Cardinality of sets

Definition The cardinality of a finite set S is the number of elements in S,
and is denotedfby |S].
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Computing the cardinality of a union of two sets
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For all sets AB it holds 4hat [AUB] = |Al5|B] —1AO B).
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Suppose there are 100 third-year students. 40 of them take the module

“Sequentiil Algorithms” and §Q of them take the module “Multi-Agent

Systems”"\25)pf them took both modules. How many students took neither
—
modules?
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Computing the cardinality of a union of three sets

JAUBUC| =|A|+|B|+|C|—JANB|—]ANC|—|BNC|+ |ANBNC(]

— —

These are special cases of the principle of inclusion and exclusion which

we will study later. /\/\/\/v\/\/\/\_,\‘
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Proof (optional)

We need lots of notation.

[ \A—(BUC)|:na,\B—(AUC)]:nb,\C—(AUB)|:HC,
-Mmqu_nwc

Then -

JAUBU C]|

Ng 4+ Np 4+ Nc + Nap + Nac + Npc + Nape
= (Ng + Ngp + Nac + Napc) + (Np + Nap + Npe + Nape)
+ (Nc + Nac + Npe + Nabe) — (Nab + Nabe)

— (Nac + Nabe) — (Nbe + Nabe) + Nabe
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The following statements hold:
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Why is this set theory “naive”

It suffers from paradoxes.
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Why is this set theory “naive”

It suffers from paradoxes.

A leading example:

A barber is who shaves all thase, and only those, men
- T
who do not shave themselves. ' ’

r

—
’

m Who shaves the barber?

\W v betwse shaned by by =
be Lthose ThaF don'd Shawe Pawmagehest => b do0r uok theve
wmse |

£ b A",%V\\% Shave Wwgell Aran, beS\‘H’\‘;& Hort ol shocve Fho
2 =) be?,’—»\b& ?TWQ_B \91 LE = \9 Shdv-cf l”"‘fV\J-Q”F

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory



Russell’s Paradox

/X/Xe//)/

>
Russell's paradox shows that the ‘object’ {x | P(x)} is not always €2
. = N

Problem: do we have A € A?

Abbreviate, for any set C, by P(C) the stateme!t C¢ C)}]

m If A € A then (from the definition of P), not P(A). Therefore A& A.
R

m If A ¢ A then (from the definition of P), P(A). Therefore A €A
\ " T - .

<

http://www.csc.liv.ac.uk/~konev/COMP109 Part 2. Set Theory



Russell’s Paradox

Russell's paradox shows that the ‘object’ {x | P(x)} is not always
meaningful.

SetA={B|B¢B}
Problem: do we have A € A?
Abbreviate, for any set C, by P(C) the statement C¢ C. Then A= {B | P(B)}.

m If A € A then (from the definition of P), not P(A). Therefore A ¢ A.
m If A ¢ A then (from the definition of P), P(A). Therefore A € A.
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