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in  This arTiCle  we consider the question: How 
should autonomous systems be analyzed? in 
particular, we describe how the confluence of 
developments in two areas—autonomous systems 
architectures and formal verification for rational 
agents—can provide the basis for the formal 
verification of autonomous systems behaviors.

We discuss an approach to this question that involves:
1. Modeling the behavior and describing the 

interface (input/output) to an agent in charge of 
making decisions within the system;

2. Model checking the agent within an unrestricted 
environment representing the “real world” and those 
parts of the systems external to the agent, in order to 
establish some property, j;

3. Utilizing theorems or analysis of the 
environment, in the form of logical statements (where 
necessary), to derive properties of the larger system; 
and

4. if the agent is refined, modify (1), but if 
environmental properties are clarified, modify (3).

Autonomous systems are now being 
deployed in safety, mission, or busi-
ness critical scenarios, which means 
a thorough analysis of the choices the 
core software might make becomes 
crucial. But, should the analysis and 
verification of autonomous software be 
treated any differently than traditional 
software used in critical situations? Or 
is there something new going on here? 

Autonomous systems are systems 
that decide for themselves what to do 
and when to do it. Such systems might 
seem futuristic, but they are closer 
than we might think. Modern house-
hold, business, and industrial systems 
increasingly incorporate autonomy. 
There are many examples, all varying 
in the degree of autonomy used, from 
almost pure human control to fully au-
tonomous activities with minimal hu-
man interaction. Application areas are 
broad, ranging from healthcare moni-
toring to autonomous vehicles.

But what are the reasons for this in-
crease in autonomy? Typically, autono-
my is used in systems that:

1. must be deployed in remote envi-
ronments where direct human control 
is infeasible;

2. must be deployed in hostile envi-
ronments where it is dangerous for hu-
mans to be nearby, and so difficult for 
humans to assess the possibilities;

3. involve activity that is too lengthy 
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 key insights
    autonomous systems are systems that 

decide for themselves what to do.  
they are currently making large impacts 
in a variety of applications, including 
driverless cars, unmanned aircraft, 
robotics, and remote monitoring.

    a key issue for autonomous systems 
is determining their safety and 
trustworthiness: how can we be sure 
the autonomous systems will be safe 
and reliable? methodologies to enable 
certification of such systems are  
urgently needed.

    the choices made by agent-based 
autonomous systems can be formally 
verified to provide evidence for 
certification. sample applications include 
search and rescue robots, satellite 
systems, and unmanned aircraft.
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to be analyzed. But how shall we de-
scribe these new entities? A very use-
ful abstraction for capturing such au-
tonomous behavior within complex, 
dynamic systems turns out to be the 
concept of an agent.22 Since the agent 
concept came into prominence in the 
1980s, there has been vast develop-
ment within both academia and indus-
try.4,14,20,34 It has become clear this agent 
metaphor is very useful for capturing 
many practical situations involving 
complex systems comprising flexible, 
autonomous, and distributed compo-
nents. In essence, agents must funda-
mentally be capable of flexible autono-
mous action.38

However, it turns out the “agent” 
concept on its own is still not enough! 
Systems controlled by neural networks, 
genetic algorithms, and complex con-
trol systems, among others, can all 
act autonomously and thus be called 
agents, yet the reasons for their actions 
are often quite opaque. Because of this, 
such systems are very difficult to devel-
op, control, and analyze.

So, the concept of a rational agent 
has become more popular. Again, 
there are many variations9,33,39 but we 
consider this to be an agent that has 
explicit reasons for making the choices 
it does, and should be able to explain 
these if necessary.

Therefore, a rational agent can be 
examined to discover why it chose a 
certain course of action. Such agents 
are often programmed and analyzed 
by describing their motivations (for 
example, “goals”), information (for 
example, “knowledge”), and how 
these change over time (as we will dis-
cuss later). Rational agents can adapt 
their autonomous behavior to cater 
for the dynamic aspects of their en-
vironment, their requirements and 
their knowledge. Typically, they can 
also modify their decision-making 
following interactions with their en-
vironment. The predominant form 
of rational agent architecture is that 
provided through the Beliefs, Desires, 
and Intentions (BDI) approach.32,33 
Here, the beliefs represent the agent’s 
(probably incomplete, possibly incor-
rect) information about itself, other 
agents, and its environment, desires 
represent the agent’s long-term goals, 
and intentions represent the goals the 
agent is actively pursuing.

and/or repetitive to be conducted suc-
cessfully by humans; or

4. need to react much more quickly 
than humans can.

However, it may actually be cheaper 
to use an autonomous system. After all, 
humans need training, monitoring, 
safe environments, medical support, 
legal oversight, and so on.

Examples. There are many autono-
mous systems that have either been 
deployed or are in development. We 
clearly cannot survey them all so only 
provide a broad selection noted here.

Robotics and robot swarms. As we 
move from the restricted manufactur-
ing robots seen in factories toward ro-
bots in the home and robot helpers for 
the elderly, so the level of autonomy re-
quired increases.

Human-robot teamwork. Once we 
move beyond just directing robots to 
undertake tasks, they become robotic 
companions. In the not too distant fu-
ture, we can foresee teams of humans 
and robots working together but mak-
ing their decisions individually and au-
tonomously.

Pervasive systems, intelligent moni-
toring, among others. As sensors 
and communications are deployed 
throughout our physical environment 
and in many buildings, so the opportu-
nity to bring together a multiplicity of 
sensor inputs has led to autonomous 
decision-making components that 
can, for instance, raise alarms and 
even take decisive action.

Autonomous road vehicles. Also 
known as “driverless cars,” autono-
mous road vehicles have progressed 
beyond initial technology assessments 
(for example, DARPA Grand Challeng-
es) to the first government-licensed au-
tonomous cars.35

As we can see from these examples, 
autonomous systems are increasingly 
being used in safety/mission/busi-
ness critical areas. Consequently, they 
need rigorous analysis. One traditional 
way to achieve this, at least in non-
autonomous systems, is to use formal 
verification. While applying formal 
verification techniques to autonomous 
systems can be difficult, developments 
in autonomous system architectures 
are opening up new possibilities.

Autonomous Systems Architectures. 
Many autonomous systems, ranging 
over unmanned aircraft, robotics, sat-

ellites and even purely software appli-
cations, have a similar internal struc-
ture, namely layered architectures23 
as summarized in Figure 1. Although 
purely connectionist/sub-symbolic ar-
chitectures remain prevalent in some 
areas, such as robotics,10 there is a 
broad realization that separating out 
the important/difficult choices into an 
identifiable entity can be very useful for 
development, debugging, and analysis. 
While such layered architectures have 
been investigated for many years3,23 

they appear increasingly common in 
autonomous systems.

Notice how the system in Figure 1 is 
split into real-world interactions, con-
tinuous control systems, and discon-
tinuous control. For example, a typi-
cal unmanned aircraft system might 
incorporate an aircraft, a set of control 
systems encapsulated within an auto-
pilot, and a high-level decision-maker 
that makes the key choices. Once a 
destination has been decided, the 
continuous dynamic control, in the 
form of the autopilot, will be able to fly 
there. The intelligence only becomes 
involved if either an alternative des-
tination is chosen, or if some fault or 
unexpected situation occurs.

But what is this intelligent decision-
making component? In the past this 
has often been conflated with the dy-
namic control elements, the whole be-
ing described using a large, possibly 
hierarchical, control system, genetic 
algorithm, or neural network. Howev-
er, architectures are increasingly being 
deployed in which the autonomous, in-
telligent decision-making component 
is captured as an “agent.”

Agents as Autonomous Decision 
Makers. The development and analysis 
of autonomous systems, particularly 
autonomous software, is different to 
traditional software in one crucial as-
pect. In designing, analyzing, or moni-
toring “normal” software we typically 
care about

 ˲ what the software does, and
 ˲ when the software does it.

Since autonomous software has to 
make its own decisions, it is often vi-
tal to know not only what the software 
does and when it does it, but also

 ˲ why the software chooses to do it.
This requirement—describing why a 
system chooses one course of action 
over another—provides new entities 
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Before we consider how we might 
verify autonomous systems and, in par-
ticular the rational agent that makes 
the core decisions, we first recap for-
mal verification. In particular we will 
motivate and outline the tools and 
techniques for the agent verification 
we have developed.

formal Verification
So, we are clear now that autonomous 
systems are important, that their key 
decision-making components can 
usefully be represented through the 
rational agent concept, and their in-
creasing use in critical areas means 
a deep and comprehensive form of 
analysis will be desirable. These con-
cerns have led us to use formal logics 
for describing the required properties 
of our rational agents and then formal 
verification techniques to analyze how 
well the actual agents match these re-
quirements. Formal verification en-
compasses a range of techniques that 
use mathematical and logical methods 
to assess the behavior of systems. The 
most common approach is to exhaus-
tively assess all the behaviors of a sys-
tem against a logical specification.13 
But, how do we logically specify what 
an agent should do? In particular, how 
do we specify what decisions an agent 
can make and what motivations it has 
for making those decisions?

Logical Agent Specification. Logics 
provide a well-understood and unam-
biguous formalism for describing the 
behaviors, requirements, and proper-

ties of systems. They have clear syntax 
and semantics, well-researched struc-
tural properties, and comparative ex-
pressive power. Importantly, from our 
viewpoint, there are very many formal 
logics. This allows us to choose a logic 
appropriate to the types of properties 
and level of abstraction we require; 
for example:

 ˲ dynamic communicating systems 
→ temporal logics

 ˲ information → modal logics of 
knowledge

 ˲ autonomous systems → modal log-
ics of motivation

 ˲ situated systems → modal logics of 
belief and context

 ˲ timed systems → real-time tempo-
ral logics

 ˲ uncertain systems → probabilistic 
logics

 ˲ cooperative systems → coopera-
tion/coalition logics

So, we can usually choose logics 
that have the properties we require. 
Crucially, we can even construct new 
logics as the combinations of simpler 
logics. This turns out to be very useful 
for developing logical theories for ra-
tional agents as these typically consist 
of several dimensions:

Dynamism—temporal or dynamic 
logic;

Information—modal/probabilistic 
logics of belief or knowledge; and

Motivation—modal logics of goals, 
intentions, desires.

For example, the BDI approach 
combines:31 a (branching) temporal/

dynamic logic; a (KD45) modal logic of 
belief; a (KD) modal logic of desire; and 
a (KD) modal logic of intention. (For 
detail on different modal varieties, see 
Blackburn.2)

Formal Agent Verification. Once 
we have such a logical requirement, 
together with an autonomous system 
architecture wherein rational agent(s) 
encapsulate high-level decision-mak-
ing, we have many options for carrying 
out formal verification, ranging across 
model-checking,13 runtime verifica-
tion,24 and formal proof.21

While there are also several ap-
proaches to agent verification,7,29 the 
particular approach we adopt involves 
checking a BDI logical requirement 
against all practical executions of a 
program. This is termed the model 
checking of programs36 and depends 
on being able to extract all these pos-
sible program executions, for exam-
ple through symbolic execution. This 
contrasts to many model checking ap-
proaches in which an abstract model 
of the program must first be construct-
ed before it can be checked against 
a property. In the case of Java, model 
checking of programs is feasible as a 
modified virtual machine can be used 
to manipulate the program execu-
tions.26 It is this last approach to agent 
verification we adopt. In order to do so, 
we must also give a very brief overview 
of agent programming languages.

Programming Rational Agents. We 
have seen how the rational agent ap-
proach provides the key model for de-

figure 1. typical hybrid autonomous system architecture—with suitable analysis techniques noted.
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scribing autonomous decision-making.
But, how can rational agents be pro-

grammed? Typically, programming 
languages for rational agents provide:

 ˲ a set of beliefs, representing infor-
mation the agent has;

 ˲ a set of goals, representing motiva-
tions the agent has;

 ˲ a set of rules/plans, representing 
the agent’s mechanisms for achieving 
goals;

 ˲ a set of actions, corresponding to 
the agent’s external acts (delegated to 
other parts of the system); and

 ˲ deliberation mechanisms for 
deciding between alternative goals/
plans/actions.

A typical agent rule/plan in such a 
language is:

Goal(eat) : Belief(has_money), 

              Belief(not has_food)

            <-   Goal(go_to_shop),

                 Action(buy_food),

                 Goal(go_home),

                 Action(eat),

                 +Belief(eaten).

The meaning of this rule is that, if the 
agent’s goal is to “eat” and if the agent 
believes it has money but does not have 
food, then it will set up a new goal to go 
to the shop. Once that goal has been 
achieved, it will buy some food (del-
egated to a subsystem) and then set up 
a new goal to get home. Once at home 
it will eat and then update its beliefs to 
record that it believes it has eaten.

Such languages are essentially rule-
based, goal-reduction languages, with 
the extra aspect that deliberation, the 
ability to change between goals and 
change between plan selection strate-
gies at any time, is a core component. 
Almost all of these languages are im-
plemented on top of Java, and the large 
number of agent platforms now avail-
able5,6 has meant the industrial uptake 
of this technology is continually in-
creasing. The key ancestor of most of 
today’s agent programming languages 
is AgentSpeak,30 which introduced 
the programming of BDI agents using 
a modification of Logic Programming. 
Of the many descendants of Agent-
Speak, we use Gwendolen,19 which 
is based upon Jason,8 for programming 
our rational agents. Consequently, it is 
such programs that we directly verify.

A full operational semantics for 

Gwendolen is presented in Dennis 
and Farwer.15 Key components of a 
Gwendolen agent are a set, Σ, of be-
liefs that are ground first order formu-
lae and a set, I, of intentions that are 
stacks of deeds associated with some 
event. Deeds include (among other 
things) the addition or removal of be-
liefs, the establishment of new goals, 
and the execution of primitive actions. 
Gwendolen is event driven and events 
include the acquisition of new beliefs 
(typically via perception), messages, 
and goals.

A programmer supplies plans that 
describe how to react to events by ex-
tending the deed stack of the inten-
tion associated with the event. The 
main task of a programmer working in 
Gwendolen is defining the system’s 
initial beliefs and plans; these then 
describe the dynamic behavior of the 
agent. A Gwendolen agent executes 
within a reasoning cycle that includes 
the addition of beliefs from percep-
tion, the processing of messages, the 
selection of intentions and plans, and 
the execution of deeds.

Model Checking Agent Programs. 
We begin with program model check-
ing, specifically the Java PathFinder 2 
system (JPF2), an open source explic-
it-state model checker for Java pro-
grams.26,36 Since the vast majority of 
agent languages are built on top of 
Java, we have extended JPF2 to the 
Agent JPF (AJPF) system19 incorporat-
ing the checking of agent properties. 
However, in order to achieve this the 
semantics of the agent constructs 
used must be precisely defined. Such 
semantics can be given using the 
Agent Infrastructure Layer (AIL),16 a 
toolkit for providing formal semantics 
for agent languages (in particular BDI 
languages) built on Java. Thus, AJPF is 
essentially JPF2 with the theory of AIL 
built in; see Dennis et al.19

The whole verification and pro-
gramming system is called MCAPL and 
is freely available on Sourceforge.a As 
the model checker is based on JPF2, 
the modified virtual machine is used to 
exhaustively explore all executions of 
the system. As each one is explored it is 
checked against the required property. 
If any violation is found, that execution 
is returned as a counterexample.

a http://cgi.csc.liv.ac.uk/MCAPL/

the key ancestor 
of most of today’s 
agent programming 
languages is 
AgentSpeak,  
which introduced 
the programming  
of BDi agents  
using a modification 
of Logic 
Programming.
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The Gwendolen language, men-
tioned earlier, is itself programmed 
using the AIL and so Gwendolen pro-
grams can be model checked directly 
via AJPF.

Verifying autonomous systems
We now return to our original ques-
tion: How do we go about verifying 
autonomous systems? Recall the archi-
tecture in Figure 1. For the traditional 
parts there are well known, recognized, 
and trusted approaches, such as test-
ing for real-world interaction and 
analytic techniques for continuous dy-
namics. But what about the agent that 
makes high-level, intelligent choices 
about what to do? As we will explain, it 
is our approach to use formal verifica-
tion of the potential choices the agent 
can take. This is feasible since, while 
the space of possibilities covered by 
the continuous dynamics is huge (and 
potentially infinite), the high-level de-
cision-making within the agent typical-
ly involves navigation within a discrete 
state space. The agent rarely, if ever, 
bases its choices directly on the exact 
values of sensors, for example. It might 
base its decision on values reaching a 
certain threshold, but relies on its con-
tinuous dynamics to alert it of this, and 
such alerts are typically binary valued 
(either the threshold has been reached 
or it has not). Thus, we propose the 
mixture of techniques in Figure 1 to 
provide the basis for the formal verifi-
cation of autonomous systems.

Verifying Autonomous Choices. 
How shall we verify autonomous de-
cision-making? Our main proposal is 
to use program verification to demon-
strate that the core rational agent al-
ways endeavors to act in line with our 
requirements and never deliberately 
chooses options it believes will lead 
to bad situations (for example, ones 
where the agent believes something is 
unsafe). Thus, we do not try to verify all 
the real-world outcomes of the agent’s 
choices, but instead verify the choices 
themselves. In particular, we verify the 
agent always tries to achieve its goals/
targets to the best of its knowledge/
beliefs/ability. Thus, the agent targets 
situations it believes to be good and 
avoids situations it believes to be bad. 
Consequently, any guarantees here are 
about the autonomous system’s deci-
sions, not about its overall effects.

This lets us distinguish between a 
rational agent knowingly choosing a 
dangerous/insecure option and a ratio-
nal agent unknowingly doing so based 
on an imperfect representation of the 
actual environment. Indeed, we argue 
the most crucial aspect of autonomous 
system verification, for example con-
cerning safety, is to identify the agent 
never deliberately makes a choice it be-
lieves to be unsafe. We wish to ensure 
that if an unsafe situation arises it is 
because of unforeseen consequences 
of an agent’s actions (that is, its model 
of the environment was too weak), not 
because the agent chose an option 
known to lead to a bad outcome.

Aside: Accidental or deliberate? Are 
all dangerous situations equally bad? 
What if a robot deliberately took an 
action that it knew would cause dan-
ger? Is this more serious than a robot 
accidentally causing this danger? This 
distinction can be important, not least 
to the public, and if a robot is being 
“vindictive,” then few safeguards can 
protect us. Importantly, our approach 
allows us to distinguish between 
these cases. We can verify whether the 
agent beliefs were simply not accurate 
enough (in which case, the agent is “in-
nocent”) or whether the agent knew 
about the danger and decided to pro-
ceed anyway.

One reason for our approach of veri-
fying what the agent chooses, based on 
its beliefs, involves the purely practical 
issue of trying to model the real world. 
We can never have a precise model of 
the real world and so can never say, for 
certain, what the effect of any action 
the system could choose might be. We 
might construct increasingly precise 
models approximating the real world, 
but they can clearly never be perfect.

A second reason is to treat the agent, 
to some extent, as we might treat a hu-
man. In assessing human behavior, 
we are happy if someone is competent 
and tries their best to achieve some-
thing. In particular, we consider some-
one as exhibiting “safe” behavior, if 
they have taken all the information 
they have access to into account and 
have competently made the safest de-
cision they consider possible. Just as 
with humans, an agent’s beliefs cap-
ture its partial knowledge about the 
real world. The agent’s beliefs might 
be wrong, or incorrect, but we only ver-

ify the agent never chooses a course of 
action that it believes will lead to a bad 
situation. The agent’s beliefs could 
be wrong and, of course, these beliefs 
might be refined/improved providing 
a better (more accurate) abstraction of 
the real situation.

We can contrast this with the tradi-
tional approach to formal (temporal) 
verification where we verify that bad 
things never happen and good things 
eventually happen. Instead, we only 
need to verify the agent believes these 
to be the case. This also has an impact 
upon the agent’s selection of inten-
tions/goals. As the agent is required 
to believe that no bad thing should 
occur, then it should never select an 
intention that it believes will lead to 
something bad.b

B (j ⇒ ◊ bad) ⇒ ¬Ij

So, if the agent believes that achieving 
j eventually leads to something bad, it 
will never intend to undertake j.

In the context of the verifications dis-
cussed in this article we use the property 
specification language that is provided 
with AJPF.19 This language is proposi-
tional linear temporal logic (PLTL), ex-
tended with specific modalities for 
checking the contents of the agent’s be-
lief base (B), goal set (G), actions taken 
(A) and intentions—goals that are asso-
ciated with a deed stack—(I).

This approach is clearly simpler 
as we can carry out verification with-
out comprehensive modeling of the 
real world. Thus, we verify the choices 
the agent has, rather than all the real-
world effects of those choices. Clearly, 
some parts of an agent’s reasoning are 
still triggered by the arrival of informa-
tion from the real world and we must 
deal with this appropriately. So, we first 
analyze the agent’s program to assess 
what these incoming perceptions can 
be and then explore, via the AJPF mod-
el checker, all possible combinations 
of these. This allows us to be agnostic 
about how the real world might actu-
ally behave and simply verify how the 
agent behaves no matter what informa-
tion it receives.

b Here, ‘B’ means “the agent believes,” ‘◊’ 
means “at some future moment in time,” ‘’ 
means “at all future moments in time,” and ‘I’ 
means “the agent intends."
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detect a survivor, at any location. It is 
important to note the robot could be 
wrong. Its sensors might not detect a 
survivor (for example, buried under 
rubble). However, this does not make 
the autonomous system incorrect; 
it has made the best decisions it can 
given the information it had.

When AJPF encounters a random 
choice in Java it treats it as a branch 
in the possible execution of the model 
and explores both branches—that is, it 
checks the property holds both in the 
situation where the perception was re-
ceived by the agent and the situation 
where the perception was not received. 
We can extend this to proving proper-
ties given simple assumptions about 
the behavior of the real world. These 
assumptions might be verified using 
other forms of analysis. Given the veri-
fication here, we might assume the 
robot’s sensors accurately detect the 
human, and that its motor control op-
erates correctly. This allows us to prove 
a stronger property that the agent will 
either find the human or the area is ac-
tually empty. These deductive aspects 
can be carried out by hand, or by using 
a suitable prover.

In more sophisticated scenarios 
we may want to check properties of 
groups of systems/agents working 
together. Imagine we now have an-
other robot, capable of lifting rubble. 
The two robots work as a team: the 
“searching” robot will find the hu-
man; the “lifting” robot will then 
come and remove the rubble. We 
will refer to the beliefs of the lift-
ing robot as Bl. Ideally, if these two 
work together as expected then we 
would like to show that eventually the 
lifter believes the human is free: ◊Bl 
free(human). However, this depends 
on several things, for example that 
any communication between the ro-
bots is reliable. We can check the be-
haviors of each agent separately, then 
combine these component properties 
with statements about communica-
tion, in order to verify whether the ro-
bots can cooperate.

We have been verifying the beliefs 
agents form about their environ-
ment in lieu of verifying actual facts. 
However, some choices we may legiti-
mately wish to verify depend upon the 
outcomes of previous choices being 
as expected. Suppose our lifting agent 

Furthermore, this allows us to use 
hypotheses that explicitly describe 
how patterns of perception may occur 
in reality. Taking such an approach 
clearly gives rise to a large state space 
because we explore all possible com-
binations of inputs to a particular 
agent. However it also allows us to 
investigate a multi-agent system in a 
compositional way. Using standard 
assume-guarantee (or rely-guarantee) 
approaches,25,28 we need only check 
the internal operation of a single 
agent at a time and can then combine 
the results from the model checking 
using deductive methods to prove the-
orems about the system as a whole.

Example scenarios
To exemplify this approach, we re-
view several different scenarios that 
have been implemented using Gwen-
dolen and verified formally using 
AJPF.17,37 In all these examples, the 
distinction in Figure 1 is central. The 
agent makes a decision, passes it on to 
the continuous control to implement 
the fine detail, and then monitors 
the activity. The agent only becomes 
involved again if a new situation is 
reached, if a new decision is required, 
or if the agent notices some irregular-
ity in the way the continuous control 
is working.

RoboCup Rescue Scenario. Imag-
ine an “urban search and rescue” 
scenario, of the form proposed in the 
RoboCup Rescue challenge,27 where 
autonomous robots are searching for 
survivors after some natural disaster 
(for example, an earthquake). A robot 
builds up beliefs about some area us-
ing sensor inputs. Based on these be-
liefs, the robot makes decisions about 
whether to search further. So, we 
might verify:17

 (B can_leave →  

 (B found ∨ B area_empty))

meaning if the searching robot be-
lieves it can leave the area, then it 
either believes a human is found or 
it believes the area is empty. We can 
verify this, but need to provide some 
abstraction of the sensor inputs. We 
model the environment by supply-
ing, randomly, all relevant incoming 
perceptions to the robot. In this case 
it either detects a survivor or does not 

does not deduce that the human is 
free (because it has moved some rub-
ble), but continues to lift rubble out 
of the way until its sensors tell it the 
area is clear. We cannot verify the ro-
bot will eventually believe the human 
is free since we cannot be sure it will 
ever believe the human is clear of rub-
ble. However, we can establish (and 
have verified) that assuming that, 
whenever the lifter forms an inten-
tion to free the human it will eventual-
ly believe the rubble is clear, then re-
ceipt of a message from the searching 
robot that a trapped human is located 
will eventually result in the lifter be-
lieving the human is free.

 (Il free(human)⇒ ◊Bl clear) ⇒
  (Bl receive(searcher,found) 

⇒ ◊Bl free(human))

While much simplification has oc-
curred here, it should be clear how we 
can carry out compositional verifica-
tion, mixing agent model checking and 
temporal/modal proof. The input from 
sensors can be modeled in various ways 
to provide increasingly refined abstrac-
tions of the real world. Crucially, we 
can assess the choices the agent makes 
based on its beliefs about its environ-
ment and not necessarily what actually 
happens in its environment.c

Autonomous Satellite Scenario. 
Consider a satellite orbiting the Earth 
and attempting to keep on a par-
ticular path.18 We want to establish  
B on_path, that is, the satellite be-
lieves it is always on the path. Yet, we 
cannot establish this since the satel-
lite’s agent cannot be sure it will never 
leave the path (since this would be an 
impossibly strong assumption about 
the environment).

However, we can show that
1. if it does leave its path, then the 

satellite will eventually recognize this; 
and

2. once this situation is recognized, 
the satellite will have a goal (that is, “in-
tends”) to move back onto the path as 
soon as possible.

In other words, if anything goes 
wrong, the satellite will recognize 

c Agent code written in Gwendolen for this 
scenario together with sample verified prop-
erties is available from the MCAPL reposi-
tory on Sourceforge.
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this and will try to fix it. It might fail, 
but all we can show is that it always 
tries to succeed. Note that (1) is a 
property that needs to be established 
concerning the satellite’s sensors, 
but (2) is indeed something we can 
verify of the agent.

Engineers and mathematicians 
have developed strong techniques for 
analyzing control systems and scenar-
ios and proving that a certain property 
holds. For example, we might sepa-
rately prove that a continuous path 
planning algorithm works and so cap-
ture that as a behavior in a simplified 
model of the environment (here, ‘A’ 
means “the agent executes the exter-
nal action of”):

A go_to_path ⇒ ◊on_path

Thus, if the agent executes some ac-
tion based on continuous path plan-
ning to reach some destination it will 
eventually reach that destination. 
Again, notice how the verification of 
this will be carried out using other 
methods; we will just use this assump-
tion during verification of the agent 
choices. As examples, we can verify 
several different properties:17

1. Using a simple model of the envi-
ronment where the satellite simply re-
ceives information about its position, 
we can verify that if, whenever an agent 
uses continuous planning to move to 
a path, it eventually believes it reaches 
the path and if, whenever it activates 
path maintenance procedures it always 
believes it remains on the path, then 
eventually the satellite always believes 
it is on the path:

(A go_to_path ⇒ ◊B on_path)∧
  (A maintain_path ⇒ (B on_path ⇒ 

B on_path))

	 											⇒◊B on_path

2. It is possible for venting from a 
broken fuel line to knock a satellite 
off path. In this situation the satellite 
first needs to correct the problem with 
the thruster (for example, by switching 
valves between fuel lines) and then cal-
culate a new path to its destination. So 
we can verify if the satellite notices it is 
no longer on the path then it will form 
an intention to return to the path:

(B¬ on_path ⇒◊I on_path)

Note: If the satellite receives a message 
requesting it to move to a different po-
sition during this process, then subtle 
interactions between the agent’s goals 
and plans can result in the satellite at-
tempting to move to two locations at 
once. Attempting (and failing) to verify 
that, under suitable conditions, the 
agent would always eventually get on to 
the path led to the detection of a num-
ber of bugs such as this.

3. If we relax our hypotheses, for 
instance to allow the possibility of un-
fixable errors in the thrusters, then we 
can still verify some properties. For in-
stance, eventually either the agent al-
ways believes it is on the path or it has 
informed ground control of a problem.

(◊(B on_path ∨ B informed(ground, problem))

Autonomous Unmanned Aircraft 
Scenario. Unmanned aircraft are set 
to undertake a wide variety of roles 
within civil airspace. For safety, and 
to obtain regulatory approval, un-
manned aircraft must be shown to 
be equivalent to manned aircraft and 
transparent to other airspace users.12 
In essence, any autonomous systems 
in control of an unmanned aircraft 
must be “human equivalent” or bet-
ter. Human equivalence is, clearly, 
difficult to specify. But perhaps a good 
place to start extracting desirable hu-
man behaviors is the statutory and 
regulatory documents designed to 
specify and exemplify ideal human 
behaviors, for example, the “Rules of 
the Air.”11 In order to begin to verify 
the human equivalence of unmanned 
aircraft autonomy, we identified a very 
small (but salient) subset of the Rules 
of the Air,37 including the following.

1. Detect and Avoid: “…when two 
aircraft are approaching head-on … and 
there is danger of collision, each shall 
alter its course to the right.” (Section 
2.4.10)

2. Navigation in Aerodrome Air-
space: “[An aircraft in the vicinity of an 
aerodrome must] make all turns to the 
left unless [told otherwise].” (Section 
2.4.12(1)(b))

3. Air Traffic Control Taxi Clearance: 
“An aircraft shall not taxi on the apron or 
the maneuvering area of an aerodrome 
without [permission].” (Section 2.7.40)

A decision-making agent for an un-
manned aircraft was written. A simu-

any autonomous 
system in control 
of an unmanned 
aircraft must be 
“human equivalent” 
or better. human 
equivalence is, 
clearly, difficult  
to specify.  
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lated environment was also developed 
using Gwendolen, consisting of: a 
sensor unit to generate alerts related 
to intruder aircraft and other air traf-
fic; a navigation manager to generate 
alerts about the current flight path; 
and an aerodrome air traffic control-
ler unit to simulate aerodrome air traf-
fic control. In order to formally verify 
the agent controlling the unmanned 
aircraft will follow the three rules here 
they were translated into the logical 
formulae and verified using the AJPF 
model checker:37

1. “It is always the case that if the 
agent believes that an object is approach-
ing head-on, then the agent believes that 
the direction of the aircraft is to the right.”

(B objectIsApproaching ⇒  

B direction(right))

2. “It is always the case that if the 
agent believes that it is changing head-
ing (that is, turning as part of naviga-
tion) and it believes it is near an aero-
drome and it believes it has not been told 
to do otherwise, then the agent will not 
believe that its direction is to the right.” 

� ⇒
B changeHeading∧
B nearAerodrome∧
¬B toldOtherwise

¬B direction (right)

3. “It always the case that if the agent 
believes it is taxiing, then it believes that 
taxi clearance has been given.”

(B taxiing ⇒ B taxiClearanceGiven)

Verifying such requirements not 
only shows the autonomous system 
makes choices consistent with these 
Rules of the Air, but can also high-
light inconsistencies within the rules 
themselves.37

summary and future Work
Once autonomous systems have a dis-
tinguished decision-making agent, 
then we can formally verify this agent’s 
behavior. In particular, we have devel-
oped model checking techniques for 
rational agents, allowing us to explore 
all possible choices the agent might 
make. Notably, the architecture and 
the logical framework together allow 
us to verify not only what the agent 
chooses, but why it chooses it.

A central theme of our analysis 
of autonomous systems, and of the 

agents that control them, is to verify 
what the agent tries to do. Without a 
complete model of the real environ-
ment, then we cannot say the system 
will always achieve something, but we 
can say it will always try (to the best 
of its knowledge/ability) to achieve it. 
This is not only as much as we can rea-
sonably say, it is entirely justifiable as 
we wish to distinguish accidental and 
deliberate danger. So, when consider-
ing safety, we cannot guarantee our 
system will never reach an unsafe situ-
ation, but we can guarantee the agent 
will never “knowingly” choose to 
move toward such a situation. Thus, 
all the choices of the agent/system 
are verified to ensure it never chooses 
goals/actions it believes will lead to 
bad situations. Crucially, this analy-
sis concerns just the agent’s internal 
decisions and so verification can be 
carried out without having to exam-
ine details of the real world. Thus, we 
verify the choices the agent has, rather 
than the (continuous/ uncertain) real-
world effect of those choices.

Overall, we can see this as a shift 
from considering whether a system is 
correct to considering two aspects of 
systems:

1. analysis of whether the (autono-
mous) system makes only correct 
choices, given what it believes about its 
environment, together with

2. analysis of how accurate and reli-
able the system’s beliefs are about its 
environment.

We have considered (1) in this arti-
cle. However, (2) may be discrete, if ab-
stractions are used, or continuous and 
uncertain, requiring more complex 
analytical techniques.

This work is only just at the begin-
ning, and the theme of verifying what 
autonomous systems try to do, rather 
than the effects they have, has much 
potential. However, there are many 
avenues of future work, the foremost 
currently being incorporation of un-
certainty and probability. So, rather 
than verifying the agent never chooses 
a course of action it believes will lead to 
a bad situation, we would like to verify 
the agent never chooses a course of ac-
tion that it believes is more likely to reach 
a “bad” situation than its other options.

In addition, there are clearly various 
different forms of “bad” situation, with 
different probabilities and measures 

a central theme of  
our analysis of 
autonomous 
systems, and  
of the agents that 
control them,  
is to verify what  
the agent tries to do. 
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concerning their seriousness. Again, 
these measures and probabilities 
should be incorporated into the prop-
erties verified.

Similarly, there are important as-
pects of truly autonomous behavior, 
such as the ability to plan and learn 
that we have not considered in any 
detail. We are interested in explor-
ing how an agent might reason about 
new plans, for instance, to ensure 
their execution did not violate any 
important properties and so provide 
guarantees about the agents overall 
behavior even in the face of changing 
internal processes.

It is also important to assess if, and 
how, other approaches to the formal-
ization of autonomous behaviors, for 
example, Arkin,1 can be involved in our 
verification.

Toward Certification. Certification 
can be seen as the process of negotiat-
ing with a certain legal authority in or-
der to convince them that relevant safe-
ty requirements have been explored 
and mitigated in an appropriate way. 
As part of this process, various items 
of evidence are provided to advance 
the applicant’s safety argument. This 
approach is widely used for the certifi-
cation of real systems, from aircraft to 
safety critical software.

Clearly, we are mainly concerned 
with the certification of autonomous 
systems. As noted, systems might 
generally be analyzed with respect to 
the question, “Is it safe?” If there is 
a human involved at some point, for 
example, a pilot or controller, then 
some view must be taken on whether 
the human acts to preserve safety or 
not. For example, within aircraft cer-
tification arguments, it is usually as-
sumed that a pilot, given appropriate 
information and capabilities, will act 
to preserve the aircraft’s safety. Yet 
in a safety analysis, we rarely go any 
further. Essentially, the human is as-
sumed to be benevolent.

Our approach provides a mecha-
nism for analyzing the agent choices 
in the case of autonomous systems. 
Thus, while a standard safety argu-
ment might skip over human choices, 
assuming the pilot/driver/operator 
will endeavor to remain safe, we can 
formally verify the agent indeed tries 
its best to remain safe. In this way, our 
approach allows wider analysis—while 

the intentions and choices of a pilot/
driver/operator must be assumed to 
be good, we can actually examine the 
intentions and choices of an autono-
mous system in detail.
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