f. A >B

 $\forall y \in B \ \exists x \in A: \ Surjective function$ $y = f(x) \qquad Surjection$

Bijectron Bijectron Ø

Inverse functions

If f is a bijection from a set X to a set Y, then there is a function f^{-1} from Y to X that "undoes" the action of f; that is, it sends each element of Y back to the element of X that it came from. This function is called the inverse function for f.

Then f(a) = b if, and only if, $f^{-1}(b) = a$.

Example

Example

Let $A = \{x \mid x \in \mathbb{R}, x \neq 1\}$ and $f : A \to A$ be given by

$$f(x) = \frac{x}{x - 1}.$$

Show that *f* is bijective and determine the inverse function.

$$f\left(\frac{1}{a}\right) = \frac{\frac{1}{a}}{\frac{1}{a}-1} = \frac{\frac{1}{a}}{-\frac{1}{a}} = -1$$

Bijections and representations

Let $S = \{1, 2, ..., n\}$ and let B^n be the set of bit strings of length n. The function

which assigns each subset A of S to its characteristic vector is a bijection.

Cardinality of finite sets and functions

Recall: The cardinality of a finite set S is the number of elements in S

A bijection $f: S \to \{1, \ldots, n\}$.

For finite sets A and B

- $|A| \ge |B|$ iff there is a surjective function from A to B.
- $|A| \le |B|$ iff there is a injective function from A to B.
- \blacksquare |A| = |B| iff there is a bijection from A to B.

