
1

29/01/2018 Applied Algorithmics 2

Applied Algorithmics COMP526

 Lecturer: Leszek Gąsieniec, 321 (Ashton Bldg),
L.A.Gasieniec@liverpool.ac.uk

 Lectures: Mondays 4pm (BROD-107), and
Tuesdays 3+4pm (BROD-305a)

 Office hours: TBA, 321 (Ashton)

 Assessments (25%) + final exam (75%)

 http://www.csc.liv.ac.uk/~leszek/COMP526/

29/01/2018 Applied Algorithmics 3

Algorithm Analysis

 We are interested in the design of “good”

algorithms and data structures

 Algorithm is a step-by-step procedure that

performs tasks in a finite amount of time

 Data structure is a system of fixed rules of

how to organize and access stored data

29/01/2018 Applied Algorithmics 4

Algorithm Analysis

 Primary interest: the running time (time complexity)

of algorithms and operations defined on data structures

 Secondary interest: space usage (space complexity)

 In more complex models (e.g., distributed systems or

networks) we also use other measures, e.g., the number

of exchanged messages (communication complexity)

 We need some mathematics to describe running times

and compare efficiency of algorithms

29/01/2018 Applied Algorithmics 5

Algorithm Analysis via experiments

 The main emphasis is on finding dependency

of the running time on the size of the input

 In order to determine this, we can perform

several well designed experiments

 This type of analysis requires a good choice

of sample inputs and appropriate number of

tests (statistical certainty)

2

29/01/2018 Applied Algorithmics 6

Experimental Analysis

 The running time depends on the size and the

instance of the input but also the hardware

environment (lack of universality!)

29/01/2018 Applied Algorithmics 7

Experimental Analysis

 Experiments can be performed only on a

limited set of test inputs

 All experiments should be performed in the

same hardware and software environment

 The actual implementation and execution of

the algorithm(s) is required

29/01/2018 Applied Algorithmics 8

Theoretical Analysis

 Takes into account all possible inputs

 Evaluation of relative efficiency of any two

algorithms is independent from hard/software

environment

 Performed by studying high-level description

of the algorithm

29/01/2018 Applied Algorithmics 9

Theoretical Analysis

 This abstract methodology aims at associating

with each algorithm a function f(n) that

characterizes (provides as accurate as possible

bounds on) the running time of the algorithm

in terms of the input size n

 Typical functions include n, n2, n·log n, …

3

29/01/2018 Applied Algorithmics 10

Theoretical Analysis requires

 A formal language for describing algorithms

 A computational model in which considered

algorithms are analysed and compared.

 An accurate metric for measuring algorithm

running time, space usage, communication, …

 An approach for characterizing running times

29/01/2018 Applied Algorithmics 11

Pseudo-Code

 Description of algorithms that is formal but

for human eyes only

 Description of algorithms that is more

structured than regular prose

 Description that facilitates the high-level

analysis of a data structures and algorithms

29/01/2018 Applied Algorithmics 12

Pseudo-Code example

 Finding the maximum element

29/01/2018 Applied Algorithmics 13

Pseudo-Code

 Pseudo-code is a mixture of natural languages
and high-level programming (Ada, Pascal,
C++, Java like) constructs

 Pseudo-code describes the main ideas behind
generic implementation of data structures and
algorithms

 Pseudo-code constructions include:
expressions, declarations, decision structures,
loops, arrays, methods of calls, …

4

29/01/2018 Applied Algorithmics 14

Computational Model

 Set of high-level primitive operations that can

be found in the pseudo-code includes:

assigning a value, calling method, performing

an arithmetic operation, comparing two

numbers, array indexing, following object

reference, returning from a method

 Time complexity refers to counting the number

of primitive operations that are executed

29/01/2018 Applied Algorithmics 15

Random Access Machine (RAM)

 CPU connected to a bank of memory cells

 Each memory cell can store a number, a

character string, or an address, i.e., the value

of a base type

 We assume that any primitive operation can

be performed in constant time

29/01/2018 Applied Algorithmics 16

Counting Primitive Operations

29/01/2018 Applied Algorithmics 17

Average vs. Worst Case

 Algorithm may run faster on some inputs and

slower on the others

 Average case refers to the running time of an

algorithm as an average taken over all inputs

of the same size

 Worst case refers to the running time of an

algorithm as the maximum taken over all

inputs of the same size

5

29/01/2018 Applied Algorithmics 18

Worst vs. Average Case

29/01/2018 Applied Algorithmics 19

Asymptotic Notation

 Asymptotic notation allows to characterize the

main factors (computational components)

affecting an algorithm’s running time

 It also allows a simplified analysis that

estimates the number of primitive operations

executed up to a constant factor

29/01/2018 Applied Algorithmics 20

“Big-Oh” Notation

 f(n), g(n) positive integer functions

 We say f(n) is O(g(n)) if there is real constant c,
s.t., f(n) < c g(n), for n > n0.

29/01/2018 Applied Algorithmics 21

Example: 7n -2 = O(n)

 We have to find constants c and n0, s.t., 7n –2

< c n, for all n > n0

 A possible choice is c = 7 and n0 = 1

 In fact this is one of infinitely many possible

choices, because any real number c > 7 and

any integer n0 > 1 would serve as well

6

29/01/2018 Applied Algorithmics 22

Further Examples

 20 n3 +10 n log n +5 is O(n3), and any

polynomial akn
k +…+a1n

1 +a0 is O(nk)

 3 log n + loglog n is O(log n)

 2100 is O(1)

 5/n is O(1/n)

29/01/2018 Applied Algorithmics 23

Frequent Functions

 Logarithmic O(log n)

 Linear O(n)

 Quadratic O(n2)

 Polynomial O(nk), k > 2

 Exponential O(an), a > 1

29/01/2018 Applied Algorithmics 24

Relatives of “Big-Oh”

 f(n), g(n) positive integer functions

 We say that f(n) is Ω(g(n)) (big-Omega) if there

is a real const. c , s.t., f(n) > c g(n), for n > n0.

 We say that f(n) is Θ(g(n)) (big-Theta) if f(n) is

Ω(g(n)) and f(n) is O(g(n))

29/01/2018 Applied Algorithmics 25

Two Examples

 ¾·logn + loglog n is Ω(log n)

 3 logn + loglog n is Θ(log n)

 More examples will be studied at practicals

7

29/01/2018 Applied Algorithmics 26

Importance of Asymptotics

 The maximum size allowed for an input

instance for various running times to be

solved in 1sec, 1min and 1h

29/01/2018 Applied Algorithmics 27

Growth Rate (running time)

 Functions ordered by growth rate: log n,

log2n, n1/2, n, n· log n, n2, n3, 2n

29/01/2018 Applied Algorithmics 28

Typical Justification Techniques

 Proof by counter-example

 negative, frequently used in testing

 Proof by contra-positive argument

 uses observation: (A => B) ≡ (~B => ~A)

 Proof by contradiction

 uses observation: (A => B) ≡ ((A and ~B) => ~A)

 Proof by mathematical induction

 direct, used to justify iterative and recursive solutions

29/01/2018 Applied Algorithmics 29

Mathematical Induction

 Used to prove some property P(i) of analysed

program for all (or arbitrarily large) integers

 The proof is performed as follows:

 Prove P(·) for some small integer, e.g., P(1)

 Prove that P(1),.., P(i-1) plus all other knowledge

we have imply P(i)

 Then it follows that P(i) holds for all integers i

8

29/01/2018 Applied Algorithmics 30

Loop Invariant Method

 Used to prove correctness of loops

 The proof is performed as follows:

 Find an invariant I(i) for considered loop, where i
is the loop index iterated from 1 to F(i)

 Prove that I(1) holds just before the 1st loop test

 Prove that from I(1),.., I(i-1) and the content of
the loop it follows that I(i) holds too

 Show that from “stop condition” F(i) and
invariant I(i) we get the desired solution S(i)

29/01/2018 Applied Algorithmics 31

Example of Invariant Method

Stop condition

F(i) ≡ (i=n)

Loop invariant

I(i) ≡ currentMax ≥ A[0],..,A[i-1]

I.e., currentMax contains the maximum element in A

Desired solution

S(n) ≡ currentMax ≥ A[0],..,A[n-1]

and

imply

29/01/2018 Applied Algorithmics 32

Decreasing Function Method

 Mainly used to prove that a loop stops

 The proof is preformed as follows

 Find a positive (potential) function f(i), where i is
the loop index iterated from 1 to F(i) with
bounded original value

 Show that each iteration of the loop decreases the
value of f(i) but it always remains positive

 This shows that the number of loop iterations is
bounded and that the loop stops eventually

29/01/2018 Applied Algorithmics 33

Example of Decreasing Function

Stop condition

F(i) ≡ (i=n)

Decreasing function

f(i) = (n+1-i)

and

During each iteration f(i) is decreased by 1

But it always remains positive with f(i=n)=1

