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Abstract. Modern control systems are limited in their ability to react
flexibly and autonomously to changing situations by the complexity in-
herent in analysing environments where many variables are present. We
aim to use an agent approach to help alleviate this problem and are par-
ticularly interested in the control of satellite systems using BDI agent
programming as pioneered by the PRS.
Such systems need to generate discrete abstractions from continuous data
and then use these abstractions in rational decision making. This paper
provides an architecture and interaction semantics for an abstraction
engine to interact with a hybrid BDI-based control system.

1 Introduction

Modern control systems are limited in their ability to react flexibly and au-
tonomously to changing situations. The complexity inherent in analysing envi-
ronments where many continuous variables are present, and dynamically chang-
ing, has proved to be a challenge. In some situations one control system may
need to be swapped for another. This, quite severe, behavioural change is very
difficult to handle just within the control systems framework.

We approach the problem from the perspective of satellite control systems.
Consider a single satellite attempting to maintain a geostationary orbit. Current
systems maintain orbits using feedback controllers. These implicitly assume that
any errors will be minor and easily corrected. In situations where more major
errors occur, e.g., caused by thruster malfunction, it is desirable to change the
controller or modify the hardware configuration. The complexity of the deci-
sion task has proved to be a challenge to the type of imperative programming
approaches traditionally used within control systems programming.

There is a long standing tradition, pioneered by the PRS system [16], of using
agent languages (and other logic programming approaches – e.g., [28]) to con-
trol and reason about such systems. We consider a satellite to be an agent which
consists of a discrete (rational decision making) engine together with a contin-
uous (calculation) engine. The rational engine uses the Belief-Desire-Intention
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(BDI) theory of agency [21] to make decisions about appropriate controllers and
hardware configurations for the satellite. It is assisted by the continuous engine
which can perform predictive modelling and other continuous calculations.

In order for such an architecture to be clear and declarative it is necessary to
generate discrete abstractions from continuous data. It is also necessary to trans-
late discrete actions and queries back into continuous commands and queries. In
order to do this we introduce an Abstraction Engine whose purpose is to man-
age communication between the continuous and discrete parts of the system in
a semantically clear way. (See Figure 1, later.)

This paper provides an architecture and interaction semantics which describe
the way an Abstraction Engine interacts with a hybrid BDI-based control system.
We present a case study and discuss its implications for the choice and design
of declarative languages for hybrid control systems.

This paper is organised as follows. Section 2 provides some background mate-
rial. Section 3 provides an architecture for a hybrid control system with explicit
abstraction. Section 4 provides an operational semantics for interaction between
the major components of such a system. Section 5 presents a prototype im-
plementation of the architecture and semantics and Section 6 discusses a case
study performed in this system. Section 7 draws some preliminary conclusions
and discusses the further work motivated by the prototype and case study.

2 Background

2.1 Control Systems

Satellite systems are typically governed by feedback controllers. These contin-
uously monitor input sensors and compare the values to a desired state. They
then alter various aspects of the system accordingly, for instance by increasing
or decreasing power or adjusting direction. Typically the actual controller is
specified using differential equations and operates in a continuous fashion.

A hybrid system is one in which the desired controller is a function which
not only has continuous regions but also distinct places of discontinuity between
those regions, such as the moment when a bouncing ball changes direction on im-
pact. In practical engineering contexts, such as satellites, it is frequently desirable
to change feedback controllers at such points. Appropriate control mechanisms
for such hybrid systems is a very active area of research [25; 7; 11].

2.2 BDI Agents

We view an agent as an autonomous computational entity making its own deci-
sions about what activities to pursue. Often this involves having goals and com-
municating with other agents in order to accomplish these goals [29]. Rational
agents make decisions in an explainable way and, since agents are autonomous,
understanding why an agent chooses a particular course of action is vital.

We often describe each agent’s beliefs and goals which in turn determine the
agent’s intentions. Such agents make decisions about what action to perform,



given their current beliefs, goals and intentions. This approach has been popu-
larised through the influential BDI (Belief-Desire-Intention) model of agency [21].

2.3 The Problem of Abstraction

Generating appropriate abstractions to mediate between continuous and discrete
parts of a system is the key to any link between a control system and a reasoning
system. Abstractions allow concepts to be translated from the quantitative data
necessary to actually run the underlying system to the qualitative data needed for
reasoning. For instance a control system may store precise location coordinates,
represented as real numbers, while the reasoning system may only be interested
in whether a satellite is within reasonable bounds of its desired position.

The use of appropriate abstractions is also important for verification tech-
niques, such as model checking, for hybrid systems [1; 14; 24; 23] and potentially
for declarative prediction and forward planning [18]. These require the continu-
ous search space to be divided into a finite set of regions which can be examined.

Ideally the generation of such abstractions should itself be declarative. This
would make clear say, that a decision to change a fuel line corresponds directly
to the activation of certain valves within the satellite system.

3 Architecture

Our aim is to produce a hybrid system embedding existing technology for gen-
erating feedback controllers and configuring satellite systems within a decision
making part based upon agent technologies and theories. The link is to be con-
trolled by a semantically clear abstraction layer. At present we consider a single
agent case and leave investigation of multi-agent scenarios to future work.

Figure 1 shows an architecture for our system. Real time control of the satel-
lite is governed by a traditional feedback controller drawing its sensory input
from the environment. This forms a Physical Engine (Π). This engine commu-
nicates with an agent architecture consisting of an Abstraction Engine (A) that
filters and discretizes information. To do this A may a use a Continuous Engine
(Ω) to make calculations involving the continuous information. Finally, the Ra-
tional Engine (R) contains a “Sense-Reason-Act” loop. Actions involve either
calls to the Continuous Engine to calculate new controllers (for instance) or
instructions to the change these controllers within the Physical Engine. These
instructions are passed through the Abstraction Engine for reification.

In this way, R is a traditional BDI system dealing with discrete information, Π
and Ω are traditional control systems, typically generated by MatLab/Simulink,
while A provides the vital “glue” between all these parts.

4 Semantics of Interaction

We assume a hybrid control system consisting of a Physical Engine (Π), a Con-
tinuous Engine (Ω), an Abstraction Engine (A) and a Reasoning Engine (R).
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Fig. 1. Hybrid Agent Architecture

We present an operational semantics for the interaction of these engines.
This semantics makes minimal assumptions about the internals of the engines,
but nevertheless places certain constraints upon their operation and the way
they interact with the external environment. This semantics is designed to allow
a declarative abstraction language to be developed for the Abstraction Engine,
A. An implementation of the architecture and the semantics is discussed in
Section 5 and a case study using the implementation is discussed in Section 6.
The implementation and case study influenced the development of the semantics
and serve as additional motivation for the design of its components.

We assume the Abstraction Engine has access to four sets of data. These are
∆ (description of the real world and Physical Engine), Σ (beliefs/abstractions
shared with the Reasoning Engine), Γ (abstract actions the Reasoning Engine
wishes the Physical Engine to take), Q (abstract queries the Reasoning Engine
wishes to make of the Continuous Engine). Σ, Γ and Q are all assumed to be
sets of ground atomic formulae. Therefore, we can represent the entire system
as a tuple 〈Π,Ω,A, R,∆,Σ, Γ, Q〉. For space reasons, in the semantics we will
sometimes replace parts of this tuple with ellipsis (. . .) if they are unchanged by
a transition.

4.1 Abstraction and Reification

We assume that the Abstraction Engine, A, contains processes of abstraction
(abs) and reification (rei) and that these form the primary purpose of A. Indeed



we use the reification process in the semantics via the transition A
rei(p)−−−−→ A′

which indicates any internal changes to the abstraction engine as it reifies some
request p from the Rational Engine.

An example of abs would be the conversion, by the Abstraction Engine, of the
current physical position of the satellite, represented as real-valued coordinates,
to the belief that the satellite was within acceptable bounds of a desired position.
Conversely, reification might involve converting a thruster change request (i.e.,
p above might be the predicate change thruster(x)), to a sequence of valve
and switch activations, or adding additional information about the current real-
valued position of the satellite to a request for the calculation of a new feedback
controller to move the satellite along a path.

Implicitly we assume that abs represents a function from ∆ to the shared
beliefs Σ. Similarly we assume that reification takes Γ and Q and converts them
into sequences of instructions for the Physical Engine or calls for calculations
from the Continuous Engine.

4.2 Internal Transitions

We assume all four engines may take internal transitions which we represent as
?−→ to indicate some unknown internal state change. So, for instance,

Π
?−→ Π ′

〈Π,Ω,A, R,∆,Σ, Γ, Q〉 ?Π−−→ 〈Π ′, Ω,A, R,∆,Σ, Γ, Q〉
(1)

represents an internal state change in the Physical Engine which leaves the rest
of the system unaltered. Similar rules exist for the three other engines.

4.3 Perception

We assume that both the Abstraction Engine and Reasoning Engine incorporate
a perception mechanism by which they can “read in” data represented as first-
order predicates and represent this information internally as, for instance, beliefs.

We write A
per(S)−−−−→ A′ as the process by which A reads in first-order data S.

Similarly we write R
per(S)−−−−→ R′ for the Reasoning Engine’s perception process.

We represent this as a transition since the Reasoning Engine and Abstraction
Engine will change state (e.g., adding beliefs and/or events) during perception.

We have data, ∆, that arrives from the Physical Engine. This data might not
be represented in first-order form. We require a function fof (∆) that transforms
the language of ∆ into appropriate ground atomic predicates (though these may
represent real numbers).

Furthermore we assume that A keeps a log, L, of snapshots of the current
state of the physical system, as represented by ∆. So A can be represented as
(L,Ar) where Ar represents all of A’s internal data structures apart from the
log. We treat the log as a list with ‘:’ as the cons function.



This allows us to define a semantics for perception as follows, (2) gives the
semantics for perceiving ∆, while (3) and (4) give semantics for the abstraction
and reasoning engine perceiving the shared beliefs. In (2) the incoming data is
removed once it has been processed by the Abstraction Engine (although it is
logged). This prevents the Abstraction Engine from processing such data several
times.

Ar
per(fof (∆))−−−−−−−→ A′

r

〈Π,Ω, (L,Ar), R, ∆, Σ, Γ,Q〉 perA(∆)−−−−−→ 〈Π,Ω, (fof (∆) : L,A′
r), R, ∅, Σ, Γ, Q〉

(2)
The Abstraction and Rational engines may also perceive the shared beliefs.

A
per(Σ)−−−−→ A′

〈Π,Ω,A, R,∆,Σ, Γ, Q〉 perA(Σ)−−−−−→ 〈Π,Ω,A′, R, ∆, Σ, Γ,Q〉
(3)

R
per(Σ)−−−−→ R′

〈Π,Ω,A, R,∆,Σ, Γ, Q〉 perR(Σ)−−−−−→ 〈Π,Ω,A, R′,∆,Σ, Γ, Q〉
(4)

4.4 Operating on Shared Beliefs

Both the Abstraction Engine and Reasoning Engine can operate on the memory
they share. We assume that both these engines can perform transitions +Σb and
−Σb to add and remove shared beliefs where b is a ground first-order formula.
Since we have not specified the internal transition systems of the Abstraction
and Reasoning engines we can not be sure whether they undergo any internal
change of state as a result of operating on the shared memory - e.g., removing
the intention to make a changed to the shared memory. As such we not that
their may be state change by specifying that they undergo a transition to a new
state as well.

A
+Σb−−−→ A′

〈Π,Ω,A, R,∆,Σ, Γ, Q〉 +Σ,Ab−−−−→ 〈Π,Ω,A′, R, ∆, Σ ∪ {b}, Γ,Q〉
(5)

A
−Σb−−−→ A′

〈Π,Ω,A, R,∆,Σ, Γ, Q〉 −Σ,Ab−−−−→ 〈Π,Ω,A′, R, ∆, Σ\{b}, Γ, Q〉
(6)

R
+Σb−−−→ R′

〈Π,Ω,A, R,∆,Σ, Γ, Q〉 +Σ,Rb−−−−→ 〈Π,Ω,A, R′,∆,Σ ∪ {b}, Γ,Q〉
(7)

R
−Σb−−−→ R′

〈Π,Ω,A, R,∆,Σ, Γ, Q〉 −Σ,Rb−−−−→ 〈Π,Ω,A, R′,∆,Σ\{b}, Γ, Q〉
(8)



We do not specify here whether the individual components of the system
can act in parallel or are forced to act in some sequential order. This means it
is possible, in a parallel implementation, for both A and R to make transitions
at the same time. This might mean that both rules (5) and (7) were applicable
at once. In this situation an implementation would need to either select one at
random, or have a preference order enforced.
Note that the abstraction process employed by the Abstraction Engine is in-
tended to be one of transforming the predicates generated via fof (∆) into a set
of shared beliefs which are then added to Σ. One of our interests is in finding
ways to present this transformation in as expressive and declarative a fashion as
possible. We discuss this further in Sections 6 and 7.

4.5 Calculation

We allow the Abstraction Engine to transform the predicate representation of
the calculation, p, into the input language of the Continuous Engine. This is
similar to the inverse of the operation performed by fof and so we term it fof −1.
Usually this involves trivial changes (e.g., set valve(x) becomes set x valve –
translating between the parameterised form used by the Rational Engine and
the non parameterised form used by the Physical and Continuous Engines).

When the Abstraction Engine requests a calculation from the Continuous
Engine it could wait for an answer. However such an answer may take time to
calculate and the Abstraction Engine may need to continue handling incoming
data. Some agent languages (such as Jason [6]) allow intentions to be suspended
while other parts of an agent may continue to run. We follow this approach and
represent requesting and receiving the answer to a calculation via two rules. We

indicate the process of requesting a calculation by A
calc(p,V )−−−−−−→ A′(V ), where we

write A′(V ) to indicate that the state of the Abstraction Engine contains a free
variable, V , that is awaiting instantiation. We represent the change in state of
Ω when it is not performing a calculation to when it is via Ω

calc−−→ Ω(fof −1(p)).

A
calc(p,V )−−−−−−→ A′(V ) Ω

calc−−→ Ω(fof −1(p))

〈Π,Ω,A, R,∆,Σ, Γ, Q〉 calc(p,V )−−−−−−→ 〈Π,Ω(fof −1(p)), A′(V ),∆,Σ, Γ, Q〉
(9)

When the Continuous Engine finishes its calculation it returns a value, t. The
Continuous Engine’s internal state is unchanged by performing the calculation.
The Abstraction Engine then instantiates V to t where appropriate and may pos-
sibly make other changes to it’s internal state so that A(V ) becomes A′(t). The
engines contain local state information and, query calculations could be specified
further by providing detailed rules for their evaluation on the local beliefs/vari-
ables. However, we do not wish to overly constrain the internal semantics of the
engines. The local variables/beliefs could be described in a number of alternate
ways. The one we use here is sufficient for our purposes.



Ω(fof −1(p)) = t A(V ) V =t−−−→ A′(t)

〈Π,Ω,A(V ), R, ∆, Σ, Γ,Q〉 V =t−−−→ 〈Π,Ω,A′(t), R, ∆, Σ, Γ,Q〉
(10)

When the Reasoning Engine, R, wishes to request a continuous calculation it
places a request in the query set, Q, which A then reifies. We implicitly assume
that the reification will include one or more calculation requests to the Con-
tinuous Engine but that the only change to the overall system state is to the
internal state of A and, in particular, that the free variable V will be instanti-

ated to t. We write reification as a transition 〈Π,Ω,A, R,∆,Σ, Γ, 〉 rei(q,V =t)−−−−−−−→
〈Π,Ω,A′, R, ∆, Σ, Γ,Q〉.

(q, V ) ∈ Q 〈Π,Ω,A, R,∆,Σ, Γ, Q〉 rei(q,V =t)−−−−−−−→ 〈Π,Ω,A′, R, ∆, Σ, Γ,Q〉

〈Π,Ω,A, R,∆,Σ, Γ, Q〉 qcalc(q,V )−−−−−−→ 〈Π,Ω,A′, R, ∆, Σ, Γ,Q{V/t}〉
(11)

As with the Abstraction Engine, we split the processes of requesting a calculation
and receiving an answer in the Reasoning Engine:

R
rcalc(q,V )−−−−−−−→ R′(V )

〈Π,Ω,A, R,∆,Σ, Γ, Q〉 rcalc(q,V )−−−−−−−→ 〈Π,Ω,A, R′(V ),∆,Σ, Γ, {(q, V )} ∪Q〉
(12)

〈. . . , A,R(V ), . . . , Q〉 rei(q,V =t)−−−−−−−→ 〈. . . , A′, R(V ), . . . , Q′〉 (q, t) ∈ Q′ R(V ) V =t−−−→ R′(t)

〈. . . , A,R(V ), . . . , Q〉 V =t−−−→ 〈Π,Ω,A′, R′(t), . . . , Q′\{(q, t)}〉
(13)

4.6 Performing Tasks

Finally, A can request that Π makes specific updates to its state.

A
run(γ)−−−−→ A′ Π

fof−1(γ)−−−−−→ Π ′

〈Π,Ω,A, R,∆,Σ, Γ, Q〉 run(γ)−−−−→ 〈Π ′, Ω,A′, R, ∆, Σ, Γ,Q〉
(14)

R can request changes to Π, but A reifies these requests. The reification may
involve several calls to run(γ) and these are all amalgamated into one system

transition: 〈Π,Ω,A, R,∆,Σ, Γ, Q〉 rei(γ)−−−−→ 〈Π ′, Ω,A′, R, ∆, Σ, Γ,Q〉.

R
do(γ)−−−→ R′

〈Π,Ω,A, R,∆,Σ, Γ, Q〉 doR(γ)−−−−→ 〈Π,Ω,A, R′,∆,Σ, {γ} ∪ Γ,Q〉
(15)



γ ∈ Γ 〈Π,Ω,A, R,∆,Σ, Γ, Q〉 rei(γ)−−−−→ 〈Π ′, Ω,A′, R, ∆, Σ, Γ,Q〉

〈Π,Ω,A, R,∆,Σ, Γ, Q〉 do(γ)−−−→ 〈Π ′, Ω,A′, R, ∆, Σ, Γ\{γ}, Q〉
(16)

5 Implementation

We have implemented a prototype system to explore the requirements for the
Abstraction Engine. The simulated environment, Physical and Continuous En-
gines are all implemented in MatLab using the Simulink tool kit.

The Abstraction Engine and Reasoning Engine are both written in the Java-
based Gwendolen agent programming language3 as separate agents. Requests for
calculations or actions from the Reasoning Engine are read into the Abstraction
Engine as ‘perform’ goals Therefore the plans for handling these goals are equiv-
alent to the function rei in the abstract semantics and execution of those plans is

equivalent to the transition A
rei(p)−−−−→ A′ . The Continuous Engine may, as a side

effect of its calculations, place configuration files in the shared file system for use
by the Physical Engine. Communication between the Java process and the two
MatLab processes is via Java sockets and exists in a thin Java “Environment”
layer between the Abstraction Engine and the MatLab parts of the system.

The Physical Engine is assumed to have direct access to a satellite’s sensors.
At present the information is transmitted to the Abstraction Engine in the form
of a simple string tag (which relates to the way the data values flow around
the Simulink model), followed by a number of arguments which are mostly real
numbers. These tags and values are then converted to predicates by the Ab-
straction Engine. For instance the Physical Engine groups data by ‘thruster’
and tags them, for instance “xthruster1” (for the data from the first thruster in
the X direction) followed by values for the current, voltage and fuel pressure in
the thruster (say C, V and P ). It is more natural, in the Abstraction Engine,
to represent this data as a predicate thruster(x, 1, C, V, P ) than as the pred-
icate xthruster1(C, V, P ). At the moment the Java environment handles the
necessary conversion which is equivalent to the fof function from the semantics.

The Java environment also handles all four data sets, ∆, Σ, Γ and Q and
sends predicates to the relevant agents at appropriate moments. Γ and Q are
treated as messages with performatives indicating the type of goal they should
be transformed into by the Abstraction Engine.

When the Abstraction Engine requests calculations from the Continuous En-
gine it requests that an M-file (MatLab function) is executed. It sends the Con-
tinuous Agent the name of the M-file followed by any arguments the M-file
requires. Gwendolen allows intentions to be suspended until some event occurs.
We use this explicitly in both engines to force the agent to wait until it per-
ceives the result of calculation. In particular this allows the Abstraction Engine
3 The choice of language was dictated entirely by convenience. One of the purposes of

this case study is to explore the desirable features of a BDI-based control language.



to continue processing new information even while waiting for a result. Once the
M-file has been executed the Continuous Engine of the agent returns the result-
ing data to the Abstraction Engine. (We are exploring whether the Continuous
Engine should also sense data from the system model to assist its calculations.)

Both the Physical Engine and Continuous Engine need to work with the Ab-
straction Engine to produce abstractions for the Reasoning Engine. To make the
meanings of abstractions clear, concise and easy to remember for the program-
mer of the agent system, a high-level notation called system English (sEnglish,
[22; 26; 27]), is used to generate the MatLab M-files used by the Continuous
Engine and parts of the Physical Engine. sEnglish also provides a natural link
between a predicate style formulation and the underlying MatLab code.

Finally, at present the Abstraction Engine only keeps the most recent snap-
shot of ∆ and discards older information rather than keeping it as a log.

6 Case Study: Geostationary Orbit

A geostationary orbit (a GEO orbit) is characterized as an equatorial orbit
(zero inclination), with near zero eccentricity and an orbital period equal to
one sidereal day. A satellite maintaining such an orbit will remain at a fixed
longitude at zero degrees latitude. Thus, with respect to an Earth based observer,
the satellite will remain in a fixed overhead position. Numerous benefits follow
from the use of geostationary orbits, the principal one of these being highlighted
originally in [3]: three geostationary satellites stationed equidistantly are capable
of providing worldwide telecommunications coverage.

While telecommunications is an obvious application area for such orbits,
observation satellites and other applications also make heavy use of them. Con-
sequently the geostationary orbit represents prime real-estate for satellite plat-
forms. GEO locations are hotly contested and their allocation is politicized. This
makes it important that such locations are used optimally and that satellites do
not stray far from their assigned position.

Once placed in a GEO orbit at a specified longitude, station keeping pro-
cedures are used to ensure that the correct location is retained. Such station
keeping procedures are required because the disturbances caused by solar ra-
diation pressure (SRP), luni-solar perturbations and Earth triaxiality naturally
cause an object to move from an orbit location in which it has been placed. These
disturbances result in changes to the nominal orbit which must be corrected for.
A standard feedback controller is able to handle these tasks.

6.1 Scenario

We implemented a Simulink model of a satellite in geostationary orbit. A MatLab
function (an M-file written in sEnglish) was created to calculate whether a given
set of coordinates were within an acceptable distance of the satellite’s desired
orbital position (comp distance). A second function (plan approach to centre),
based on [19], was also written to produce an optimal path back to its desired



orbital position (for use if the satellite strayed out of bounds – e.g., because of
fuel venting from a ruptured line). These functions were made available to the
agent’s Continuous Engine.

Controls were made available in the Physical Engine which could send a
particular named activation plan to the feedback controller ( set control ), switch
thrusters on and off (set x1 main, set x2 main, set y1 main, etc.), control the
valves that determined which fuel line was being utilised ( set x1 valves , etc.)
and change the thruster being used in any direction (set x bank, etc.).

The satellite was given thrusters in three directions (X, Y and Z) each of
which contained two fuel lines. This enabled the agent to switch fuel line in the
event of a rupture (detectable by a drop in fuel pressure). We also provided up
to five redundant thrusters, allowing the agent to switch to a redundant thruster
if both fuel lines were broken.

6.2 The Abstraction Engine

The Abstraction Engine code in the case of one redundant thruster is shown in
code fragment 6.1. We use a standard BDI syntax: +b indicates the addition of
a belief; !g indicates a perform goal, g, and +!g the commitment to the goal. A
plan e : {g} ← b consists of a trigger event, e, a guard, g, which must be true
before the plan can be executed and a body b which is executed when the plan
is selected.

Gwendolen allows plan execution to be suspended while waiting for some
belief to become true. This is indicated by the syntax ∗b which means “wait until
b is believed”. This is used in conjunction with ‘calculate ’ to allow the engine to
continuing producing abstractions from incoming data while calculation occurs.
The new belief is then immediately removed so that further calls to ‘calculate ’
suspend as desired. Ideally, a language would handle this more cleanly without
the awkward “call-suspend-clean-up” sequence.

Abstraction and Reification. Ideally we would like to be able to clearly
derive the functions abs and rei from the Abstraction Engine code.

In the above the abs process is represented by plans triggered by belief acqui-
sition. For instance the code in lines 30−32 represents an abstraction from the
predicate thruster(X, N,C, V, P ), where C, V and P are real numbers, to the
predicate broken(X). However, it is harder to see how the acquisition of location
data (line 1) generates abstractions about “proximity to centre”.

The reification of the abstract query “plan approach to centre(P)” (line 20),
converts it to a call with real number arguments (the current location) and then
causes the intention to wait for the result of the call. Similarly the code in lines
42−49 shows the reification of the predicate, change bank(T ), into a sequence
of commands to set the bank and turn the relevant thrusters off or on, but this
is obscured by housekeeping to manage the system’s beliefs.

An area of further work is to find or develop a language for the Abstraction
Engine that expresses these two functions in a clearer way.



Code fragment 6.1 Geostationary Orbit:Abstraction Engine

1+location(L1, L2, L3, L4, L5, L6) : {B bound info(V1)} ←
2calculate (comp distance(L1, L2, L3, L4, L5, L6), Val),
3∗result (comp distance(L1, L2, L3, L4, L5, L6), Val),
4−result(comp distance(L1, L2, L3, L4, L5, L6), Val),
5+bound info(Val);
6

7+bound info(in) : {B proximity to centre(out)} ←
8−bound info(out),
9−Σproximity to centre(out), +Σproximity to centre(in );
10

11+bound info(out) : {B proximity to centre(in)} ←
12−bound info(in),
13−Σproximity to centre(in ), +Σproximity to centre(out);
14

15+!maintain path : {B proximity to centre(in)} ← run(set control (maintain));
16+!execute(P) : {B proximity to centre(out)} ← run(set control (P));
17

18+!plan approach to centre(P) : {B location(L1, L2, L3, L4, L5, L6)} ←
19calculate (plan approach to centre(L1, L2, L3, L4, L5, L6), P),
20∗result (plan approach to centre(L1, L2, L3, L4, L5, L6), P),
21−result(plan approach to centre(L1, L2, L3, L4, L5, L6), P),
22+Σplan approach to center(P);
23

24−broken(X) :
25{B thruster bank line(X, N, L), B thruster(X, N, C, V, P), P1 < 1} ←
26+Σ(broken(X));
27

28+thruster(X, N, C, V, P):
29{ ˜B broken(X), B thruster bank line(X, N, L), P1 < 1} ←
30+Σbroken(X);
31+thruster(X, N, C, V, P):
32{B broken(X), B thruster bank line(X, N, L), 1 < P1} ←
33−Σbroken(X).
34

35+!change fuel line (T, 1) : {B thruster bank line(T, B, 1)} ←
36run(set valves (T, B, off , off , on, on)),
37−Σthruster bank line(T, B, 1),
38+Σthruster bank line(T, B, 2),
39−Σbroken(T);
40+!change bank(T) : {B thruster bank line(T, B, L)} ←
41B1 is B + 1;
42run(set bank(T, B1)),
43run(set main(T, B, off )),
44run(set main(T, B1, on)),
45−Σthruster bank line(T, B, L),
46+Σthruster bank line(T, B1, 1),
47−Σbroken(T);



6.3 The Reasoning Engine

The reasoning engine code is shown in fragment 6.2. We use the same syntax
as we did for the Abstraction Engine. Here the actions, ‘perform’ and ‘query’,
request that the Abstraction Engine adopt a goal.

Code fragment 6.2 Geostationary Orbit: Reasoning Engine

1+proximity to centre(out) : {>} ← −proximity to centre(in),
2+!get to centre ;
3+proximity to centre(in) : {>} ← −proximity to centre(out),
4perform(maintain path);
5

6+!get to centre : {B proximity to centre(out)} ←
7query(plan approach to centre(P)), ∗plan approach to centre(P),
8perform(execute(P)),
9−Σplan approach to centre(P);
10

11+broken(X): {B thruster bank line(X, N, 1)} ←
12perform(change fuel line(X, N));
13+broken(X): {B thruster bank line(X, N, 2)} ←
14perform(change bank(X, N));

The architecture lets us represent the high-level decision making aspects
of the program in terms of the beliefs and goals of the agent and the events
it observes. So, for instance, when the Abstraction Engine observes that the
thruster line pressure has dropped below 1, it asserts a shared belief that the
thruster is broken. When the Reasoning Engine observes that the thruster is
broken, it then either changes fuel line, or thruster bank. This is communicated
to the Abstraction Engine which then sets the appropriate valves and switches.

7 Conclusions

This paper has explored creating declarative abstractions to assist the commu-
nication between the continuous and discrete parts of a hybrid control system.

We believe that it is desirable to provide a clear separation between abstrac-
tion and reasoning processes in hybrid autonomous control systems. We believe
this is beneficial not only for the clarity of the code, but also for use in applica-
tions such as forward planning and model checking.

We have created a formal semantics describing how such an Abstraction
Engine would interact with the rest of the system, and discussed a prototype
BDI based Abstraction Engine and the issues this raises in terms of a suitable
language for generating discrete abstractions from continuous data. We believe
that this is the first work linking autonomous agents and control systems via a
formal semantics.



7.1 Future Work

The work on hybrid agent systems with declarative abstractions for autonomous
space software is only in its initial stages and considerable further work remains
to be investigated.

Further Case Studies. We are keen to develop a repertoire of case studies,
beyond the simple one presented here, which will provide us with benchmark
examples upon which to examine issues such as more sophisticated reasoning
tasks, multi-agent systems, forward planning, verification and language design.

In addition we aim, next, to investigate a case study involving multiple satel-
lites attempting to maintain and change formation in low Earth orbit. This
presents significant planning challenges.

Custom Language. At the moment the BDI language we are using for the
Abstraction Engine is not as clear as we might like. In particular the functions
of abstraction and reification are not so easy to “read off” from the code and
are obscured somewhat by housekeeping tasks associated with maintaining con-
sistent shared beliefs about which thrusters are in operation.

A further degree of declarativeness can be achieved within the Abstraction
Engine by separation of abstraction evaluation and the control features. Due
to the dynamic setting in which abstraction is performed “on-the-fly” reacting
to incoming sensory data, it can be naturally seen as query processing for data
streams [12; 13]. This viewpoint would provide a clean semantics for abstraction
evaluation, based on the theory of stream queries [13] and would hopefully avoid
the need to devote too much space to storing data logs. We also aim to investi-
gate the extent to which techniques and programming languages developed for
efficient data stream processing (from e.g., [2; 17]) can be re-used within the
Abstraction Engine. It is possible that something similar might be used for the
reification process as well, although this is more speculative.

We are interested in investigating programming languages for the Reasoning
Engine – e.g., languages such as Jason [6] or 3APL [8] are similar to Gwendolen,
but better developed and supported. Alternatively it might be necessary to use
a language containing, for instance, the concept of a maintain goal. Much of a
satellite’s operation is most naturally expressed in terms of maintaining a state
of affairs (such as a remaining on a particular path).

Planning and Model Checking. At present the M-file employed to create a
new controller that will return the satellite to the desired orbit uses a technique
based on hill-climbing search [19]. We are interested in investigating temporal
logic and model-checking based approaches to this form of planning for hybrid
automata based upon the work of Kloetzer and Belta [18].

Model checking techniques also exist [5] for the verification of BDI agent pro-
grams which could conceivably be applied to the Reasoning Engine. Abstraction



techniques would then be required to provide appropriate models of the continu-
ous and physical engines and it might be possible to generate these automatically
from the abstraction and reification functions.

There is also a large body of work on the verification of hybrid systems [1; 14]
which would allow us to push the boundaries of verification of such systems
outside the limits of the Reasoning Engine alone.

Multi-Agent Systems. We are interested in extending our work to multi-agent
systems and groups of satellites that need to collaborate in order to achieve some
objective. In particular there are realistic scenarios in which one member of a
group of satellites loses some particular functionality meaning that its role within
the group needs to change. We believe this provides an interesting application
for multi-agent work on groups, teams, roles and organisations [9; 15; 10; 20],
together with the potential for formal verification in this area.

Since the individual agents in this system will be discrete physical objects
and will be represented as such in any simulation we don’t anticipate major chal-
lenges to the architecture itself from moving to a multi-agent scenario. However
we anticipate interesting challenges from the point of view of coordination and
communication between the agents.
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