Efficient (Parallel) Sorting

- One of the most frequent operations performed by computers is organising (sorting) data.
- The access to sorted data is more convenient/faster.
- There is a constant need for good sorting algorithms including sequential, parallel and distributed solutions.
- There is a plethora of sorting algorithms. We already know that one can use heaps for sorting. Here we focus on two sorting procedures including quick-sort and merge-sort.

Merging to ordered sequences

- The key to merge-sort is merging procedure merge, s.t., having two input sequences:
 - \(A = (a_1 \leq a_2 \leq \cdots \leq a_m) \) and \(B = (b_1 \leq b_2 \leq \cdots \leq b_n) \)
 - it produces combined \(C = (c_1 \leq c_2 \leq \cdots \leq c_{m+n}) \)

Example:
\[A = < 3, 8, 9 > \quad B = < 1, 5, 7 > \]
\[\text{merge}(A, B) = < 1, 3, 5, 7, 8, 9 > \]

Merging (cont.)

- Pick the minimum:
 - For example, in the first step, pick 1 from A and 5 from B.

Merging (cont.)

- And save it here:
 - In this case, 1.

- Pointers:
 - Move the pointers to the next element:
 - A moves to 10, B moves to 5.

- X: 3 10 23 54
- Y: 5 25 75
- Result: 1 3

- X: 3 10 23 54
- Y: 5 25 75
- Result: 1 3
Merging (cont.)

X: 10 23 54 Y: 5 25 75

Result: 1 3 5

Merging (cont.)

X: 10 23 54 Y: 5 25 75

Result: 1 3 5 10

Merging (cont.)

X: 23 54 Y: 25 75

Result: 1 3 5 10 23

Merging (cont.)

X: 54 Y: 25 75

Result: 1 3 5 10 23 25
Divide-and-Conquer Method

- A very natural recursive approach
 - Divide
 - if the input size is small then solve the problem directly;
 - otherwise divide the input data into two or more disjoint subsets
 - Recur
 - recursively solve the sub-problems associated with the subsets
 - Conquer
 - take the solutions to the sub-problems and merge them into a solution to the original problem

Merge-Sorting

- Divide: if input sequence S has 0 or 1 element then return S; otherwise split S into two sequences S_1 and S_2, each containing about $1/2$ elements of S
- Recur: recursively sort sequences S_1 and S_2
- Conquer: Put the elements back into S by merging the sorted sequences S_1 and S_2 into a single sorted sequence

Single run of merge procedure produces combined sorted sequence. Thus the time complexity is linear $O(m+n)$.

Single run of merge procedure produces combined sorted sequence. Thus the time complexity is linear $O(m+n)$.

Divide-and-Conquer Method

- A very natural recursive approach
 - Divide
 - if the input size is small then solve the problem directly;
 - otherwise divide the input data into two or more disjoint subsets
 - Recur
 - recursively solve the sub-problems associated with the subsets
 - Conquer
 - take the solutions to the sub-problems and merge them into a solution to the original problem

Merge-Sorting

- Divide: if input sequence S has 0 or 1 element then return S; otherwise split S into two sequences S_1 and S_2, each containing about $1/2$ elements of S
- Recur: recursively sort sequences S_1 and S_2
- Conquer: Put the elements back into S by merging the sorted sequences S_1 and S_2 into a single sorted sequence

Single run of merge procedure produces combined sorted sequence. Thus the time complexity is linear $O(m+n)$.
Merge-Sorting (top down approach)

Divide the input sequence evenly to S_1 & S_2

Recur

Conquer by merging sorted sequences

Merge-Sorting (example)

Recall that merging two sorted sequences S_1 and S_2 takes $O(n_1+n_2)$ time, where n_1 is the size of S_1 and n_2 is the size of S_2

The depth of the recursion is $O(\log n)$ due to the halving process

Thus merge-sort runs in $O(n \log n)$ time in the worst (and average) case

Merge-Sorting (analysis)

Merge-Sorting (analysis)
Quick-Sort

- Divide if $|S| > 1$, select a pivot value x in S and create three sequences: L, E and G, s.t.,
 - L stores elements in $S < x$
 - E stores elements in $S = x$
 - G stores elements in $S > x$
- Recur recursively sort sequences L & G
- Conquer put sorted elements from L, E and finally from G back to S.

Quick-Sort Tree

- Divide the sequence S using random pivot x
- Recur
- Conquer by concatenating sorted sequences $L(<x)$ and $H(>x)$

Quick-Sort (example)

Quick-Sort (worst case)

- Let s_i be the sum of the input sizes of the nodes at depth i in a quick sort tree T
- $s_i \leq n - i$ (and $s_i = n - i$ when use of pivots lead always to only one nonempty sequence: either L or G)
- The worst-case complexity is bounded by $O(n^2)$.
 \[O \left(\sum_{i=0}^{n-1} s_i \right), \text{ which is } O \left(\sum_{i=0}^{n-1} (n - i) \right) \text{ that is, } O \left(\sum_{i=1}^{n} i \right) \]
Quick-Sort (randomised algorithm)

- **Thm:** the expected running time of randomised (pivot is chosen in random) quick-sort is $O(n \log n)$
- **Proof:**
 - The expected number of times that a fair coin must be flipped until it shows heads k times is 2^k.
 - Randomly chosen pivot is right if neither of the groups L nor G is $\geq \frac{3}{4} |S|$
 - The probability of a success in choosing a right pivot is $\frac{1}{2}$
 - A path in quick-sort tree can contain at most $\log_{4/3} n$ nodes with right pivots
 - Hence, the expected length of each path is $2\log_{4/3} n$

Lower Bound (comparison-based model)

- In comparison-based model the input elements can be compared only with themselves and the result of each comparison $x_i \leq x_j$ is always yes or no
- **Thm:** the running time of any comparison-based sorting algorithm is $\Omega(n \log n)$ in the worst case
- **Proof:**
 - Sorting of n elements can be identified with recognising a particular permutation of n elements
 - There are $n! = n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1$ permutations of n elements
 - Each comparison splits a group of permutations into two groups (one that satisfies the inequality and one that doesn’t)
 - In order to ensure that the size of each group of permutations is brought down to one we need $\log_2(n!) > \log (n/2)^{n/2} = \log n^2 = \Omega(n \log n)$ comparisons
List ranking and prefix sums

- In the link ranking problem one is expected to compute for each element its distance to the front of the list.
- In the prefix sum problem one is expected to compute for each prefix of the list the sum of the keys stored in this prefix.
- Computing prefix sums with all keys of value 1 is equivalent to the link ranking problem.

All read at distance 2^0 & add to their own values

All read at distance 2^1 & add to their own values
List ranking and prefix sums can be computed in $O(\log n)$ time when n is the size of the input:

- During every single round we increase knowledge about preceding block of 2^i positions in $O(1)$ time.
- After $O(\log n)$ rounds of doubling the job is done.

We need also another tool that will allow us to collect and distribute information to all processors also in $O(\log n)$ time.
Information dissemination

- P_0 informs neighbour at distance 2^0

- P_0, P_1 inform neighbours at distance 2^1

- P_0, P_1, P_2, P_3 inform neighbours at distance 2^2

- $P_0, ..., P_6, P_7$ inform neighbours at distance 2^3
Information collection/dissemination

- The process of collection of information is done by reversing communication (direction of arrows) used during information dissemination.
- Both processes take time $O(\log n)$.
- This means that processors can all agree on simple decisions (via exchanging small messages), e.g., “is there any work left to do?” in time $O(\log n)$.

Parallel Quick-Sort

- The complexity analysis of parallel quick-sort:
 - Every stage takes at most time $O(\log n)$
 - Expected number of stages is $O(\log n)$
 - The total computation time is $O(\log^2 n)$
 - The number of processors needed is n
 - The total work is $O(n \log^2 n)$
- One can reduce work to optimal using $n/\log n$ processors.

Parallel Quick-Sort

- Sequence $S[1\ldots r]$ is being sorted
 - The local size of the input $n = r-l+1$
- Each P_i ($i=L\ldots r$) picks value $S[i]$ with prob. $1/n$
 - A unique pivot value p is communicated to all (if none or more values are picked the process is repeated)
- The values from $S[i\ldots r]$ are distributed to $L[i\ldots r]$ & $H[i\ldots r]$
- Using list ranking and prefix sums compute the ranks of values in L and H
- The number of values #L in L is communicated
- The values are copied back to S as follows
 - Value with rank n in L is moved to $S[i+\ldots n]$
 - The pivot p is moved to $S[i+\#L]$
 - Value with rank i in H is moved to $S[i+\#L+\ldots j-1]$
- Sort recursively $S[1\ldots i-\#L+1]$ & $S[i+\#L+1\ldots r]$

Parallel Merge-Sort

- Assume two halves L & H of $S[1\ldots r]$ are already (recursively) sorted
 - The local size of the input $n = r-l+1$
- Using binary search compute a rank of each L value in the other half H, and vice versa
- Combine (add) the two ranks (from L and H) to find the new position in the sorted sequence.
Parallel Merge-Sort

- The complexity analysis of parallel merge-sort
 - Each stage (binary search) takes at most time $O(\log n)$
 - The number of recursive stages is $O(\log n)$
 - The total computation time is $O(\log^2 n)$
 - The number of processors needed is n
 - The total work is $O(n\log^2 n)$
 - One can reduce work to optimal using $n/\log n$ processors