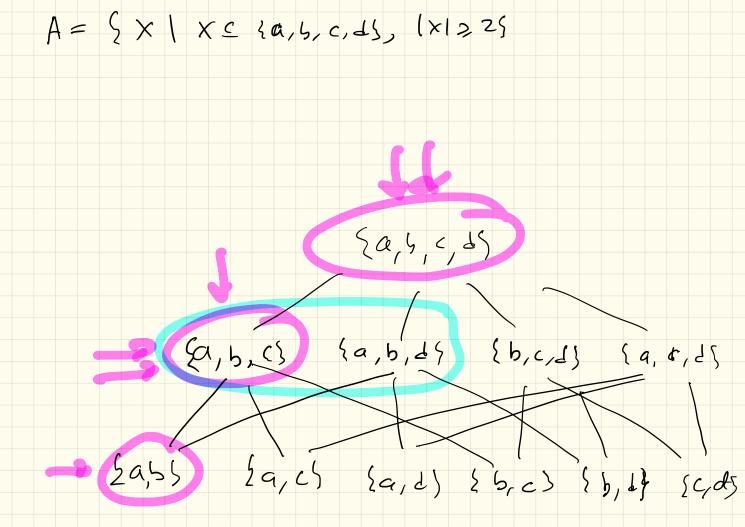


\$ 5, 3, -3, -27 { 3, -3 }
{ 5, -3, -2 }

 $A = \left\{ X \mid X \subseteq \{a, b, c, d\} \mid |x| \ge 2 \right\}$

 $\chi, \zeta \in A$

XXY of XCY



Definition A binary relation *R* on a set *A* is a total order if it is a partial order such that for any $x, y \in A$, *xRy* or *yRx*.

The Hasse diagram of a total order is a chain.

- the relation \leq on the set \mathbb{R} of real numbers;
- the usual lexicographical ordering on the words in a dictionary;
- the relation "is a divisor of" is *not* a total order.

The Cartesian product $A_1 \times A_2 \times \cdots \times A_n$ of sets A_1, A_2, \ldots, A_n is defined by

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, \ldots, a_n) \mid a_1 \in A_1, \ldots, a_n \in A_n\}.$$

Here $(a_1, \ldots, a_n) = (b_1, \ldots, b_n)$ if and only if $a_i = b_i$ for all $1 \le i \le n$.

An *n*-ary relation is a subset of $A_1 \times \ldots A_n$

A database table \approx relation

	TABLE 1 Students.			
	Student_name	ID_number	Major	GPA
\langle	Ackermann	231455	Computer Science	3.88
	Adams	888323	Physics	3.45
	Chou	102147	Computer Science	3.49
	Goodfriend	453876	Mathematics	3.45
	Rao	678543	Mathematics	3.90
	Stevens	786576	Psychology	2.99

Students = {
$$(A - , 231457, CS, 3.88)$$
 ;

Unary relations are just subsets of a set.

Example: The unary relation **EvenPositiveIntegers** on the set \mathbb{Z}^+ of positive integers is

 $\{x \in \mathbb{Z}^+ \mid x \text{ is even}\}.$

Unary relations are just subsets of a set.

Example: The unary relation EvenPositiveIntegers on the set \mathbb{Z}^+ of positive integers is

 $\{x \in \mathbb{Z}^+ \mid x \text{ is even}\}.$

Unary relations are just subsets of a set.

Example: The unary relation EvenPositiveIntegers on the set \mathbb{Z}^+ of positive integers is

 $\{x \in \mathbb{Z}^+ \mid x \text{ is even}\}.$