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Applied Algorithmics COMP526

 Lecturer: Leszek Gąsieniec, 321 (Ashton Bldg), 
L.A.Gasieniec@liverpool.ac.uk

 Lectures: Mondays 4pm (BROD-107), and 
Tuesdays 3+4pm (BROD-305a)

 Office hours: TBA, 321 (Ashton)

 Assessments (25%) + final exam (75%)

 http://www.csc.liv.ac.uk/~leszek/COMP526/

29/01/2018 Applied Algorithmics 3

Algorithm Analysis

 We are interested in the design of “good” 

algorithms and data structures

 Algorithm is a step-by-step procedure that 

performs tasks in a finite amount of time

 Data structure is a system of fixed rules of 

how to organize and access stored data 
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Algorithm Analysis

 Primary interest: the running time (time complexity) 

of algorithms and operations defined on data structures

 Secondary interest: space usage (space complexity)

 In more complex models (e.g., distributed systems or 

networks) we also use other measures, e.g., the number 

of exchanged messages (communication complexity) 

 We need some mathematics to describe running times 

and compare efficiency of algorithms 
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Algorithm Analysis via experiments

 The main emphasis is on finding dependency

of the running time on the size of the input

 In order to determine this, we can perform 

several well designed experiments

 This type of analysis requires a good choice 

of sample inputs and appropriate number of 

tests (statistical certainty)
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Experimental Analysis

 The running time depends on the size and the 

instance of the input but also the hardware 

environment (lack of universality!)
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Experimental Analysis

 Experiments can be performed only on a 

limited set of test inputs

 All experiments should be performed in the 

same hardware and software environment

 The actual implementation and execution of 

the algorithm(s) is required

29/01/2018 Applied Algorithmics 8

Theoretical Analysis

 Takes into account all possible inputs

 Evaluation of relative efficiency of any two 

algorithms is independent from hard/software 

environment

 Performed by studying high-level description

of the algorithm
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Theoretical Analysis

 This abstract methodology aims at associating 

with each algorithm a function f(n) that 

characterizes (provides as accurate as possible 

bounds on) the running time of the algorithm 

in terms of the input size n

 Typical functions include n, n2, n·log n, …
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Theoretical Analysis requires

 A formal language for describing algorithms

 A computational model in which considered 

algorithms are analysed and compared.

 An accurate metric for measuring algorithm 

running time, space usage, communication, …

 An approach for characterizing running times
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Pseudo-Code

 Description of algorithms that is formal but 

for human eyes only

 Description of algorithms that is more 

structured than regular prose

 Description that facilitates the high-level 

analysis of a data structures and algorithms
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Pseudo-Code example

 Finding the maximum element
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Pseudo-Code

 Pseudo-code is a mixture of natural languages 
and high-level programming (Ada, Pascal, 
C++, Java like) constructs 

 Pseudo-code describes the main ideas behind 
generic implementation of data structures and 
algorithms

 Pseudo-code constructions include: 
expressions, declarations, decision structures, 
loops, arrays, methods of calls, …
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Computational Model

 Set of high-level primitive operations that can 

be found in the pseudo-code includes: 

assigning a value, calling method, performing 

an arithmetic operation, comparing two 

numbers, array indexing, following object 

reference, returning from a method

 Time complexity refers to counting the number 

of primitive operations that are executed 
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Random Access Machine (RAM)

 CPU connected to a bank of memory cells

 Each memory cell can store a number, a 

character string, or an address, i.e., the value 

of a base type

 We assume that any primitive operation can 

be performed in constant time
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Counting Primitive Operations
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Average vs. Worst Case

 Algorithm may run faster on some inputs and 

slower on the others

 Average case refers to the running time of an 

algorithm as an average taken over all inputs

of the same size

 Worst case refers to the running time of an 

algorithm as the maximum taken over all 

inputs of the same size
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Worst vs. Average Case
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Asymptotic Notation

 Asymptotic notation allows to characterize the 

main factors (computational components) 

affecting an algorithm’s running time

 It also allows a simplified analysis that 

estimates the number of primitive operations 

executed up to a constant factor
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“Big-Oh” Notation

 f(n), g(n) positive integer functions

 We say f(n) is O(g(n)) if there is real constant c, 
s.t., f(n) < c g(n), for n > n0.
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Example: 7n -2 = O(n)

 We have to find constants c and n0, s.t., 7n –2 

< c n, for all n > n0

 A possible choice is c = 7 and n0 = 1

 In fact this is one of infinitely many possible 

choices, because any real number c > 7 and 

any integer n0 > 1 would serve as well
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Further Examples

 20 n3 +10 n log n +5 is O(n3), and any 

polynomial akn
k +…+a1n

1 +a0 is O(nk)

 3 log n + loglog n is O(log n)

 2100 is O(1)

 5/n is O(1/n)
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Frequent Functions

 Logarithmic O(log n)

 Linear O(n)

 Quadratic O(n2)

 Polynomial O(nk), k > 2

 Exponential O(an), a > 1
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Relatives of “Big-Oh”

 f(n), g(n) positive integer functions

 We say that f(n) is Ω(g(n)) (big-Omega) if there 

is a real const. c , s.t., f(n) > c g(n), for n > n0.

 We say that f(n) is Θ(g(n)) (big-Theta) if f(n) is 

Ω(g(n)) and f(n) is O(g(n))
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Two Examples

 ¾·logn + loglog n is Ω(log n)

 3 logn + loglog n is Θ(log n)

 More examples will be studied at practicals 



7

29/01/2018 Applied Algorithmics 26

Importance of Asymptotics 

 The maximum size allowed for an input 

instance for various running times to be 

solved in 1sec, 1min and 1h
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Growth Rate (running time)

 Functions ordered by growth rate: log n, 

log2n, n1/2, n, n· log n, n2, n3, 2n
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Typical Justification Techniques

 Proof by counter-example

 negative, frequently used in testing

 Proof by contra-positive argument

 uses observation: (A => B) ≡ (~B => ~A)

 Proof by contradiction

 uses observation: (A => B) ≡ ((A and ~B) => ~A)

 Proof by mathematical induction

 direct, used to justify iterative and  recursive solutions
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Mathematical Induction

 Used to prove some property P(i) of analysed 

program for all (or arbitrarily large) integers 

 The proof is performed as follows:

 Prove P(·) for some small integer, e.g., P(1)

 Prove that P(1),.., P(i-1) plus all other knowledge 

we have imply P(i)

 Then it follows that P(i) holds for all integers i
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Loop Invariant Method

 Used to prove correctness of loops

 The proof is performed as follows:

 Find an invariant I(i) for considered loop, where i
is the loop index iterated from 1 to F(i)

 Prove that I(1) holds just before the 1st loop test

 Prove that from I(1),.., I(i-1) and the content of 
the loop it follows that I(i) holds too

 Show that from “stop condition” F(i) and 
invariant I(i) we get the desired solution S(i)
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Example of Invariant Method

Stop condition

F(i) ≡ (i=n)

Loop invariant

I(i) ≡ currentMax ≥ A[0],..,A[i-1]

I.e., currentMax contains the maximum element in A

Desired solution

S(n) ≡ currentMax ≥ A[0],..,A[n-1]

and

imply
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Decreasing Function Method

 Mainly used to prove that a loop stops

 The proof is preformed as follows

 Find a positive (potential) function f(i), where i is 
the loop index iterated from 1 to F(i) with 
bounded original value  

 Show that each iteration of the loop decreases the 
value of f(i) but it always remains positive

 This shows that the number of loop iterations is 
bounded and that the loop stops eventually

29/01/2018 Applied Algorithmics 33

Example of Decreasing Function

Stop condition

F(i) ≡ (i=n)

Decreasing function

f(i) = (n+1-i)

and

During each iteration f(i) is decreased by 1

But it always remains positive with f(i=n)=1


