Foundations of Computer Science Comp109

University of Liverpool

Boris Konev

konev@liverpool.ac.uk

http://www.csc.liv.ac.uk/~konev/COMP109

Part 3. Relations

Comp109 Foundations of Computer Science

Reading

Discrete Mathematics and Its Applications K. Rosen, Chapter 9.

Contents

- The Cartesian product
- Definition and examples
- Representation of binary relations by directed graphs
- Representation of binary relations by matrices
- Properties of binary relations
- Transitive closure
- Equivalence relations and partitions
- Partial orders and total orders.
- Unary relations

Motivation

■ Intuitively, there is a "relation" between two things if there is some connection between them. E.g.

- "friend of"
- a < b
- m divides n
- Relations are used in crucial ways in many branches of mathematics
 - Equivalence 1
 - Ordering
- Computer Science

Databases and relations

A database table \approx relation

TABLE 1 Students.			
Student_name	ID_number	Major	GPA
Ackermann	231455	Computer Science	3.88
Adams	888323	Physics	3.45
Chou	102147	Computer Science	3.49
Goodfriend	453876	Mathematics	3.45
Rao	678543	Mathematics	3.90
Stevens	786576	Psychology	2.99

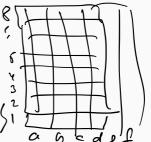
Ordered pairs

Definition The Cartesian product $A \times B$ of sets A and B is the set consisting of all pairs (a, b) with $a \in A$ and $b \in B$, i.e.,

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}.$$

Note that (a, b) = (c, d) if and only if a = c and b = d.

Note



■ Let $A = \{1, 2\}$ and $B = \{a, b, c\}$. Then

$$A \times B = \{(1, a), (2, a), (1, b), (2, b), (1, c), (2, c)\}.$$

 \blacksquare $B \times A =$

$$= \left\{ (a,1), (b,1), (c,1), (a,2), (b,2), (c,2) \right\}$$

$$A = \{1, 2, 3\}$$

$$B = \{3, 4\}$$

$$A \times B = \{(1,3), (1,4), (2,3), (2,4), (3,5), (3,4)\}$$

$$R \times R = \{(1,3), (1,4), (2,3), (2,4), (3,5), (3,4)\}$$

Relations

Definition A binary relation between two sets A and B is a subset R of the Cartesian product $A \times B$.

If A = B, then R is called a binary relation on A.

Example: Family tree

Write down

 $\blacksquare R = \{(x,y) \mid x \text{ is a grandfather of } y \};$

$$R = \{ (Fred, Jane), (Fred, Frond), (Fred, Alan), S = \{ (x,y) \mid x \text{ is a sister of } y \}.$$

$$S = \{ (x,y) \mid x \text{ is a sister of } y \}.$$

Write down the ordered pairs belonging to the following binary relations between $A = \{1, 3, 5, 7\}$ and $B = \{2, 4, 6\}$:

■
$$U = \{(x, y) \in A \times B \mid x + y = 9\};$$

$$U = \{(3,6), (5,4), (7,2)\}$$

$$\sqrt{=} \{(1,1),(1,4),(1,6),(3,4),(3,6),(5,6)\}$$

Let $A = \{1, 2, 3, 4, 5, 6\}$. Write down the ordered pairs belonging to

 $R = \{(x, y) \in A \times A \mid x \text{ is a divisor of } y \}.$

Representation of binary relations: directed graphs

- Let A and B be two finite sets and R a binary relation between these two sets (i.e., $R \subseteq A \times B$).
- We represent the elements of these two sets as vertices of a graph.
- For each $(a,b) \in R$, we draw an arrow linking the related elements.
- This is called the directed graph (or digraph) of *R*.

Consider the relation V between $A = \{1, 3, 5, 7\}$ and $B = \{2, 4, 6\}$ such that $V = \{(x, y) \in A \times B \mid x < y\}$.

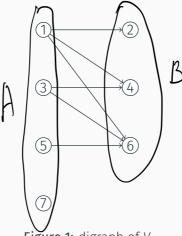


Figure 1: digraph of V

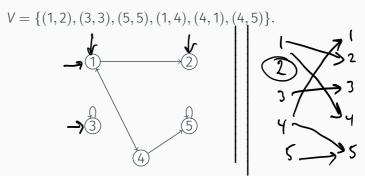
Alre Boris COMP (09 Complos \$ Cours 105

Digraphs of binary relations on a single set

A binary relation between a set A and itself is called "a binary relation on A".

To represent such a relation, we use a directed graph in which a single set of vertices represents the elements of A and arrows link the related elements.

Consider the relation $V \subseteq A \times A$ where $A = \{1, 2, 3, 4, 5\}$ and



Functions as relations

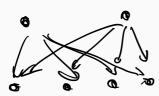
- Recall that a function *f* from a set *A* to a set *B* assigns exactly one element of *B* to each element of *A*.
 - Gives rise to the relation $R_f = \{(a, b) \in A \times B \mid b = f(a)\}$
- If a relation $S \subseteq A \times B$ is such that for every $a \in A$ there exists at most one $b \in B$ with $(a, b) \in S$, relation S is functional.
 - (Sometimes in the literature, functions are introduced through functional relations.)

Inverse relation

Definition Given a relation $R \subseteq A \times B$, we define the *inverse relation* $R^{-1} \subseteq B \times A$ by

$$R^{-1} = \{ (b, a) \mid (a, b) \in R \}.$$

Example: The inverse of the relation is a parent of on the set of people is the relation is a child of.



(a,b)(x,y),(x,y),(x,b)

Composition of relations

Definition Let $R \subseteq A \times B$ and $S \subseteq B \times C$. The (functional) composition of R and S, denoted by $S \circ R$, is the binary relation between A and C given by

$$S \circ R = \{(a,c) \mid \text{ exists } b \in B \text{ such that } aRb \text{ and } bSc\}.$$

Example: If R is the relation is a sister of and S is the relation is a parent of, then

- $S \circ R$ is the relation is an aunt of;
- \blacksquare S \circ S is the relation is a grandparent of.