Bijections and cardinality

Recall that the cardinality of a finite set is the number of elements in the set.

Sets A and B have the same cardinality iff there is a bijection from A to B.

Example: The cardinality of the power set.

$$A = \{1, 2, 3\} \quad \text{Pow}(A) = \{\{1, 2, 3\}, \{2, 3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}, \{1,$$

Definition The power set Pow(A) of a set A is the set of all subsets of A. In other words,

Power set and bit vectors

Recall that if all elements of a set A are drawn from some <u>ordered</u> sequence $S = s_1, \ldots, s_n$: the characteristic vector of A is the sequence (b_1, \ldots, b_n) where

$$b_i = \left\{ \begin{array}{cc} 1 & \text{if} & \underbrace{S_i} \in A \\ 0 & \text{if} & S_i \notin A \end{array} \right.$$

We use the correspondence between bit vectors and subsets: |Pow(A)| is the number of bit vectors of length n.

(0),(1)

2 2 bit vectors of length n Proof I will prove the statement by induction on n. Base case n=1 namely (0) and (1).

There are $2 = 2^1 = 2^n$ bit vectors of length 1 Inductive Step Assume that there are 2 bit vectors of length to I will show that there are that there are "MEK.

2 kt 1 bit vectors of length b+1.

We prove the statement by induction.

Base Case: Take n = 1. There are two bit vectors of length 1: (0) and (1).

The number of n-bit vectors is 2^n

Inductive Step: Assume that the property holds for n = m, so the number of m-bit vectors is 2^m . Now consider the set B of all (m + 1)-bit vectors. We must show that $|B| = 2^{m+1}$.

Every $(b_1, b_2, \dots, b_{m+1}) \in B$ starts with an m-bit vector (b_1, b_2, \dots, b_m) followed by b_{m+1} which can be either 0 or 1. Thus $2 \cdot 2^m = 2^{m+1}$ $|B| = 2^m + 2^m = 2^{m+1}.$

Infinite sets

Sets A and B have the same cardinality iff there is a bijection from A to B.

Countable sets

A set that is either finite or has the same cardinality as $\mathbb N$ is called **countable**.

 \blacksquare \mathbb{Z}

Countable Sets: Q

$$Q = \{ x \in \mathbb{R} \mid x = \frac{a}{b}, \text{ for some } a \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{R} \mid x = \frac{a}{b}, \text{ for some } a \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{R} \mid x = \frac{a}{b}, \text{ for some } a \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{R} \mid x = \frac{a}{b}, \text{ for some } a \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{R} \mid x = \frac{a}{b}, \text{ for some } a \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{R} \mid x = \frac{a}{b}, \text{ for some } a \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{R} \mid x = \frac{a}{b}, \text{ for some } a \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{R} \mid x = \frac{a}{b}, \text{ for some } a \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{R} \mid x = \frac{a}{b}, \text{ for some } a \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{R} \mid x = \frac{a}{b}, \text{ for some } a \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{R} \mid x = \frac{a}{b}, \text{ for some } a \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{R} \mid x = \frac{a}{b}, \text{ for some } a \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{R} \mid x = \frac{a}{b}, \text{ for some } a \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{R} \mid x = \frac{a}{b}, \text{ for some } a \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{R} \mid x = \frac{a}{b}, \text{ for some } a \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$$

$$Q = \{ x \in \mathbb{Z}, b \in \mathbb{Z},$$

Uncountable sets

- A set that is not countable is called **uncountable**.
 - $S = \{x \in \mathbb{R} \mid 0 < x < 1\}$ is uncountable

Cantor's diagonal argument

Suppose S is countable. Then the decimal representations of these numbers can be written as a list

$$a_1 = 0.a_{11} \ a_{12} \ a_{13} \dots a_{1n} \dots 0$$
 $12345 \dots$ $a_2 = 0.a_{21} \ a_{22} \ a_{23} \dots a_{2n} \dots 0$, $351321 \dots$ $a_3 = 0.a_{31} \ a_{32} \ a_{33} \dots a_{3n} \dots 0$. $011151 \dots$ $a_{nn} = 0.a_{n1} \ a_{n2} \ a_{n3} \dots a_{nn} \dots$

Let
$$d = 0.d_1 d_2 d_3 ... d_n ...$$
 where $d = 0.2 | 2 ...$
 $d_i = \begin{cases} 1, & \text{if } a_{ii} \neq 1 \\ 2, & \text{if } a_{ii} = 1 \end{cases}$

Then d is not in the sequence a_1 , a_2 , a_3 ...

Prove that if A then B,

Cantor's diagonal argument

Suppose S is countable. Then the decimal representations of these numbers can be written as a list

$$a_1 = 0.a_{11} \ a_{12} \ a_{13} \dots \ a_{1n} \dots$$
 $a_2 = 0.a_{21} \ a_{22} \ a_{23} \dots \ a_{2n} \dots$
 $a_3 = 0.a_{31} \ a_{32} \ a_{33} \dots \ a_{3n} \dots$

$$\vdots$$
 $a_n = 0.a_{n1} \ a_{n2} \ a_{n3} \dots \ a_{nn} \dots$

Let
$$d = 0.d_1 \ d_2 \ d_3 \dots d_n \dots$$
 where $d_i = \begin{cases} 1, & \text{if } a_{ii} \neq 1 \\ 2, & \text{if } a_{ii} = 1 \end{cases}$

Then d is not in the sequence a_1 , a_2 , a_3 ...

Cantor's diagonal argument

Suppose S is countable. Then the decimal representations of these numbers can be written as a list

$$a_1 = 0.a_{11} \ a_{12} \ a_{13} \dots \ a_{1n} \dots$$
 $a_2 = 0.a_{21} \ a_{22} \ a_{23} \dots \ a_{2n} \dots$
 $a_3 = 0.a_{31} \ a_{32} \ a_{33} \dots \ a_{3n} \dots$

$$\vdots$$
 $a_n = 0.a_{n1} \ a_{n2} \ a_{n3} \dots \ a_{nn} \dots$

Let
$$d = 0.d_1 \ d_2 \ d_3 \dots d_n \dots$$
 where $d_i = \begin{cases} 1, & \text{if } a_{ii} \neq 1 \\ 2, & \text{if } a_{ii} = 1 \end{cases}$

Then d is not in the sequence a_1 , a_2 , a_3 ...