

Transitive closure

Given a binary relation R on a set A, the *transitive closure* R^* of R is the (uniquely determined) relation on A with the following properties:

- \blacksquare R^* is transitive;
- \blacksquare $R \subseteq R^*$;
- If S is a transitive relation on A and $R \subseteq S$, then $R^* \subseteq S$.

Example

Let $A = \{1, 2, 3\}$. Find the transitive closure of

$$R = \{(1,1), (1,2), (1,3), (2,3), (3,1)\}.$$

Finding the transitive closure is easier with the digraph representation

Reachability relation

Transitivity and composition

A relation S is transitive if and only if $S \circ S \subseteq S$.

This is because

$$S \circ S = \{(a,c) \mid \text{ exists } b \text{ such that } aSb \text{ and } bSc\}.$$

Let S be a relation. Set $S^1 = S$, $S^2 = S \circ S$, $S^3 = S \circ S \circ S$, and so on.

Theorem Denote by S^* the transitive closure of S. Then xS^*y if and only if there exists n > 0 such that xS^ny .

Transitive closure in matrix form

The relation R on the set $A = \{1, 2, 3, 4, 5\}$ is represented by the matrix

Determine the matrix $R \circ R$ and hence explain why R is not transitive.

Computation

 $R \circ R = \{(a,c) \mid \text{ exists } b \in A \text{ such that } aRb \text{ and } bRc\}.$

Note (in red) that there are pairs (a, c) that are in $R \circ R$ but not in R. Hence, R is not transitive.

Detour: Warshall's algorithm

```
def warshall(a):
    assert (len(row) == len(a) for row in a)
   n = len(a)
    for k in range(n):
        for i in range(n):
           for j in range(n):
                a[i][j] = a[i][i] or
                    (a[i][k] and a[k][i])
    return a
print warshall([[1,0,0,1,0],
                [0.1.0.0.1].
                [0.0.1.0.0].
                [1.0.1.0.0].
                [0.1.0.1.0]
```

Important relations: Equivalence relations

Definition A binary relation *R* on a set *A* is called an *equivalence relation* if it is reflexive, transitive, and symmetric.

Examples:

- the relation R on the non-zero integers given by xRy if xy > 0;
- the relation has the same age on the set of people.

Definition The *equivalence class* E_x of any $x \in A$ is defined by

$$E_X = \{y \mid yRx\}.$$