Bijections and cardinality

Recall that the cardinality of a finite set is the number of elements in the
set.

Sets A and B have iff there is a from A to B.
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Example: The cardinality of the power set.

A=11,2,32 Pow(A)= {13,08,133 D23 0% 128 {27
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Definition The power set Pow(A) of a set A is the set of all subsets of A. In
other words,

ey

oralln € z* and all sets A: if |A| = n, then |Pow(A)
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Power set and bit vectors

Recall that if all elements of a set A are drawn from some ordered

sequence S = s1,...,Sp: the characteristic vector of A is the sequence
—_— -

(b1,...,bn) where

-
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We use the correspondence between bit vectors and subsets: |Pow(A)] is
the number of bit vectors of length n. * /\/\—/
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The number of n-bit vectors is 2"

We prove the statement by induction.

Base Case: Take n = 1. There are two bit vectors of length 1: (0) and (1).
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The number of n-bit vectors is 2"

Inductive Step:  Assume that the property holds for n = m, so the
number of m-bit vectors is 2. Now consider the set B of all (m + 1)-bit
vectors. We must show that |B| = 2™+,

Every (b1, by, ..., bmy1) € B starts with an m-bit vector (b4, by, ..., bm)

followed byvvhich can be either 0 or 1.
- Sy w—l—'f
Thus _2-2 < 7
|B] = 2™ 4 2™ = 2M+1,
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Infinite sets

Sets A and B have the same cardinality iff there is a bijection from A to B.

Examples: /W
YA estin, /s T
m Z and even integers W’?««-

m consider f(n) = 2n
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m consider g(x) = y —
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Countable sets

A set that is either finite or has the same cardinality as N is called
countable.
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Countable Sets: Q

Q:{Xefﬂ‘x:% :for Sorna OgeZ’ beZ’F}'
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3 4 5 6
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2 3 2 3
3 4 5 6
6 6 6 6 6 6
1 2 3 4 5 6
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Uncountable sets

m A set that is not countable is called uncountable.
mS={xeR|0<x<1}isuncountable
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Cantor’s diagonal argument

Suppose S is countable. Then the decimal representations of these
numbers can be written as a list

a;=0.anap az... Qip - .- 0.12345...
a; =0.0010»p Ay3... ... 0.35(1 32| ...
(13:0.(]31(132(]33...Cl3n...0.0|| [5‘[

. -

an = O.an‘l dn2 Ap3 ... AQpn ...

Letd:O.d1d2d3...dn...Where A.:OoZI2~ .

d; = 1, i.f(],','¢'|
2, ifa; =1

Then d is not in the sequence a;, Gy, Gs...
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Cantor’s diagonal argument

Suppose S is countable. Then the decimal representations of these
numbers can be written as a list

a1=0.an1n ap a3... Aip ...
a; =0.0291 A Ay3... Ao ...
a3 =0.a31 03 A3z... d3p ...

an = O.an‘l anZ an3... ann...

letd=0.d1dy ds...d,... where
d; = 1, i.fa,»,»;ﬂ
2, if ;=1

Then d is not in the sequence a;, a,, Gs...
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