

Composition of relations

Definition Let $R \subseteq A \times B$ and $S \subseteq B \times C$. The (functional) composition of R and S, denoted by $S \circ R$, is the binary relation between A and C given by

 $S \circ R = \{(a, c) \mid \text{ exists } b \in B \text{ such that } aRb \text{ and } bSc\}.$

Example: If R is the relation is a sister of and S is the relation is a parent of, then

- $S \circ R$ is the relation is an aunt of;
- \blacksquare S \circ S is the relation is a grandparent of.

Digraph representation of compositions

Computer friendly representation of binary relations: matrices

- Another way of representing a binary relation between finite sets uses an array.
- Let $A = \{a_1, \ldots, a_n\}$, $B = \{b_1, \ldots, b_m\}$ and $R \subseteq A \times B$.
- We represent R by an array M of n rows and m columns. Such an array is called a n by m matrix.
- The entry in row i and column j of this matrix is given by M(i,j) where

$$M(i,j) = \begin{cases} T & \text{if } (a_i, b_j) \in R \\ F & \text{if } (a_i, b_j) \notin R \end{cases}$$

Let
$$A = \{1, 3, 5, 7\}$$
, $B = \{2, 4, 6\}$, and

$$U = \{(x, y) \in A \times B \mid x + y = 9\}$$

Assume an enumeration $a_1 = 1$, $a_2 = 3$, $a_3 = 5$, $a_4 = 7$ and $b_1 = 2$, $b_2 = 4$, $b_3 = 6$. Then M represents U, where

$$M = \begin{cases} F & F & F \\ F & F & F \\ S & F & T & F \\ T & F & F \end{cases}$$

Let $A = \{a, b, c, d\}$ and suppose that $R \subseteq A \times A$ has the following matrix representation:

$$M = \begin{bmatrix} F & T & T & F \\ F & F & T & T \\ F & T & F & F \\ T & T & F & T \end{bmatrix}$$

List the ordered pairs belonging to R.

$$R = \{(a,b), (a,c), (b,c)...\}$$

The binary relation R on $A = \{1, 2, 3, 4\}$ has the following digraph representation.

- The ordered pairs $R = \left\{ \left(\frac{1}{2}, 3 \right), \left(\frac{1}{2}, \frac{1}{2} \right) \right\}$ The matrix

■ In words:

$$\{(x,y)|y=x-(,x\in A,y\in A\}$$

Matrices and composition

Now let's go back and see how this works for matrices representing relations

The formal description

Given two matrices with entries "T" and "F" representing the relations we can form the matrix representing the composition. This is called the *logical* (Boolean) matrix product.

Let
$$A = \{a_1, \dots, a_n\}$$
, $B = \{b_1, \dots, b_m\}$ and $C = \{c_1, \dots, c_p\}$.

The logical matrix M representing R is given by:

$$M(i,j) = \begin{cases} T & \text{if } (a_i, b_j) \in R \\ F & \text{if } (a_i, b_j) \notin R \end{cases}$$

The logical matrix N representing S is given by

$$N(i,j) = \begin{cases} T & \text{if } (b_i, c_j) \in S \\ F & \text{if } (b_i, c_j) \notin S \end{cases}$$

Matrix representation of compositions

Then the entries P(i,j) of the logical matrix P representing $S \circ R$ are given by

- P(i,j) = T if there exists l with $1 \le l \le m$ such that M(i,l) = T and N(l,j) = T.
- \blacksquare P(i,j) = F, otherwise.

We write P = MN.

The example from before

Let R be the relation between $A = \{a, b\}$ and $B = \{1, 2, 3\}$ represented by the matrix

$$M = \left[\begin{array}{ccc} T & T & T \\ F & T & F \end{array} \right]$$

Similarly, let S be the relation between B and $C = \{x, y\}$ represented by the matrix

$$N = \left[\begin{array}{cc} F & T \\ T & F \\ T & F \end{array} \right]$$

Then the matrix P = MN representing $S \circ R$ is

$$P = \left[\begin{array}{cc} T & T \\ T & F \end{array} \right]$$

I 2 j a F