Cardinality of sets

Definition The cardinality of a *finite* set S is the number of elements in S, and is denoted by |S|.

Computing the cardinality of a union of two sets

|AUB| = |A| + |B| - |A∩B|. For all sets A,B, it holds that Proof Let (no be the number of element in A but not in B (in A-B). Let my be the # of elements in B but not in A (in B-A) Let also MAR be the # of elements in AOB. $|A| + |B| - |A \cap B| = (n_A + n_{AB}) + (n_B + n_{AB}) - (n_{AB})$ = nA+NB+NAB

Example

15AMMA1=25

/Ul=151=100

Computing the cardinality of a union of three sets

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

These are special cases of the principle of inclusion and exclusion which we will study later.

Proof (optional)

We need lots of notation.

$$\blacksquare |A - (B \cup C)| = n_a, |B - (A \cup C)| = n_b, |C - (A \cup B)| = n_c,$$

$$| (A \cap B) - C | = n_{ab}, | (A \cap C) - B | = n_{ac}, | (B \cap C) - A | = n_{bc},$$

 $\blacksquare |A \cap B \cap C| = n_{abc}.$

Then

$$|A \cup B \cup C| = n_a + n_b + n_c + n_{ab} + n_{ac} + n_{bc} + n_{abc}$$

$$= (n_a + n_{ab} + n_{ac} + n_{abc}) + (n_b + n_{ab} + n_{bc} + n_{abc})$$

$$+ (n_c + n_{ac} + n_{bc} + n_{abc}) - (n_{ab} + n_{abc})$$

$$- (n_{ac} + n_{abc}) - (n_{bc} + n_{abc}) + n_{abc}$$

Reflection

Why is this set theory "naive"

Why is this set theory "naive"

It suffers from paradoxes.

A leading example:

A barber is the man who shaves all those, and only those, men who do not shave themselves.

■ Who shaves the barber?

If b shaves himself, then be {those shared by b } => b does not shave the night of book not shave the night of book not share that bould share than }

: = > be Ethose showed by bg => b shaves himself

Russell's Paradox

Russell's paradox shows that the 'object' $\{x \mid P(x)\}$ is not always $x \in \mathbb{Z}$

Problem: do we have $A \in A$?

Abbreviate, for any set C, by P(C) the statement $C \notin C$

- If $A \in A$, then (from the definition of P), not P(A). Therefore $A \notin A$.
- If $A \notin A$, then (from the definition of P), P(A). Therefore $A \in A$.

Russell's Paradox

Russell's paradox shows that the 'object' $\{x \mid P(x)\}$ is not always meaningful.

Set
$$A = \{B \mid B \notin B\}$$

Problem: do we have $A \in A$?

Abbreviate, for any set C, by P(C) the statement $C \notin C$. Then $A = \{B \mid P(B)\}$.

- If $A \in A$, then (from the definition of P), not P(A). Therefore $A \notin A$.
- If $A \notin A$, then (from the definition of P), P(A). Therefore $A \in A$.

Russell's Paradox

Russell's paradox shows that the 'object' $\{x \mid P(x)\}$ is not always meaningful.

Set
$$A = \{B \mid B \notin B\}$$

Problem: do we have $A \in A$?

Abbreviate, for any set C, by P(C) the statement $C \notin C$. Then $A = \{B \mid P(B)\}$.

- If $A \in A$, then (from the definition of P), not P(A). Therefore $A \notin A$.
- If $A \notin A$, then (from the definition of P), P(A). Therefore $A \in A$.