
Applied Algorithmics COMP526 – tutorial 10

L.A. Gasieniec and I. Lamprou

1 Questions

1.1 Parallel algorithms - revision

• Please make sure you understand duels in parallel computing. This includes string
matching via witnesses, computing of maximum, and any other symmetric (order of
arguments is irrelevant) binary operation.

• Have a good understanding of mergesort and quicksort algorithms. This includes
sequential and parallel algorithms with their time and work complexity.

1.2 Parallel algorithms - longest sequence of zeros

Consider the problem of computing the longest sequence of consecutive 0s in a binary
sequence S[0, .., n− 1] of length n. For example,

• Write a pseudocode of a sequential solution and comment on its correctness and
complexity.

• Write a pseudocode of a parallel solution and comment on its correctness and com-
plexity.

1



2 Solutions

2.1 Parallel algorithms - revision

See the relevant copies of slides and videos.

2.2 Parallel algorithms - longest sequence of zeros

Consider the problem of computing the longest sequence of consecutive 0s in a binary
sequence S[0, .., n− 1] of length n. For example,

• Write a pseudocode of a sequential solution and comment on its correctness and
complexity.

The main idea is to swipe the input sequence S from the smallest index 0 to the
largest n− 1. The answer is stored in the variable ans which is originally set to 0 as
if S contains only 1s we need to report value 0. In due course we keep info about the
longest currently found sequence of 0s in ans but we also keep info on the length of
the currently visited sequence of 0s in temp. When we discover the first 1 we check
whether ans needs to be updated, i.e., when ans < temp, and we reduce the value
of temp to 0. See below.

ans, temp← 0;
(1) for (i = 0; i < n; i++) {
(2) if (S[i] == 0) {temp++;}
(3) else {if (temp > ans) {ans← temp; } temp← 0; }
(4) }
(5) }
(6) if (temp > ans) {ans← temp;}
(7) report(ans);

We need the last test in line (6) when S is concluded with a sequence of 0s which
could be the longest. Since test each position in S exactly once the time complexity
of the solution is O(n).

• Write a pseudocode of a parallel solution, comment on its correctness and complexity.

The situation is more complex when we design a parallel solution. As discussed
during the lecture we are often (if not always) limited to the computational methods
which are available in parallel computing. And in particular the process of doubling
our knowledge by considering block of size 2, 4,. . . , 2j , . . ..

Also in this case we will compute information about the longest sequence of zeros in
the block B[i, j] of size 2j (if such exist) finishing at position i, for all i = 0, . . . , n−1
in S[0 . . . n − 1]. Lets denote this information by L(i, j,max). Apart from having
L(i, j,max) (for a similar reason of having line (6) in the sequential code) we also

2



need the length sequences of 0s in front of this block and at its conclusion denoted
by L(i, j, pref) and L(i, j, suf) respectively.

When we apply a single round of doubling (of blocks) process the information about
block B[i, j] will be concatenated with B[i − 2j , j] to form B[i, j + 1] where we
need to compute values L(i, j + 1,max), L(i, j + 1, pref) and L(i, j + 1, suf), for all
i = 0, . . . , n− 1 simultaneously. Several cases apply, see the pseudocode below.

(1) for all i = 0, . . . , n− 1 do in parallel {
(2) if (S[i] == 0) {L(i, 0,max), L(i, 0, pref), L(i, 0, suf)← 1;}
(3) else {L(i, 0,max), L(i, 0, pref), L(i, 0, suf)← 0;}
(4) }
(5) for (j = 1; j < log n; j++) {
(6) if (i ≥ 2j) { // this block has a predecessor
(6)a case (L(i, j,max), L(i− 2j , j,max) == 2j) {

// both blocks are full of 0s
L(i, j + 1,max), L(i, j + 1, pref), L(i, j + 1, suf)← 2j+1};

// the new (twice as big) block is full of 0s too
}

(6)b case (L(i, j,max) == 2j 6= L(i− 2j , j,max)) {
// only block B[i, j] is full of 0s

L(i, j + 1,max), L(i, j + 1, suf)← L(i− 2j , j, suf) + 2j ;
L(i, j + 1, pref)← L(i− 2j , j, pref);

// new max and suf extended by 2j , and pref copied
}

(6)c case (L(i− 2j , j,max) == 2j 6= L(i, j,max)) {
// only block B[i− 2j , j] is full of 0s

L(i, j + 1,max), L(i, j + 1, pref)← L(i, j, pref) + 2j ;
L(i, j + 1, suf)← L(i, j, suf);

// new max and pref extended by 2j , and suf copied
}

(6)d case (L(i, j,max), L(i− 2j , j) 6= 2j) {
// both blocks contain 1s

L(i, j + 1,max)←MAXIMUM{L(i− 2j , j,max),
L(i, j,max), L(i− 2j , j, suf) + L(i, j, pref)};

L(i, j + 1, pref)← L(i− 2j , j, pref);
L(i, j + 1, suf)← L(i, j, suf);

// new max can go across, but pref, suf are copied
}

(7) }
(8) }
(9) report (L(n− 1, log n,max)); // the last entry knows the answer

3



Case a (all zeros) Case b (zeros on the right)

Case c (zeros on the left) Case d (ones on both sides)

new pref, suf, max=2j+1

suf+2j

sufpref

pref

pref

pref+2j

suf

suf

new suf, max

new pref, max

pref suf

sufpref

new max picked among 
two old max’s and 0s across

max?

ii-2j

The time complexity of this solution is O(log n). Since we use n processing units the
total work is O(n log n). One can reduce this work to linear (optimal) when using only
n/ log n processors, each initially processing a sub-block of size log n sequentially.

4


