
Applied Algorithmics COMP526 – tutorial 1

L.A. Gasieniec and D. Cartwright

1 Questions

1.1 Order of magnitude

Order the following functions with respect to their asymptotical order of magnitude.

n,
√

n, n1.5, n2, n log n, n log log n, n log2 n, n log(n2), 2/n, 2n, 2n/2, 37, n3, n2 log n.

1.2 Invariant method

There are two integral parts of integer division: the result and the remainder. I.e., if we
take two integer numbers n, k > 0 the result of integer division n div k is defined as the
largest non-negative integer x, s.t., x · k ≤ n. And the remainder of the division is defined
as r = n − x. Note that 0 ≤ r < k. The value r is also known as the result of modulo

operation, i.e., r = n mod k.

Example: 10 div 3 = 3 and 10 mod 3 = 1, also 13 div 5 = 2 and 13 mod 5 = 3.

Apply the invariant method, see lecture notes from week 1, to prove the correctness of
a function Mod(n, k) expected to compute the value of n mod k, where n and k are two
positive integer input parameters of the function.

function Mod(n, k: integer): integer;
Input: positive integers n, k.
Output: value of n mod k.

temp ← n;
while temp ≥ k do

temp ← (temp −k);
end-while;
return temp;

end-function.

1



2 Solutions

2.1 Order of magnitude

The functions in our example can be ordered as follows:

2/n, 37,
√

n, n, n log log n, n log n, n log(n2), n log2 n, n1.5, n2, n2 log n, n3, 2n/2, 2n,

Lets check a couple of pairs of functions.

E.g., n log n and n log(n2). Note that n log(n2) = 2n log n (since in general log ab = b log a).
Thus now the relation n log n ≤ 2n log n is more apparent. Note also that n log n =
O(2n log n) and vice versa (multiplicative constants do not matter in asymptotic consider-
ation, right?), which means that in fact n log n = Θ(2n log n).

Consider also 2n/2 and 2n. Is 2n/2 = O(2n)? Lets take n0 = 1 and c = 1, i.e., we
have to check whether 2n/2 < 1 · 2n, for all n = 1, 2, 3, ... How do we do this? Since both
functions are growing functions (their values get larger when n gets larger) we can take
logarithm (log) from both sides of inequality, where log(2n/2) = n/2 · log 2 = n/2. And
log(2n) = n · log 2 = n. And clearly n/2 < n thus 2n/2 = O(2n). Now does the opposite
relation holds, i.e., 2n = O(2n/2)?. The answer is NO!. (Proof by contradiction) Assume
that it is possible to find positive constants n0 and c, s.t., 2n < c · 2n/2, for all n > n0.
Apply logarithm on both sides obtaining

log(2n) < log(c · 2n/2)

which is equivalent with

n < log c + n/2

since log(a · b) = log a + log b. But note that log c is a constant and for large n is clearly
larger then n/2 plus some constant, i.e., we get contradiction. Thus constants matter if
they are in the exponent!!!

2.2 Invariant method

Note that from the definition of modulo operation one can conclude that for two positive
integers x1 6= x2, s.t., x1 = y1 · k + r and x2 = y2 · k + r, for some two positive integers y1

and y2, also

x1 mod k = x2 mod k = r.

Note that this holds also when, e.g., y1 = y2 + 1. (1)

2



Stop condition refers to negation of the loop condition. Thus in our case the stop con-
dition F (temp) ≡ not (temp ≥ k) ≡ temp < k.

Loop invariant must be true just before each iteration (execution of the body of the
loop). More over the invariant plus the stop condition should enforce the expected solu-
tion. Note that choosing the right invariant is very often a matter of experience. But your
ability to choose such an invariant shows that you really understand what the loop’s task
is. Anyway, we decide to chose the invariant I(temp) ≡ ((temp mod k) = (n mod k) = r).

The actual proof is done as in the mathematical induction. We first check that the invari-
ant is true before the first iteration (basis step) and later we show that any consecutive
iteration does not violate the invariant.

Basis step Indeed, before the first iteration temp = n thus the invariant is satisfied.

Inductive step Assume that at the beginning of iteration i the invariant is satisfied. Also
note that the only instruction executed within the loop is temp← (temp −k). And if before
the iteration temp = y1 · k + r, after the iteration temp = y2 · k + r, where y1 = y2 + 1.
Thus due to observation (1) we conclude that also on the conclusion of iteration i (i.e., just
before iteration i + 1) the invariant is satisfied too.

Finally, from the stop condition F (temp) ≡ temp < k and the invariant I(temp) ≡
((temp mod k) = (n mod k) = r) we conclude that indeed function Mod(n, k) computes
the value of n mod k.

3


