
84 commUnications of thE acm | september 2013 | vol. 56 | no. 9

review articles

I
l

l
u

S
t

r
a

t
I

o
n

 b
y

 a
l

I
C

I
a

 k
u

b
I

S
t

a
/a

n
D

r
I

J
 b

o
r

y
S

 a
S

S
o

C
I

a
t

e
S

in This arTiCle we consider the question: How
should autonomous systems be analyzed? in
particular, we describe how the confluence of
developments in two areas—autonomous systems
architectures and formal verification for rational
agents—can provide the basis for the formal
verification of autonomous systems behaviors.

We discuss an approach to this question that involves:
1. Modeling the behavior and describing the

interface (input/output) to an agent in charge of
making decisions within the system;

2. Model checking the agent within an unrestricted
environment representing the “real world” and those
parts of the systems external to the agent, in order to
establish some property, j;

3. Utilizing theorems or analysis of the
environment, in the form of logical statements (where
necessary), to derive properties of the larger system;
and

4. if the agent is refined, modify (1), but if
environmental properties are clarified, modify (3).

Autonomous systems are now being
deployed in safety, mission, or busi-
ness critical scenarios, which means
a thorough analysis of the choices the
core software might make becomes
crucial. But, should the analysis and
verification of autonomous software be
treated any differently than traditional
software used in critical situations? Or
is there something new going on here?

Autonomous systems are systems
that decide for themselves what to do
and when to do it. Such systems might
seem futuristic, but they are closer
than we might think. Modern house-
hold, business, and industrial systems
increasingly incorporate autonomy.
There are many examples, all varying
in the degree of autonomy used, from
almost pure human control to fully au-
tonomous activities with minimal hu-
man interaction. Application areas are
broad, ranging from healthcare moni-
toring to autonomous vehicles.

But what are the reasons for this in-
crease in autonomy? Typically, autono-
my is used in systems that:

1. must be deployed in remote envi-
ronments where direct human control
is infeasible;

2. must be deployed in hostile envi-
ronments where it is dangerous for hu-
mans to be nearby, and so difficult for
humans to assess the possibilities;

3. involve activity that is too lengthy

Verifying
autonomous
systems

Doi:10.1145/2494558

Exploring autonomous systems
and the agents that control them.

BY michaEL fishER, LoUisE DEnnis, anD matt WEBstER

 key insights
 autonomous systems are systems that

decide for themselves what to do.
they are currently making large impacts
in a variety of applications, including
driverless cars, unmanned aircraft,
robotics, and remote monitoring.

 a key issue for autonomous systems
is determining their safety and
trustworthiness: how can we be sure
the autonomous systems will be safe
and reliable? methodologies to enable
certification of such systems are
urgently needed.

 the choices made by agent-based
autonomous systems can be formally
verified to provide evidence for
certification. sample applications include
search and rescue robots, satellite
systems, and unmanned aircraft.

september 2013 | vol. 56 | no. 9 | commUnications of thE acm 85

86 commUnications of thE acm | september 2013 | vol. 56 | no. 9

review articles

to be analyzed. But how shall we de-
scribe these new entities? A very use-
ful abstraction for capturing such au-
tonomous behavior within complex,
dynamic systems turns out to be the
concept of an agent.22 Since the agent
concept came into prominence in the
1980s, there has been vast develop-
ment within both academia and indus-
try.4,14,20,34 It has become clear this agent
metaphor is very useful for capturing
many practical situations involving
complex systems comprising flexible,
autonomous, and distributed compo-
nents. In essence, agents must funda-
mentally be capable of flexible autono-
mous action.38

However, it turns out the “agent”
concept on its own is still not enough!
Systems controlled by neural networks,
genetic algorithms, and complex con-
trol systems, among others, can all
act autonomously and thus be called
agents, yet the reasons for their actions
are often quite opaque. Because of this,
such systems are very difficult to devel-
op, control, and analyze.

So, the concept of a rational agent
has become more popular. Again,
there are many variations9,33,39 but we
consider this to be an agent that has
explicit reasons for making the choices
it does, and should be able to explain
these if necessary.

Therefore, a rational agent can be
examined to discover why it chose a
certain course of action. Such agents
are often programmed and analyzed
by describing their motivations (for
example, “goals”), information (for
example, “knowledge”), and how
these change over time (as we will dis-
cuss later). Rational agents can adapt
their autonomous behavior to cater
for the dynamic aspects of their en-
vironment, their requirements and
their knowledge. Typically, they can
also modify their decision-making
following interactions with their en-
vironment. The predominant form
of rational agent architecture is that
provided through the Beliefs, Desires,
and Intentions (BDI) approach.32,33
Here, the beliefs represent the agent’s
(probably incomplete, possibly incor-
rect) information about itself, other
agents, and its environment, desires
represent the agent’s long-term goals,
and intentions represent the goals the
agent is actively pursuing.

and/or repetitive to be conducted suc-
cessfully by humans; or

4. need to react much more quickly
than humans can.

However, it may actually be cheaper
to use an autonomous system. After all,
humans need training, monitoring,
safe environments, medical support,
legal oversight, and so on.

Examples. There are many autono-
mous systems that have either been
deployed or are in development. We
clearly cannot survey them all so only
provide a broad selection noted here.

Robotics and robot swarms. As we
move from the restricted manufactur-
ing robots seen in factories toward ro-
bots in the home and robot helpers for
the elderly, so the level of autonomy re-
quired increases.

Human-robot teamwork. Once we
move beyond just directing robots to
undertake tasks, they become robotic
companions. In the not too distant fu-
ture, we can foresee teams of humans
and robots working together but mak-
ing their decisions individually and au-
tonomously.

Pervasive systems, intelligent moni-
toring, among others. As sensors
and communications are deployed
throughout our physical environment
and in many buildings, so the opportu-
nity to bring together a multiplicity of
sensor inputs has led to autonomous
decision-making components that
can, for instance, raise alarms and
even take decisive action.

Autonomous road vehicles. Also
known as “driverless cars,” autono-
mous road vehicles have progressed
beyond initial technology assessments
(for example, DARPA Grand Challeng-
es) to the first government-licensed au-
tonomous cars.35

As we can see from these examples,
autonomous systems are increasingly
being used in safety/mission/busi-
ness critical areas. Consequently, they
need rigorous analysis. One traditional
way to achieve this, at least in non-
autonomous systems, is to use formal
verification. While applying formal
verification techniques to autonomous
systems can be difficult, developments
in autonomous system architectures
are opening up new possibilities.

Autonomous Systems Architectures.
Many autonomous systems, ranging
over unmanned aircraft, robotics, sat-

ellites and even purely software appli-
cations, have a similar internal struc-
ture, namely layered architectures23
as summarized in Figure 1. Although
purely connectionist/sub-symbolic ar-
chitectures remain prevalent in some
areas, such as robotics,10 there is a
broad realization that separating out
the important/difficult choices into an
identifiable entity can be very useful for
development, debugging, and analysis.
While such layered architectures have
been investigated for many years3,23

they appear increasingly common in
autonomous systems.

Notice how the system in Figure 1 is
split into real-world interactions, con-
tinuous control systems, and discon-
tinuous control. For example, a typi-
cal unmanned aircraft system might
incorporate an aircraft, a set of control
systems encapsulated within an auto-
pilot, and a high-level decision-maker
that makes the key choices. Once a
destination has been decided, the
continuous dynamic control, in the
form of the autopilot, will be able to fly
there. The intelligence only becomes
involved if either an alternative des-
tination is chosen, or if some fault or
unexpected situation occurs.

But what is this intelligent decision-
making component? In the past this
has often been conflated with the dy-
namic control elements, the whole be-
ing described using a large, possibly
hierarchical, control system, genetic
algorithm, or neural network. Howev-
er, architectures are increasingly being
deployed in which the autonomous, in-
telligent decision-making component
is captured as an “agent.”

Agents as Autonomous Decision
Makers. The development and analysis
of autonomous systems, particularly
autonomous software, is different to
traditional software in one crucial as-
pect. In designing, analyzing, or moni-
toring “normal” software we typically
care about

 ˲ what the software does, and
 ˲ when the software does it.

Since autonomous software has to
make its own decisions, it is often vi-
tal to know not only what the software
does and when it does it, but also

 ˲ why the software chooses to do it.
This requirement—describing why a
system chooses one course of action
over another—provides new entities

review articles

september 2013 | vol. 56 | no. 9 | commUnications of thE acm 87

Before we consider how we might
verify autonomous systems and, in par-
ticular the rational agent that makes
the core decisions, we first recap for-
mal verification. In particular we will
motivate and outline the tools and
techniques for the agent verification
we have developed.

formal Verification
So, we are clear now that autonomous
systems are important, that their key
decision-making components can
usefully be represented through the
rational agent concept, and their in-
creasing use in critical areas means
a deep and comprehensive form of
analysis will be desirable. These con-
cerns have led us to use formal logics
for describing the required properties
of our rational agents and then formal
verification techniques to analyze how
well the actual agents match these re-
quirements. Formal verification en-
compasses a range of techniques that
use mathematical and logical methods
to assess the behavior of systems. The
most common approach is to exhaus-
tively assess all the behaviors of a sys-
tem against a logical specification.13
But, how do we logically specify what
an agent should do? In particular, how
do we specify what decisions an agent
can make and what motivations it has
for making those decisions?

Logical Agent Specification. Logics
provide a well-understood and unam-
biguous formalism for describing the
behaviors, requirements, and proper-

ties of systems. They have clear syntax
and semantics, well-researched struc-
tural properties, and comparative ex-
pressive power. Importantly, from our
viewpoint, there are very many formal
logics. This allows us to choose a logic
appropriate to the types of properties
and level of abstraction we require;
for example:

 ˲ dynamic communicating systems
→ temporal logics

 ˲ information → modal logics of
knowledge

 ˲ autonomous systems → modal log-
ics of motivation

 ˲ situated systems → modal logics of
belief and context

 ˲ timed systems → real-time tempo-
ral logics

 ˲ uncertain systems → probabilistic
logics

 ˲ cooperative systems → coopera-
tion/coalition logics

So, we can usually choose logics
that have the properties we require.
Crucially, we can even construct new
logics as the combinations of simpler
logics. This turns out to be very useful
for developing logical theories for ra-
tional agents as these typically consist
of several dimensions:

Dynamism—temporal or dynamic
logic;

Information—modal/probabilistic
logics of belief or knowledge; and

Motivation—modal logics of goals,
intentions, desires.

For example, the BDI approach
combines:31 a (branching) temporal/

dynamic logic; a (KD45) modal logic of
belief; a (KD) modal logic of desire; and
a (KD) modal logic of intention. (For
detail on different modal varieties, see
Blackburn.2)

Formal Agent Verification. Once
we have such a logical requirement,
together with an autonomous system
architecture wherein rational agent(s)
encapsulate high-level decision-mak-
ing, we have many options for carrying
out formal verification, ranging across
model-checking,13 runtime verifica-
tion,24 and formal proof.21

While there are also several ap-
proaches to agent verification,7,29 the
particular approach we adopt involves
checking a BDI logical requirement
against all practical executions of a
program. This is termed the model
checking of programs36 and depends
on being able to extract all these pos-
sible program executions, for exam-
ple through symbolic execution. This
contrasts to many model checking ap-
proaches in which an abstract model
of the program must first be construct-
ed before it can be checked against
a property. In the case of Java, model
checking of programs is feasible as a
modified virtual machine can be used
to manipulate the program execu-
tions.26 It is this last approach to agent
verification we adopt. In order to do so,
we must also give a very brief overview
of agent programming languages.

Programming Rational Agents. We
have seen how the rational agent ap-
proach provides the key model for de-

figure 1. typical hybrid autonomous system architecture—with suitable analysis techniques noted.

Dis-continuous ‘Intelligent’ Choices
High-level Reasoning, Cooperation,

Planning/Prediction, Human-Interaction, etc

Continuous Dynamic Control
Neural Networks, Genetic Algorithms,

Control Systems, Market Algorithms, etc

‘Real’ World Interactions
Delivery Systems, Propulsion,

Sensors, Actuators, etc

Logical Abstraction and
Formal Verification of

Autonomous Decisions

Mathematical Analysis
together with Testing in
Simulated Environments

Testing in
‘Real’ Environments

AGENT

CONTROL

HARDWARE

88 commUnications of thE acm | september 2013 | vol. 56 | no. 9

review articles

scribing autonomous decision-making.
But, how can rational agents be pro-

grammed? Typically, programming
languages for rational agents provide:

 ˲ a set of beliefs, representing infor-
mation the agent has;

 ˲ a set of goals, representing motiva-
tions the agent has;

 ˲ a set of rules/plans, representing
the agent’s mechanisms for achieving
goals;

 ˲ a set of actions, corresponding to
the agent’s external acts (delegated to
other parts of the system); and

 ˲ deliberation mechanisms for
deciding between alternative goals/
plans/actions.

A typical agent rule/plan in such a
language is:

Goal(eat) : Belief(has_money),

 Belief(not has_food)

 <- Goal(go_to_shop),

 Action(buy_food),

 Goal(go_home),

 Action(eat),

 +Belief(eaten).

The meaning of this rule is that, if the
agent’s goal is to “eat” and if the agent
believes it has money but does not have
food, then it will set up a new goal to go
to the shop. Once that goal has been
achieved, it will buy some food (del-
egated to a subsystem) and then set up
a new goal to get home. Once at home
it will eat and then update its beliefs to
record that it believes it has eaten.

Such languages are essentially rule-
based, goal-reduction languages, with
the extra aspect that deliberation, the
ability to change between goals and
change between plan selection strate-
gies at any time, is a core component.
Almost all of these languages are im-
plemented on top of Java, and the large
number of agent platforms now avail-
able5,6 has meant the industrial uptake
of this technology is continually in-
creasing. The key ancestor of most of
today’s agent programming languages
is AgentSpeak,30 which introduced
the programming of BDI agents using
a modification of Logic Programming.
Of the many descendants of Agent-
Speak, we use Gwendolen,19 which
is based upon Jason,8 for programming
our rational agents. Consequently, it is
such programs that we directly verify.

A full operational semantics for

Gwendolen is presented in Dennis
and Farwer.15 Key components of a
Gwendolen agent are a set, Σ, of be-
liefs that are ground first order formu-
lae and a set, I, of intentions that are
stacks of deeds associated with some
event. Deeds include (among other
things) the addition or removal of be-
liefs, the establishment of new goals,
and the execution of primitive actions.
Gwendolen is event driven and events
include the acquisition of new beliefs
(typically via perception), messages,
and goals.

A programmer supplies plans that
describe how to react to events by ex-
tending the deed stack of the inten-
tion associated with the event. The
main task of a programmer working in
Gwendolen is defining the system’s
initial beliefs and plans; these then
describe the dynamic behavior of the
agent. A Gwendolen agent executes
within a reasoning cycle that includes
the addition of beliefs from percep-
tion, the processing of messages, the
selection of intentions and plans, and
the execution of deeds.

Model Checking Agent Programs.
We begin with program model check-
ing, specifically the Java PathFinder 2
system (JPF2), an open source explic-
it-state model checker for Java pro-
grams.26,36 Since the vast majority of
agent languages are built on top of
Java, we have extended JPF2 to the
Agent JPF (AJPF) system19 incorporat-
ing the checking of agent properties.
However, in order to achieve this the
semantics of the agent constructs
used must be precisely defined. Such
semantics can be given using the
Agent Infrastructure Layer (AIL),16 a
toolkit for providing formal semantics
for agent languages (in particular BDI
languages) built on Java. Thus, AJPF is
essentially JPF2 with the theory of AIL
built in; see Dennis et al.19

The whole verification and pro-
gramming system is called MCAPL and
is freely available on Sourceforge.a As
the model checker is based on JPF2,
the modified virtual machine is used to
exhaustively explore all executions of
the system. As each one is explored it is
checked against the required property.
If any violation is found, that execution
is returned as a counterexample.

a http://cgi.csc.liv.ac.uk/MCAPL/

the key ancestor
of most of today’s
agent programming
languages is
AgentSpeak,
which introduced
the programming
of BDi agents
using a modification
of Logic
Programming.

review articles

september 2013 | vol. 56 | no. 9 | commUnications of thE acm 89

The Gwendolen language, men-
tioned earlier, is itself programmed
using the AIL and so Gwendolen pro-
grams can be model checked directly
via AJPF.

Verifying autonomous systems
We now return to our original ques-
tion: How do we go about verifying
autonomous systems? Recall the archi-
tecture in Figure 1. For the traditional
parts there are well known, recognized,
and trusted approaches, such as test-
ing for real-world interaction and
analytic techniques for continuous dy-
namics. But what about the agent that
makes high-level, intelligent choices
about what to do? As we will explain, it
is our approach to use formal verifica-
tion of the potential choices the agent
can take. This is feasible since, while
the space of possibilities covered by
the continuous dynamics is huge (and
potentially infinite), the high-level de-
cision-making within the agent typical-
ly involves navigation within a discrete
state space. The agent rarely, if ever,
bases its choices directly on the exact
values of sensors, for example. It might
base its decision on values reaching a
certain threshold, but relies on its con-
tinuous dynamics to alert it of this, and
such alerts are typically binary valued
(either the threshold has been reached
or it has not). Thus, we propose the
mixture of techniques in Figure 1 to
provide the basis for the formal verifi-
cation of autonomous systems.

Verifying Autonomous Choices.
How shall we verify autonomous de-
cision-making? Our main proposal is
to use program verification to demon-
strate that the core rational agent al-
ways endeavors to act in line with our
requirements and never deliberately
chooses options it believes will lead
to bad situations (for example, ones
where the agent believes something is
unsafe). Thus, we do not try to verify all
the real-world outcomes of the agent’s
choices, but instead verify the choices
themselves. In particular, we verify the
agent always tries to achieve its goals/
targets to the best of its knowledge/
beliefs/ability. Thus, the agent targets
situations it believes to be good and
avoids situations it believes to be bad.
Consequently, any guarantees here are
about the autonomous system’s deci-
sions, not about its overall effects.

This lets us distinguish between a
rational agent knowingly choosing a
dangerous/insecure option and a ratio-
nal agent unknowingly doing so based
on an imperfect representation of the
actual environment. Indeed, we argue
the most crucial aspect of autonomous
system verification, for example con-
cerning safety, is to identify the agent
never deliberately makes a choice it be-
lieves to be unsafe. We wish to ensure
that if an unsafe situation arises it is
because of unforeseen consequences
of an agent’s actions (that is, its model
of the environment was too weak), not
because the agent chose an option
known to lead to a bad outcome.

Aside: Accidental or deliberate? Are
all dangerous situations equally bad?
What if a robot deliberately took an
action that it knew would cause dan-
ger? Is this more serious than a robot
accidentally causing this danger? This
distinction can be important, not least
to the public, and if a robot is being
“vindictive,” then few safeguards can
protect us. Importantly, our approach
allows us to distinguish between
these cases. We can verify whether the
agent beliefs were simply not accurate
enough (in which case, the agent is “in-
nocent”) or whether the agent knew
about the danger and decided to pro-
ceed anyway.

One reason for our approach of veri-
fying what the agent chooses, based on
its beliefs, involves the purely practical
issue of trying to model the real world.
We can never have a precise model of
the real world and so can never say, for
certain, what the effect of any action
the system could choose might be. We
might construct increasingly precise
models approximating the real world,
but they can clearly never be perfect.

A second reason is to treat the agent,
to some extent, as we might treat a hu-
man. In assessing human behavior,
we are happy if someone is competent
and tries their best to achieve some-
thing. In particular, we consider some-
one as exhibiting “safe” behavior, if
they have taken all the information
they have access to into account and
have competently made the safest de-
cision they consider possible. Just as
with humans, an agent’s beliefs cap-
ture its partial knowledge about the
real world. The agent’s beliefs might
be wrong, or incorrect, but we only ver-

ify the agent never chooses a course of
action that it believes will lead to a bad
situation. The agent’s beliefs could
be wrong and, of course, these beliefs
might be refined/improved providing
a better (more accurate) abstraction of
the real situation.

We can contrast this with the tradi-
tional approach to formal (temporal)
verification where we verify that bad
things never happen and good things
eventually happen. Instead, we only
need to verify the agent believes these
to be the case. This also has an impact
upon the agent’s selection of inten-
tions/goals. As the agent is required
to believe that no bad thing should
occur, then it should never select an
intention that it believes will lead to
something bad.b

B (j ⇒ ◊ bad) ⇒ ¬Ij

So, if the agent believes that achieving
j eventually leads to something bad, it
will never intend to undertake j.

In the context of the verifications dis-
cussed in this article we use the property
specification language that is provided
with AJPF.19 This language is proposi-
tional linear temporal logic (PLTL), ex-
tended with specific modalities for
checking the contents of the agent’s be-
lief base (B), goal set (G), actions taken
(A) and intentions—goals that are asso-
ciated with a deed stack—(I).

This approach is clearly simpler
as we can carry out verification with-
out comprehensive modeling of the
real world. Thus, we verify the choices
the agent has, rather than all the real-
world effects of those choices. Clearly,
some parts of an agent’s reasoning are
still triggered by the arrival of informa-
tion from the real world and we must
deal with this appropriately. So, we first
analyze the agent’s program to assess
what these incoming perceptions can
be and then explore, via the AJPF mod-
el checker, all possible combinations
of these. This allows us to be agnostic
about how the real world might actu-
ally behave and simply verify how the
agent behaves no matter what informa-
tion it receives.

b Here, ‘B’ means “the agent believes,” ‘◊’
means “at some future moment in time,” ‘’
means “at all future moments in time,” and ‘I’
means “the agent intends."

90 commUnications of thE acm | september 2013 | vol. 56 | no. 9

review articles

detect a survivor, at any location. It is
important to note the robot could be
wrong. Its sensors might not detect a
survivor (for example, buried under
rubble). However, this does not make
the autonomous system incorrect;
it has made the best decisions it can
given the information it had.

When AJPF encounters a random
choice in Java it treats it as a branch
in the possible execution of the model
and explores both branches—that is, it
checks the property holds both in the
situation where the perception was re-
ceived by the agent and the situation
where the perception was not received.
We can extend this to proving proper-
ties given simple assumptions about
the behavior of the real world. These
assumptions might be verified using
other forms of analysis. Given the veri-
fication here, we might assume the
robot’s sensors accurately detect the
human, and that its motor control op-
erates correctly. This allows us to prove
a stronger property that the agent will
either find the human or the area is ac-
tually empty. These deductive aspects
can be carried out by hand, or by using
a suitable prover.

In more sophisticated scenarios
we may want to check properties of
groups of systems/agents working
together. Imagine we now have an-
other robot, capable of lifting rubble.
The two robots work as a team: the
“searching” robot will find the hu-
man; the “lifting” robot will then
come and remove the rubble. We
will refer to the beliefs of the lift-
ing robot as Bl. Ideally, if these two
work together as expected then we
would like to show that eventually the
lifter believes the human is free: ◊Bl
free(human). However, this depends
on several things, for example that
any communication between the ro-
bots is reliable. We can check the be-
haviors of each agent separately, then
combine these component properties
with statements about communica-
tion, in order to verify whether the ro-
bots can cooperate.

We have been verifying the beliefs
agents form about their environ-
ment in lieu of verifying actual facts.
However, some choices we may legiti-
mately wish to verify depend upon the
outcomes of previous choices being
as expected. Suppose our lifting agent

Furthermore, this allows us to use
hypotheses that explicitly describe
how patterns of perception may occur
in reality. Taking such an approach
clearly gives rise to a large state space
because we explore all possible com-
binations of inputs to a particular
agent. However it also allows us to
investigate a multi-agent system in a
compositional way. Using standard
assume-guarantee (or rely-guarantee)
approaches,25,28 we need only check
the internal operation of a single
agent at a time and can then combine
the results from the model checking
using deductive methods to prove the-
orems about the system as a whole.

Example scenarios
To exemplify this approach, we re-
view several different scenarios that
have been implemented using Gwen-
dolen and verified formally using
AJPF.17,37 In all these examples, the
distinction in Figure 1 is central. The
agent makes a decision, passes it on to
the continuous control to implement
the fine detail, and then monitors
the activity. The agent only becomes
involved again if a new situation is
reached, if a new decision is required,
or if the agent notices some irregular-
ity in the way the continuous control
is working.

RoboCup Rescue Scenario. Imag-
ine an “urban search and rescue”
scenario, of the form proposed in the
RoboCup Rescue challenge,27 where
autonomous robots are searching for
survivors after some natural disaster
(for example, an earthquake). A robot
builds up beliefs about some area us-
ing sensor inputs. Based on these be-
liefs, the robot makes decisions about
whether to search further. So, we
might verify:17

 (B can_leave →

 (B found ∨ B area_empty))

meaning if the searching robot be-
lieves it can leave the area, then it
either believes a human is found or
it believes the area is empty. We can
verify this, but need to provide some
abstraction of the sensor inputs. We
model the environment by supply-
ing, randomly, all relevant incoming
perceptions to the robot. In this case
it either detects a survivor or does not

does not deduce that the human is
free (because it has moved some rub-
ble), but continues to lift rubble out
of the way until its sensors tell it the
area is clear. We cannot verify the ro-
bot will eventually believe the human
is free since we cannot be sure it will
ever believe the human is clear of rub-
ble. However, we can establish (and
have verified) that assuming that,
whenever the lifter forms an inten-
tion to free the human it will eventual-
ly believe the rubble is clear, then re-
ceipt of a message from the searching
robot that a trapped human is located
will eventually result in the lifter be-
lieving the human is free.

 (Il free(human)⇒ ◊Bl clear) ⇒
 (Bl receive(searcher,found)

⇒ ◊Bl free(human))

While much simplification has oc-
curred here, it should be clear how we
can carry out compositional verifica-
tion, mixing agent model checking and
temporal/modal proof. The input from
sensors can be modeled in various ways
to provide increasingly refined abstrac-
tions of the real world. Crucially, we
can assess the choices the agent makes
based on its beliefs about its environ-
ment and not necessarily what actually
happens in its environment.c

Autonomous Satellite Scenario.
Consider a satellite orbiting the Earth
and attempting to keep on a par-
ticular path.18 We want to establish
B on_path, that is, the satellite be-
lieves it is always on the path. Yet, we
cannot establish this since the satel-
lite’s agent cannot be sure it will never
leave the path (since this would be an
impossibly strong assumption about
the environment).

However, we can show that
1. if it does leave its path, then the

satellite will eventually recognize this;
and

2. once this situation is recognized,
the satellite will have a goal (that is, “in-
tends”) to move back onto the path as
soon as possible.

In other words, if anything goes
wrong, the satellite will recognize

c Agent code written in Gwendolen for this
scenario together with sample verified prop-
erties is available from the MCAPL reposi-
tory on Sourceforge.

review articles

september 2013 | vol. 56 | no. 9 | commUnications of thE acm 91

this and will try to fix it. It might fail,
but all we can show is that it always
tries to succeed. Note that (1) is a
property that needs to be established
concerning the satellite’s sensors,
but (2) is indeed something we can
verify of the agent.

Engineers and mathematicians
have developed strong techniques for
analyzing control systems and scenar-
ios and proving that a certain property
holds. For example, we might sepa-
rately prove that a continuous path
planning algorithm works and so cap-
ture that as a behavior in a simplified
model of the environment (here, ‘A’
means “the agent executes the exter-
nal action of”):

A go_to_path ⇒ ◊on_path

Thus, if the agent executes some ac-
tion based on continuous path plan-
ning to reach some destination it will
eventually reach that destination.
Again, notice how the verification of
this will be carried out using other
methods; we will just use this assump-
tion during verification of the agent
choices. As examples, we can verify
several different properties:17

1. Using a simple model of the envi-
ronment where the satellite simply re-
ceives information about its position,
we can verify that if, whenever an agent
uses continuous planning to move to
a path, it eventually believes it reaches
the path and if, whenever it activates
path maintenance procedures it always
believes it remains on the path, then
eventually the satellite always believes
it is on the path:

(A go_to_path ⇒ ◊B on_path)∧
 (A maintain_path ⇒ (B on_path ⇒

B on_path))

	 											⇒◊B on_path

2. It is possible for venting from a
broken fuel line to knock a satellite
off path. In this situation the satellite
first needs to correct the problem with
the thruster (for example, by switching
valves between fuel lines) and then cal-
culate a new path to its destination. So
we can verify if the satellite notices it is
no longer on the path then it will form
an intention to return to the path:

(B¬ on_path ⇒◊I on_path)

Note: If the satellite receives a message
requesting it to move to a different po-
sition during this process, then subtle
interactions between the agent’s goals
and plans can result in the satellite at-
tempting to move to two locations at
once. Attempting (and failing) to verify
that, under suitable conditions, the
agent would always eventually get on to
the path led to the detection of a num-
ber of bugs such as this.

3. If we relax our hypotheses, for
instance to allow the possibility of un-
fixable errors in the thrusters, then we
can still verify some properties. For in-
stance, eventually either the agent al-
ways believes it is on the path or it has
informed ground control of a problem.

(◊(B on_path ∨ B informed(ground, problem))

Autonomous Unmanned Aircraft
Scenario. Unmanned aircraft are set
to undertake a wide variety of roles
within civil airspace. For safety, and
to obtain regulatory approval, un-
manned aircraft must be shown to
be equivalent to manned aircraft and
transparent to other airspace users.12
In essence, any autonomous systems
in control of an unmanned aircraft
must be “human equivalent” or bet-
ter. Human equivalence is, clearly,
difficult to specify. But perhaps a good
place to start extracting desirable hu-
man behaviors is the statutory and
regulatory documents designed to
specify and exemplify ideal human
behaviors, for example, the “Rules of
the Air.”11 In order to begin to verify
the human equivalence of unmanned
aircraft autonomy, we identified a very
small (but salient) subset of the Rules
of the Air,37 including the following.

1. Detect and Avoid: “…when two
aircraft are approaching head-on … and
there is danger of collision, each shall
alter its course to the right.” (Section
2.4.10)

2. Navigation in Aerodrome Air-
space: “[An aircraft in the vicinity of an
aerodrome must] make all turns to the
left unless [told otherwise].” (Section
2.4.12(1)(b))

3. Air Traffic Control Taxi Clearance:
“An aircraft shall not taxi on the apron or
the maneuvering area of an aerodrome
without [permission].” (Section 2.7.40)

A decision-making agent for an un-
manned aircraft was written. A simu-

any autonomous
system in control
of an unmanned
aircraft must be
“human equivalent”
or better. human
equivalence is,
clearly, difficult
to specify.

92 commUnications of thE acm | september 2013 | vol. 56 | no. 9

review articles

lated environment was also developed
using Gwendolen, consisting of: a
sensor unit to generate alerts related
to intruder aircraft and other air traf-
fic; a navigation manager to generate
alerts about the current flight path;
and an aerodrome air traffic control-
ler unit to simulate aerodrome air traf-
fic control. In order to formally verify
the agent controlling the unmanned
aircraft will follow the three rules here
they were translated into the logical
formulae and verified using the AJPF
model checker:37

1. “It is always the case that if the
agent believes that an object is approach-
ing head-on, then the agent believes that
the direction of the aircraft is to the right.”

(B objectIsApproaching ⇒

B direction(right))

2. “It is always the case that if the
agent believes that it is changing head-
ing (that is, turning as part of naviga-
tion) and it believes it is near an aero-
drome and it believes it has not been told
to do otherwise, then the agent will not
believe that its direction is to the right.”

� ⇒
B changeHeading∧
B nearAerodrome∧
¬B toldOtherwise

¬B direction (right)

3. “It always the case that if the agent
believes it is taxiing, then it believes that
taxi clearance has been given.”

(B taxiing ⇒ B taxiClearanceGiven)

Verifying such requirements not
only shows the autonomous system
makes choices consistent with these
Rules of the Air, but can also high-
light inconsistencies within the rules
themselves.37

summary and future Work
Once autonomous systems have a dis-
tinguished decision-making agent,
then we can formally verify this agent’s
behavior. In particular, we have devel-
oped model checking techniques for
rational agents, allowing us to explore
all possible choices the agent might
make. Notably, the architecture and
the logical framework together allow
us to verify not only what the agent
chooses, but why it chooses it.

A central theme of our analysis
of autonomous systems, and of the

agents that control them, is to verify
what the agent tries to do. Without a
complete model of the real environ-
ment, then we cannot say the system
will always achieve something, but we
can say it will always try (to the best
of its knowledge/ability) to achieve it.
This is not only as much as we can rea-
sonably say, it is entirely justifiable as
we wish to distinguish accidental and
deliberate danger. So, when consider-
ing safety, we cannot guarantee our
system will never reach an unsafe situ-
ation, but we can guarantee the agent
will never “knowingly” choose to
move toward such a situation. Thus,
all the choices of the agent/system
are verified to ensure it never chooses
goals/actions it believes will lead to
bad situations. Crucially, this analy-
sis concerns just the agent’s internal
decisions and so verification can be
carried out without having to exam-
ine details of the real world. Thus, we
verify the choices the agent has, rather
than the (continuous/ uncertain) real-
world effect of those choices.

Overall, we can see this as a shift
from considering whether a system is
correct to considering two aspects of
systems:

1. analysis of whether the (autono-
mous) system makes only correct
choices, given what it believes about its
environment, together with

2. analysis of how accurate and reli-
able the system’s beliefs are about its
environment.

We have considered (1) in this arti-
cle. However, (2) may be discrete, if ab-
stractions are used, or continuous and
uncertain, requiring more complex
analytical techniques.

This work is only just at the begin-
ning, and the theme of verifying what
autonomous systems try to do, rather
than the effects they have, has much
potential. However, there are many
avenues of future work, the foremost
currently being incorporation of un-
certainty and probability. So, rather
than verifying the agent never chooses
a course of action it believes will lead to
a bad situation, we would like to verify
the agent never chooses a course of ac-
tion that it believes is more likely to reach
a “bad” situation than its other options.

In addition, there are clearly various
different forms of “bad” situation, with
different probabilities and measures

a central theme of
our analysis of
autonomous
systems, and
of the agents that
control them,
is to verify what
the agent tries to do.

review articles

september 2013 | vol. 56 | no. 9 | commUnications of thE acm 93

concerning their seriousness. Again,
these measures and probabilities
should be incorporated into the prop-
erties verified.

Similarly, there are important as-
pects of truly autonomous behavior,
such as the ability to plan and learn
that we have not considered in any
detail. We are interested in explor-
ing how an agent might reason about
new plans, for instance, to ensure
their execution did not violate any
important properties and so provide
guarantees about the agents overall
behavior even in the face of changing
internal processes.

It is also important to assess if, and
how, other approaches to the formal-
ization of autonomous behaviors, for
example, Arkin,1 can be involved in our
verification.

Toward Certification. Certification
can be seen as the process of negotiat-
ing with a certain legal authority in or-
der to convince them that relevant safe-
ty requirements have been explored
and mitigated in an appropriate way.
As part of this process, various items
of evidence are provided to advance
the applicant’s safety argument. This
approach is widely used for the certifi-
cation of real systems, from aircraft to
safety critical software.

Clearly, we are mainly concerned
with the certification of autonomous
systems. As noted, systems might
generally be analyzed with respect to
the question, “Is it safe?” If there is
a human involved at some point, for
example, a pilot or controller, then
some view must be taken on whether
the human acts to preserve safety or
not. For example, within aircraft cer-
tification arguments, it is usually as-
sumed that a pilot, given appropriate
information and capabilities, will act
to preserve the aircraft’s safety. Yet
in a safety analysis, we rarely go any
further. Essentially, the human is as-
sumed to be benevolent.

Our approach provides a mecha-
nism for analyzing the agent choices
in the case of autonomous systems.
Thus, while a standard safety argu-
ment might skip over human choices,
assuming the pilot/driver/operator
will endeavor to remain safe, we can
formally verify the agent indeed tries
its best to remain safe. In this way, our
approach allows wider analysis—while

the intentions and choices of a pilot/
driver/operator must be assumed to
be good, we can actually examine the
intentions and choices of an autono-
mous system in detail.

Acknowledgments. This work was
partially supported by EPSRC, while
the Virtual Engineering Centre is a
University of Liverpool project partially
supported by both NWDA and ERDF.
We are grateful to our many collabo-
rators, but particularly Rafael Bordini,
Neil Cameron, Mike Jump, Alexei Lis-
itsa, Nick Lincoln, Bertie Müller, and
Sandor Veres.

References
1. arkin, r. governing lethal behavior: embedding ethics

in a hybrid deliberative/reactive robot architecture.
technical report gIt-gVu-07-11. georgia tech, 2007.

2. blackburn, P., van benthem, J. and wolter, f. eds.
Handbook of Modal Logic. elsevier, 2006.

3. bonasso, P., firby, J., gat, e., kortenkamp, D., miller,
D. and Slack, m. experiences with an architecture for
intelligent, reactive agents. J. Exp. Theor. Artif. Intel.
9, 23 (1997), 237–256.

4. bond, a. and gasser, l. eds. Readings in Distributed
Artificial Intelligence. morgan kaufmann, 1988.

5. bordini, r., Dastani, m., Dix, J. and el fallah-
Seghrouchni, a. eds. Multi-Agent Programming:
Languages, Platforms and Applications. Springer,
2005.

6. bordini, r., Dastani, m., Dix, J. and el fallah-
Seghrouchni, a. eds. Multi-Agent Programming:
Languages, Tools and Applications. Springer, 2009.

7. bordini, r., fisher, m., Visser, w. and wooldridge, m.
Verifying multi-agent programs by model checking. J.
Autonomous Agents and Multi-Agent Systems 12, 2
(2006), 239–256.

8. bordini, r., hübner, J. and wooldridge, m.
Programming Multi-agent Systems in AgentSpeak
using Jason. wiley, 2007.

9. bratman, m. Intentions, Plans, and Practical Reason.
harvard university Press, 1987.

10. brooks, r. a robust layered control system for a
mobile robot. IEEE J. Robotics and Automation 2, 10
(1986).

11. Civil aviation authority. CaP 393 air navigation: the
order and the regulations; http://www.caa.co.uk/
docs/33/CaP393.pdf, april 2010.

12. Civil aviation authority. CaP 722 unmanned aircraft
System operations in uk airspace—guidance; http://
www.caa.co.uk/docs/33/CaP722.pdf, april 2010.

13. Clarke, e., grumberg, o. and Peled, D. model Checking.
mIt Press, 1999.

14. Cohen, P. and levesque, h. Intention is choice with
commitment. Artificial Intelligence 42 (1990),
213–261.

15. Dennis, l. and farwer, b. Gwendolen: a bDI language
for verifiable agents. In Workshop on Logic and the
Simulation of Interaction and Reasoning. aISb, 2008.

16. Dennis, l., farwer, b., bordini, r., fisher, m. and
wooldridge, m. a common semantic basis for bDI
languages. In Proc. 7th Int. Workshop on Programming
Multiagent Systems, lnaI 4908 (2008). Springer,
124–139.

17. Dennis, l., fisher, m., lincoln, n., lisitsa, a. and Veres,
S. Verifying Practical autonomous Systems. (under
review.)

18. Dennis, l., fisher, m., lisitsa, a., lincoln, n. and Veres,
S. satellite control using rational agent programming.
IEEE Intelligent Systems 25, 3 (may/June 2010),
92–97.

19. Dennis, l., fisher, m., webster, m. and bordini, r. model
checking agent programming languages. Automated
Software Engineering 19, 1 (2012), 5–63.

20. Durfee, e., lesser, V. and Corkill, D. trends in
cooperative distributed problem solving. IEEE Trans.
Knowledge and Data Engineering 1, 1 (1989).

21. fisher, m. An Introduction to Practical Formal
Methods Using Temporal Logic. wiley, 2011.

22. franklin, S. and graesser, a. Is it an agent, or just
a program? a taxonomy for autonomous agents.

Intelligent Agents III, lnCS 1193 (1996), 21–35.
23. gat, e., bonnasso, r., murphy, r. and Press, a. on

three-layer architectures. Artificial Intelligence and
Mobile Robots. aaaI Press, 1997, 195–210.

24. havelund, k. and rosu, g. monitoring programs using
rewriting. In Proc. 16th IEEE Int. Conf. Automated
Software Engineering (2001). Ieee Computer Society,
135–143.

25. Jones, C. Systematic Software Development Using
VDM. Prentice hall International, 1986.

26. Java Pathfinder. javapathfinder.sourceforge.net.
27. kitano, h. and tadokoro, S. roboCup rescue: a grand

challenge for multiagent and intelligent systems. AI
Magazine 22, 1 (2001), 39–52.

28. manna, Z. and Pnueli, a. The Temporal Logic of
Reactive and Concurrent Systems: Specification.
Springer, 1992.

29. raimondi, f. and lomuscio, a. automatic verification
of multi-agent systems by model checking via ordered
binary decision diagrams. Journal of Applied Logic 5, 2
(2007), 235–251.

30. rao, a. AgentSpeak(l): bDI agents speak out in a
logical computable language. In Proc. 7th European
Workshop on Modeling Autonomous Agents in a Multi-
Agent World, LNCS 1038 (1996). Springer, 42–55.

31. rao, a. Decision procedures for propositional linear-
time belief-desire-intention logics. Journal of Logic
and Computation 8, 3 (1998), 293–342.

32. rao, a.S. and georgeff, m.P. bDI agents: from theory
to practice. In Proc. 1st Int. Conf. Multi-Agent Systems
(San francisco, Ca, 1995), 312–319.

33. rao, a.S. and georgeff, m.P. an abstract architecture
for rational agents. In Proc. 1st Int. Conf. Knowledge
Representation and Reasoning (1992), 439–449.

34. Shoham, y. agent-oriented programming. Artificial
Intelligence 60, 1 (1993), 51–92.

35. united States of america State of nevada legislature.
nevada revised Statutes Chapter 482a—autonomous
Vehicles, mar. 2012.

36. Visser, w., havelund, k., brat, g.P., Park, a. and lerda,
f. model checking programs. Automated Software
Engineering 10, 2 (2003), 203–232.

37. webster, m., fisher, m., Cameron, n. and Jump,
m. formal methods and the certification of
autonomous unmanned aircraft systems. In Proc.
30th International Conference on Computer Safety,
Reliability and Security. LNCS 6894 (2011). Springer,
228–242.

38. wooldridge, m. An Introduction to Multiagent
Systems. wiley, 2002.

39. wooldridge, m. and rao, a., eds. Foundations of
Rational Agency. kluwer academic Publishers, 1999.

Michael Fisher (mfisher@liverpool.ac.uk) is a professor
in the Department of Computer Science at the university
of liverpool, u.k.

Louise Dennis (l.a.dennis@liverpool.ac.uk) is a research
associate in the Department of Computer Science at the
university of liverpool, u.k.

Matt Webster (matt@liverpool.ac.uk) is a research
associate in the Virtual engineering Centre at Daresbury
laboratory warrington, u.k.

© aCm 0001-0782/13/09 $15.00

