
1

29/01/2018 Applied Algorithmics 2

Applied Algorithmics COMP526

 Lecturer: Leszek Gąsieniec, 321 (Ashton Bldg),
L.A.Gasieniec@liverpool.ac.uk

 Lectures: Mondays 4pm (BROD-107), and
Tuesdays 3+4pm (BROD-305a)

 Office hours: TBA, 321 (Ashton)

 Assessments (25%) + final exam (75%)

 http://www.csc.liv.ac.uk/~leszek/COMP526/

29/01/2018 Applied Algorithmics 3

Algorithm Analysis

 We are interested in the design of “good”

algorithms and data structures

 Algorithm is a step-by-step procedure that

performs tasks in a finite amount of time

 Data structure is a system of fixed rules of

how to organize and access stored data

29/01/2018 Applied Algorithmics 4

Algorithm Analysis

 Primary interest: the running time (time complexity)

of algorithms and operations defined on data structures

 Secondary interest: space usage (space complexity)

 In more complex models (e.g., distributed systems or

networks) we also use other measures, e.g., the number

of exchanged messages (communication complexity)

 We need some mathematics to describe running times

and compare efficiency of algorithms

29/01/2018 Applied Algorithmics 5

Algorithm Analysis via experiments

 The main emphasis is on finding dependency

of the running time on the size of the input

 In order to determine this, we can perform

several well designed experiments

 This type of analysis requires a good choice

of sample inputs and appropriate number of

tests (statistical certainty)

2

29/01/2018 Applied Algorithmics 6

Experimental Analysis

 The running time depends on the size and the

instance of the input but also the hardware

environment (lack of universality!)

29/01/2018 Applied Algorithmics 7

Experimental Analysis

 Experiments can be performed only on a

limited set of test inputs

 All experiments should be performed in the

same hardware and software environment

 The actual implementation and execution of

the algorithm(s) is required

29/01/2018 Applied Algorithmics 8

Theoretical Analysis

 Takes into account all possible inputs

 Evaluation of relative efficiency of any two

algorithms is independent from hard/software

environment

 Performed by studying high-level description

of the algorithm

29/01/2018 Applied Algorithmics 9

Theoretical Analysis

 This abstract methodology aims at associating

with each algorithm a function f(n) that

characterizes (provides as accurate as possible

bounds on) the running time of the algorithm

in terms of the input size n

 Typical functions include n, n2, n·log n, …

3

29/01/2018 Applied Algorithmics 10

Theoretical Analysis requires

 A formal language for describing algorithms

 A computational model in which considered

algorithms are analysed and compared.

 An accurate metric for measuring algorithm

running time, space usage, communication, …

 An approach for characterizing running times

29/01/2018 Applied Algorithmics 11

Pseudo-Code

 Description of algorithms that is formal but

for human eyes only

 Description of algorithms that is more

structured than regular prose

 Description that facilitates the high-level

analysis of a data structures and algorithms

29/01/2018 Applied Algorithmics 12

Pseudo-Code example

 Finding the maximum element

29/01/2018 Applied Algorithmics 13

Pseudo-Code

 Pseudo-code is a mixture of natural languages
and high-level programming (Ada, Pascal,
C++, Java like) constructs

 Pseudo-code describes the main ideas behind
generic implementation of data structures and
algorithms

 Pseudo-code constructions include:
expressions, declarations, decision structures,
loops, arrays, methods of calls, …

4

29/01/2018 Applied Algorithmics 14

Computational Model

 Set of high-level primitive operations that can

be found in the pseudo-code includes:

assigning a value, calling method, performing

an arithmetic operation, comparing two

numbers, array indexing, following object

reference, returning from a method

 Time complexity refers to counting the number

of primitive operations that are executed

29/01/2018 Applied Algorithmics 15

Random Access Machine (RAM)

 CPU connected to a bank of memory cells

 Each memory cell can store a number, a

character string, or an address, i.e., the value

of a base type

 We assume that any primitive operation can

be performed in constant time

29/01/2018 Applied Algorithmics 16

Counting Primitive Operations

29/01/2018 Applied Algorithmics 17

Average vs. Worst Case

 Algorithm may run faster on some inputs and

slower on the others

 Average case refers to the running time of an

algorithm as an average taken over all inputs

of the same size

 Worst case refers to the running time of an

algorithm as the maximum taken over all

inputs of the same size

5

29/01/2018 Applied Algorithmics 18

Worst vs. Average Case

29/01/2018 Applied Algorithmics 19

Asymptotic Notation

 Asymptotic notation allows to characterize the

main factors (computational components)

affecting an algorithm’s running time

 It also allows a simplified analysis that

estimates the number of primitive operations

executed up to a constant factor

29/01/2018 Applied Algorithmics 20

“Big-Oh” Notation

 f(n), g(n) positive integer functions

 We say f(n) is O(g(n)) if there is real constant c,
s.t., f(n) < c g(n), for n > n0.

29/01/2018 Applied Algorithmics 21

Example: 7n -2 = O(n)

 We have to find constants c and n0, s.t., 7n –2

< c n, for all n > n0

 A possible choice is c = 7 and n0 = 1

 In fact this is one of infinitely many possible

choices, because any real number c > 7 and

any integer n0 > 1 would serve as well

6

29/01/2018 Applied Algorithmics 22

Further Examples

 20 n3 +10 n log n +5 is O(n3), and any

polynomial akn
k +…+a1n

1 +a0 is O(nk)

 3 log n + loglog n is O(log n)

 2100 is O(1)

 5/n is O(1/n)

29/01/2018 Applied Algorithmics 23

Frequent Functions

 Logarithmic O(log n)

 Linear O(n)

 Quadratic O(n2)

 Polynomial O(nk), k > 2

 Exponential O(an), a > 1

29/01/2018 Applied Algorithmics 24

Relatives of “Big-Oh”

 f(n), g(n) positive integer functions

 We say that f(n) is Ω(g(n)) (big-Omega) if there

is a real const. c , s.t., f(n) > c g(n), for n > n0.

 We say that f(n) is Θ(g(n)) (big-Theta) if f(n) is

Ω(g(n)) and f(n) is O(g(n))

29/01/2018 Applied Algorithmics 25

Two Examples

 ¾·logn + loglog n is Ω(log n)

 3 logn + loglog n is Θ(log n)

 More examples will be studied at practicals

7

29/01/2018 Applied Algorithmics 26

Importance of Asymptotics

 The maximum size allowed for an input

instance for various running times to be

solved in 1sec, 1min and 1h

29/01/2018 Applied Algorithmics 27

Growth Rate (running time)

 Functions ordered by growth rate: log n,

log2n, n1/2, n, n· log n, n2, n3, 2n

29/01/2018 Applied Algorithmics 28

Typical Justification Techniques

 Proof by counter-example

 negative, frequently used in testing

 Proof by contra-positive argument

 uses observation: (A => B) ≡ (~B => ~A)

 Proof by contradiction

 uses observation: (A => B) ≡ ((A and ~B) => ~A)

 Proof by mathematical induction

 direct, used to justify iterative and recursive solutions

29/01/2018 Applied Algorithmics 29

Mathematical Induction

 Used to prove some property P(i) of analysed

program for all (or arbitrarily large) integers

 The proof is performed as follows:

 Prove P(·) for some small integer, e.g., P(1)

 Prove that P(1),.., P(i-1) plus all other knowledge

we have imply P(i)

 Then it follows that P(i) holds for all integers i

8

29/01/2018 Applied Algorithmics 30

Loop Invariant Method

 Used to prove correctness of loops

 The proof is performed as follows:

 Find an invariant I(i) for considered loop, where i
is the loop index iterated from 1 to F(i)

 Prove that I(1) holds just before the 1st loop test

 Prove that from I(1),.., I(i-1) and the content of
the loop it follows that I(i) holds too

 Show that from “stop condition” F(i) and
invariant I(i) we get the desired solution S(i)

29/01/2018 Applied Algorithmics 31

Example of Invariant Method

Stop condition

F(i) ≡ (i=n)

Loop invariant

I(i) ≡ currentMax ≥ A[0],..,A[i-1]

I.e., currentMax contains the maximum element in A

Desired solution

S(n) ≡ currentMax ≥ A[0],..,A[n-1]

and

imply

29/01/2018 Applied Algorithmics 32

Decreasing Function Method

 Mainly used to prove that a loop stops

 The proof is preformed as follows

 Find a positive (potential) function f(i), where i is
the loop index iterated from 1 to F(i) with
bounded original value

 Show that each iteration of the loop decreases the
value of f(i) but it always remains positive

 This shows that the number of loop iterations is
bounded and that the loop stops eventually

29/01/2018 Applied Algorithmics 33

Example of Decreasing Function

Stop condition

F(i) ≡ (i=n)

Decreasing function

f(i) = (n+1-i)

and

During each iteration f(i) is decreased by 1

But it always remains positive with f(i=n)=1

