or it is in neither. We conclude that the sets $A \cup B$ and $B \cup A$ are the same.

Suppose that A, B, C, U are sets with $A \subseteq U$, $B \subseteq U$, and $C \subseteq U$.



Proving the associative law $A \cup (B \cup C) = (A \cup B) \cup C$

This is almost as easy as proving the commutative law, but now there are 8 cases to check, depending on whether $x \in A$, whether $x \in B$ and whether $x \in C$.

Definition: $X \cup Y = \{x \mid x \in X \text{ or } x \in Y\}$

Here is one case: Suppose $\underline{x \in A}$, $\underline{x \notin B}$ and $\underline{x \notin C}$. Since $x \in A$, we can use the definition with X = A and $Y = B \cup C$ to show that $x \in A \cup (B \cup C)$.

Since $x \in A$, we can use the definition with X = A and Y = B to show that $x \in A \cup B$. Then we can use the definition with $X = A \cup B$ and Y = C to show that $x \in (A \cup B) \cup C$.

Writing out all eight cases is tedious, but it is not difficult.

A DB =

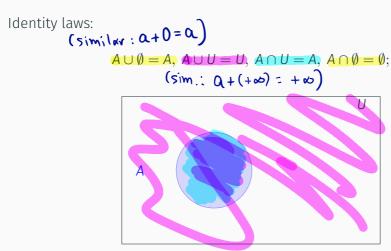
 $U = \{x \in \mathbb{N} \mid x \leq 15\} = \{0, 1, 2, ..., 15\}$

A = { 4, 2, 5, 8, 11}

* A - B = {2,5,8} 13,19,

B-A={3,4,12}

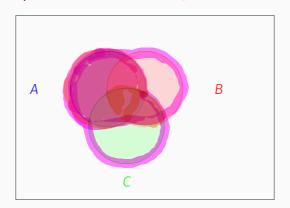
Suppose that A and U are sets with $A \subseteq U$.



Suppose that A, B, C, U are sets with $A \subseteq U, B \subseteq U$, and $C \subseteq U$.

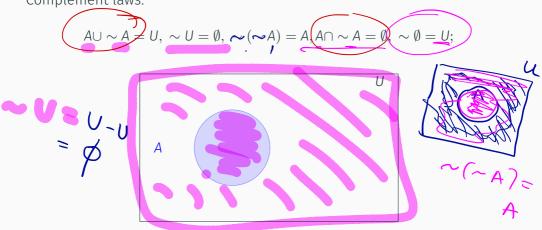
Distributive laws:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C), \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C);$$

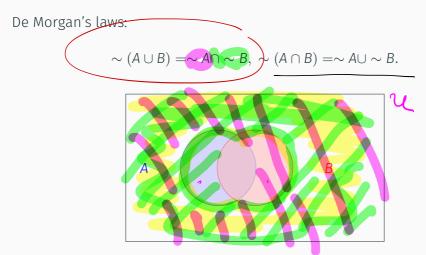


Suppose that A and U are sets with $A \subseteq U$. Let $\sim A = U - A$. Then

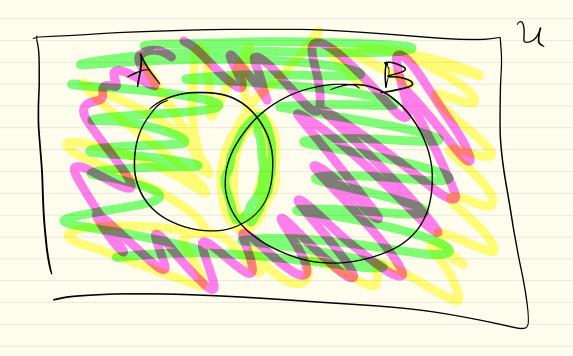
Complement laws:



Suppose that A, B and U are sets with $A \subseteq U$, and $B \subseteq U$. Recall that $\sim X = U - X$ and $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ and $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$. Then



$$\sim (A \cap B) = \sim A \cup \sim B$$



 $\sim (A \cap B) = \sim A \cup \sim B$ (for any sets A,B) Proof We will show that there can be no element x that belongs in ~(ANB) but not in ~AU~B (and vice vera) (ase 1) x = A, x = B: x = A ∩ B. Therefore, x = ~ (A ∩ B) x4~A x4~B. Therefore, x4~AU~B. Case 2 XEA, X&B Case 3) x&A, XeB. Because $x \notin A$, $i \neq is x \notin A \cap B$. So, $i \neq is x \in \sim (A \cap B)$. Also, $x \notin A \Longrightarrow x \in \sim A \cup \sim B$ Case 4) X A A, X & B.

A proof of De Morgan's law $\sim (A \cap B) = \sim A \cup \sim B$

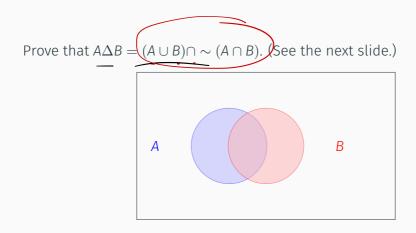
Case 1: Suppose $x \in A$ and $x \in B$. From the definition of \cap , $x \in A \cap B$. So from the definition of \sim , $x \notin \sim (A \cap B)$. From the definition of \sim , $x \notin \sim A$ and also $x \notin \sim B$. So from the definition of \cup , $x \notin \sim A \cup \sim B$.

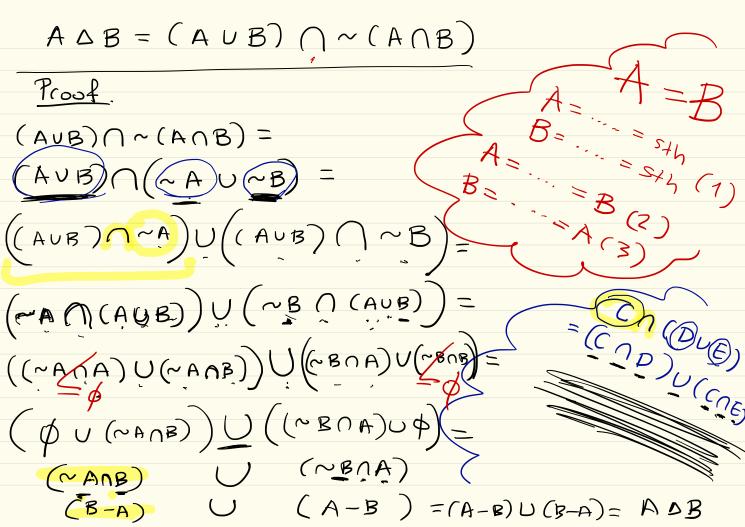
Case 2: Suppose $x \in A$ and $x \notin B$. From the definition of \cap , $x \notin A \cap B$. So from the definition of \sim , $x \notin \sim A$ but $x \in \sim B$. So from the definition of \cup , $x \in \sim A \cup \sim B$.

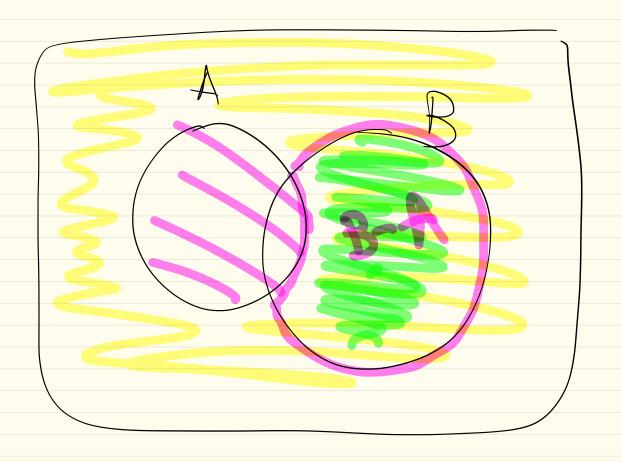
Case 3: Suppose $x \notin A$ and $x \in B$. From the definition of \cap , $x \notin A \cap B$. So from the definition of \sim , $x \in \sim (A \cap B)$. From the definition of \sim , $x \in \sim A$ but $x \notin \sim B$. So from the definition of \cup , $x \in \sim A \cup \sim B$.

Case 4: Suppose $x \notin A$ and $x \notin B$. From the definition of \cap , $x \notin A \cap B$. So from the definition of \sim , $x \in \sim (A \cap B)$. From the definition of \sim , $x \in \sim A$ and $x \in \sim B$. So from the definition of \cup , $x \in \sim A \cup \sim B$.

Using the algebra of sets







```
(A \cup B) \cap \sim (A \cap B) = (A \cup B) \cap (\sim A \cup \sim B) De Morgan
= ((A \cup B) \cap \sim A) \cup ((A \cup B) \cap \sim B) \text{ distributive} \qquad \bullet
= (\sim A \cap (A \cup B)) \cup (\sim B \cap (A \cup B)) \text{ commutative} \qquad \bullet
= ((\sim A \cap A) \cup (\sim A \cap B)) \cup ((\sim B \cap A) \cup (\sim B \cap B)) \text{ distributive}
= ((A \cap \sim A) \cup (B \cap \sim A)) \cup ((A \cap \sim B) \cup (B \cap \sim B)) \text{ commutative}
= (\emptyset \cup (B \cap \sim A)) \cup ((A \cap \sim B) \cup \emptyset) \text{ complement}
= (A \cap \sim B) \cup (B \cap \sim A) \text{ commutative and identity}
= A \triangle B \text{ definition}
```

Cardinality of sets

$$S = \{1, 2, 3\}$$
 $|S| = |\{1, 2, 3\}| = 3$
 $|\{1, 1, 1\}| = 1$ $|\{A, \{A, B\}, \{D\}, E\}| = 4$

Definition The cardinality of a *finite* set S is the number of elements in S, and is denoted by |S|.