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Applied Algorithmics COMP526

 Lecturer: Leszek Gąsieniec, 321 (Ashton Bldg), 
L.A.Gasieniec@liverpool.ac.uk

 Lectures: Mondays 4pm (BROD-107), and 
Tuesdays 3+4pm (BROD-305a)

 Office hours: TBA, 321 (Ashton)

 Assessments (25%) + final exam (75%)

 http://www.csc.liv.ac.uk/~leszek/COMP526/
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Algorithm Analysis

 We are interested in the design of “good” 

algorithms and data structures

 Algorithm is a step-by-step procedure that 

performs tasks in a finite amount of time

 Data structure is a system of fixed rules of 

how to organize and access stored data 
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Algorithm Analysis

 Primary interest: the running time (time complexity) 

of algorithms and operations defined on data structures

 Secondary interest: space usage (space complexity)

 In more complex models (e.g., distributed systems or 

networks) we also use other measures, e.g., the number 

of exchanged messages (communication complexity) 

 We need some mathematics to describe running times 

and compare efficiency of algorithms 
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Algorithm Analysis via experiments

 The main emphasis is on finding dependency

of the running time on the size of the input

 In order to determine this, we can perform 

several well designed experiments

 This type of analysis requires a good choice 

of sample inputs and appropriate number of 

tests (statistical certainty)
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Experimental Analysis

 The running time depends on the size and the 

instance of the input but also the hardware 

environment (lack of universality!)
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Experimental Analysis

 Experiments can be performed only on a 

limited set of test inputs

 All experiments should be performed in the 

same hardware and software environment

 The actual implementation and execution of 

the algorithm(s) is required
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Theoretical Analysis

 Takes into account all possible inputs

 Evaluation of relative efficiency of any two 

algorithms is independent from hard/software 

environment

 Performed by studying high-level description

of the algorithm
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Theoretical Analysis

 This abstract methodology aims at associating 

with each algorithm a function f(n) that 

characterizes (provides as accurate as possible 

bounds on) the running time of the algorithm 

in terms of the input size n

 Typical functions include n, n2, n·log n, …
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Theoretical Analysis requires

 A formal language for describing algorithms

 A computational model in which considered 

algorithms are analysed and compared.

 An accurate metric for measuring algorithm 

running time, space usage, communication, …

 An approach for characterizing running times
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Pseudo-Code

 Description of algorithms that is formal but 

for human eyes only

 Description of algorithms that is more 

structured than regular prose

 Description that facilitates the high-level 

analysis of a data structures and algorithms
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Pseudo-Code example

 Finding the maximum element
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Pseudo-Code

 Pseudo-code is a mixture of natural languages 
and high-level programming (Ada, Pascal, 
C++, Java like) constructs 

 Pseudo-code describes the main ideas behind 
generic implementation of data structures and 
algorithms

 Pseudo-code constructions include: 
expressions, declarations, decision structures, 
loops, arrays, methods of calls, …
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Computational Model

 Set of high-level primitive operations that can 

be found in the pseudo-code includes: 

assigning a value, calling method, performing 

an arithmetic operation, comparing two 

numbers, array indexing, following object 

reference, returning from a method

 Time complexity refers to counting the number 

of primitive operations that are executed 
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Random Access Machine (RAM)

 CPU connected to a bank of memory cells

 Each memory cell can store a number, a 

character string, or an address, i.e., the value 

of a base type

 We assume that any primitive operation can 

be performed in constant time
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Counting Primitive Operations
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Average vs. Worst Case

 Algorithm may run faster on some inputs and 

slower on the others

 Average case refers to the running time of an 

algorithm as an average taken over all inputs

of the same size

 Worst case refers to the running time of an 

algorithm as the maximum taken over all 

inputs of the same size
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Worst vs. Average Case
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Asymptotic Notation

 Asymptotic notation allows to characterize the 

main factors (computational components) 

affecting an algorithm’s running time

 It also allows a simplified analysis that 

estimates the number of primitive operations 

executed up to a constant factor
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“Big-Oh” Notation

 f(n), g(n) positive integer functions

 We say f(n) is O(g(n)) if there is real constant c, 
s.t., f(n) < c g(n), for n > n0.
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Example: 7n -2 = O(n)

 We have to find constants c and n0, s.t., 7n –2 

< c n, for all n > n0

 A possible choice is c = 7 and n0 = 1

 In fact this is one of infinitely many possible 

choices, because any real number c > 7 and 

any integer n0 > 1 would serve as well
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Further Examples

 20 n3 +10 n log n +5 is O(n3), and any 

polynomial akn
k +…+a1n

1 +a0 is O(nk)

 3 log n + loglog n is O(log n)

 2100 is O(1)

 5/n is O(1/n)
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Frequent Functions

 Logarithmic O(log n)

 Linear O(n)

 Quadratic O(n2)

 Polynomial O(nk), k > 2

 Exponential O(an), a > 1
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Relatives of “Big-Oh”

 f(n), g(n) positive integer functions

 We say that f(n) is Ω(g(n)) (big-Omega) if there 

is a real const. c , s.t., f(n) > c g(n), for n > n0.

 We say that f(n) is Θ(g(n)) (big-Theta) if f(n) is 

Ω(g(n)) and f(n) is O(g(n))
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Two Examples

 ¾·logn + loglog n is Ω(log n)

 3 logn + loglog n is Θ(log n)

 More examples will be studied at practicals 
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Importance of Asymptotics 

 The maximum size allowed for an input 

instance for various running times to be 

solved in 1sec, 1min and 1h

29/01/2018 Applied Algorithmics 27

Growth Rate (running time)

 Functions ordered by growth rate: log n, 

log2n, n1/2, n, n· log n, n2, n3, 2n
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Typical Justification Techniques

 Proof by counter-example

 negative, frequently used in testing

 Proof by contra-positive argument

 uses observation: (A => B) ≡ (~B => ~A)

 Proof by contradiction

 uses observation: (A => B) ≡ ((A and ~B) => ~A)

 Proof by mathematical induction

 direct, used to justify iterative and  recursive solutions
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Mathematical Induction

 Used to prove some property P(i) of analysed 

program for all (or arbitrarily large) integers 

 The proof is performed as follows:

 Prove P(·) for some small integer, e.g., P(1)

 Prove that P(1),.., P(i-1) plus all other knowledge 

we have imply P(i)

 Then it follows that P(i) holds for all integers i
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Loop Invariant Method

 Used to prove correctness of loops

 The proof is performed as follows:

 Find an invariant I(i) for considered loop, where i
is the loop index iterated from 1 to F(i)

 Prove that I(1) holds just before the 1st loop test

 Prove that from I(1),.., I(i-1) and the content of 
the loop it follows that I(i) holds too

 Show that from “stop condition” F(i) and 
invariant I(i) we get the desired solution S(i)
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Example of Invariant Method

Stop condition

F(i) ≡ (i=n)

Loop invariant

I(i) ≡ currentMax ≥ A[0],..,A[i-1]

I.e., currentMax contains the maximum element in A

Desired solution

S(n) ≡ currentMax ≥ A[0],..,A[n-1]

and

imply
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Decreasing Function Method

 Mainly used to prove that a loop stops

 The proof is preformed as follows

 Find a positive (potential) function f(i), where i is 
the loop index iterated from 1 to F(i) with 
bounded original value  

 Show that each iteration of the loop decreases the 
value of f(i) but it always remains positive

 This shows that the number of loop iterations is 
bounded and that the loop stops eventually
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Example of Decreasing Function

Stop condition

F(i) ≡ (i=n)

Decreasing function

f(i) = (n+1-i)

and

During each iteration f(i) is decreased by 1

But it always remains positive with f(i=n)=1


