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Transitive closure

K’f
Given a binary relation R on a set A, the transitive closure R* of R is the
(uniquely determined) relation on A with the following properties:

B R* is transitive;
m RCR%

m If Sis a transitive relation on Aand R C S, then R* C S.
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Let A= {1,2,3}. Find the transitive closure of

R={(1,1),01,2),(1,3),(2,3), (3, D}
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Finding the transitive closure is easier with the digraph representation

Reachability relation
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Transitivity and composition

A relation S is transitive if and only if So S C S.

This is because

SoS={(a,c)| exists b such that aSb and bSc}.

Let S be a relation. SetS7=5,52=505,5> =S50S03S, and so on.

Theorem Denote by S* the transitive closure of S. Then xS*y if and only if

there existuch that xS
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Transitive closure in matrix form

The relation R on the set A ={1,2,3,4,5} is represented by the matrix
|
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Determine the matrd hence explain why R is not transitive.
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Computation

L
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RoR ={(a,c) | exists b € Asuch that aRb and bRc}.

Note (in red) that there are pairs (a, ¢) that are in Ro R but not in R. Hence,
R is not transitive.
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Detour: Warshall's algorithm

def warshall(a):

assert (len(row) == len(a) for row in a)
n = len(a)
for k in range(n):

for i in range(n):

for j in range(n
alillj] alil] [J]
([][]anda

return a &
print warshall([[1,0,0,1,0],
[0,1,0,0,1],
[0,0,1,0,0],
[1,0,1,0,0],
[0,1,0,1,0]])
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Important relations: Equivalence relations

Definition A binary relation R on a set A is called an equivalence relation if
it is reflexive, transitive, and symmetric.

Examples: Q‘ k4 \%(@j l

J

m the relation R on the non-zero integers given by xRy if xy > 0;

m the relation has the same age on the set of people.
Definition The equivalence class Ey of any x € A is defined by

Ex ={y | yRx}.
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