
Complexity Measures

� In traditional algorithm design, the primary complexity 
measures used to determine the efficiency of an algorithm 
are running time and memory space used
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are running time and memory space used

� In network algorithms, inputs are spread across the 
computers of the network and computations must be 
carried out across many computers too

� We need to consider various complexity measures in order 
to characterise the performance of network algorithms

Computational Rounds

� Several network algorithms proceed via a series of 
global computational rounds so as to eventually 
converge on a solution

� The number of rounds needed for convergence can be 
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� The number of rounds needed for convergence can be 
used as a crude approximation of time

� In synchronous algorithms, these rounds are 
determined by clock ticks

� In asynchronous algorithms, these rounds are often 
determined by propagating waves of events across the 
network

Space Measure

� The amount of space needed by a computation can 

be used for network algorithms, but it must be 

qualified as to whether it is: 
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� a global bound on the total space used by all 

computers in the algorithms, or

� a local bound on how much space is needed per 

computer involved

Local Running Time

� For asynchronous algorithms, we can focus on analysis of 
local computing time needed for a particular computer to 
participate in a network algorithm

� If all computers are essentially performing the same type 
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� If all computers are essentially performing the same type 
of function, then a single local running time bound can 
suffice for all

� If the computers and their functions differ, we need to 
characterise the local running time for each class of 
computers



Message Complexity

� This parameter measures the total number of messages (of 

fixed or unlimited size) that are sent between all pairs of 

computers during the computation

� For example, if message M is routed via p edges to get 
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� For example, if message M is routed via p edges to get 

from one computer to another, we would say that the 

message complexity of this communication task is p¦M¦,

where ¦M¦ denotes the size of M 

Complexity Measures

� Complexity measures for network algorithms are 

often thought of as being functions of some 

intuitive notions of the ‘’size’’ of the problem:
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intuitive notions of the ‘’size’’ of the problem:

� #of words used in description of the input

� the number of processors deployed

� the number of communication connections between 

processors

Basic Probability

� When we analyse algorithms that use 

randomisation or if we wish to analyse the 

average-case performance of an algorithm
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� Then we need to use some basic facts from 

probability theory  

Sample space

� Sample space is defined as the set of all possible 

outcomes from some experiment

E.g., flipping a coin until it comes up heads. The 

07/04/2008 Applied Algorithmics - week10 8

� E.g., flipping a coin until it comes up heads. The 

sample space is infinite, with the ith outcome being 

a sequence of i tails followed by a single head, for 

i= 0,1,2,3,4,….



Probability Space, Events

� Probability space is a sample space S together 

with a probability function P, that maps subsets of 
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with a probability function P, that maps subsets of 

S to real numbers in interval [0,1].

� Formally each subset A of S is called an event

Probability Function

� Probability function P is assumed to posses the 

following properties

� P(Ø) = 0
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� P(S) = 1

� 0 ≤ P(A) ≤ 1, for any A ⊆ S

� If A, B ⊆ S and A ∩ B = Ø, 

then P(A ∪ B) = P(A) + P(B)

Independent Events

� Two events are independent if 

P(A ∩ B ) = P(A) ⋅ P(B)

� A collection of events {A1,A2,…,An} is mutually 
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� A collection of events {A1,A2,…,An} is mutually 

independent if

P(Ai1 ∩ … ∩ Aik) = P(Ai1) ⋅ … ⋅ P(Aik) 

for any subset {Ai1, …, Aik}

Example

� E.g., Let A be the event that the roll of a die is a 6, 

and let B be the event the roll of a second die is a 

3, and let C be the event that sum of these two 
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3, and let C be the event that sum of these two 

dice is a 10.

� Then A and B are independent events, but C is not 

independent with either A or B



Sub-linear algorithms

� In what follows we will consider algorithms which the 

running time is sub-linear in the size of the input.

� In particular, what it means is that only part of the input 

can be read and processed. 
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can be read and processed. 

� There are many examples in which this setting is 

interesting, mainly when dealing with large data sets. 

� Some specific examples include: large data streams, 

scientific databases, the world wide web, data from the 

Genome Project, and high-resolution images. 

Sub-linear algorithms

� The exact solution to a decision problem is characterized 

by always correct answer of the form either yes/no or 

accept/reject

� In case of approximate solution to a decision problem the 
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� In case of approximate solution to a decision problem the 

answer is positive (with high probability):

� on all positively recognized inputs by an algorithm that 

provides the exact solutions, and

� on some other inputs which are relatively “close” to those 

positively recognized by the exact algorithm 

Sub-linear algorithms

� More formally, we split the set of all possible inputs into YES-
instances (on which an exact algorithm should accept) and NO-
instances (on which an exact algorithm should reject). 

� We will require that on YES-instance, the algorithm will accept 
with probability at least 2/3, and all NO-instances will be split into 
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with probability at least 2/3, and all NO-instances will be split into 
two groups. 

� One group contains all inputs that are “far” from all YES-instances, 
and one group that contains inputs that are “close” to some YES-
instance. 

� We require that the algorithm rejects inputs of the first kind with 
probability at least 2/3, and in real terms we do not care how the 

algorithm handles inputs of the second kind.

Example: 0∗1∗ Strings

� The 0∗1∗ (00..011..1) string problem

� Input: x = x[0..n-1], where x[i] ∈ {0, 1} ∀ i ∈ {0,..,n-1}

� Output: positive if x ∈ 0∗1∗ and negative otherwise
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∈ ∀ ∈

� Output: positive if x ∈ 0∗1∗ and negative otherwise

� To get an exact answer all the time, it is necessary to read 

the entire input. This is because there may be only 1 bit that 

is “wrong”, and we must see that bit in order to detect that 

the string is actually a NO-instance. 



Example: 0∗1∗ Strings

� But suppose we only want an approximate answer.

� First we define a distance between two strings as the 
fraction of bits on which the differ. This is called the 
relative Hamming distance: 
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relative Hamming distance: 

δ(x,y)=|{i: x[i] ≠ y[i]}|/n.

� We will examine the distance of a string to a good string -
that is, how many bits, if any, must be changed in order 
for the string to be of the form 0*1*. 

� For example, the string 1010..10 is at distance 1/2 from 
being good.

Example: 0∗1∗ Strings

� So now what we require from our algorithm is that 

if x ∈ 0*1*, then it accepts. If x is of distance at 

least ε from a good string, then our algorithm 
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should reject with probability at least 2/3. 

� Consider the following algorithm:

� Pick s = 4/ε bits uniformly at random.

� Check if they are in the correct order, and if not, reject. 

� Otherwise, accept.

Example: 0∗1∗ Strings

� We will now analyze this algorithm. 

� First note that it always accepts good strings, as 

any bits we choose will be in the correct order. 
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� Now suppose that x needs at least ε·n

modifications in order to become a good string.

� We will show that we reject such x with 

probability 2/3.

Example: 0∗1∗ Strings

� Consider the first ε·n/2 1s of the string x. Note that there must be at 
least ε·n/2 1s, otherwise we could flip all 1s to 0s, and our string 
will be the all 0 string. But this string is good, and x is at distance 
only ε/2 from it, contradicting the assumption that x is ε-far from 
good. We call these 1s as early 1s.
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good. We call these 1s as early 1s.

� Now, x also contains at least ε·n/2 0s after the early 1s, for the same 
reason. We call these as late 0s.

� Now, while testing random bits, if we pick both an early 1 and a 
late 0, we reject the string, otherwise we accept it.

� In what follows we analyze the probability that we do not reject a 
distant string, in which case the algorithm fails.



Example: 0∗1∗ Strings

� P[x[i] is an early 1] = ε/2 , P[x[i] is a late 0] = ε/2

--- we also known that (1-α/n)n ≤ e-α, thus

� P1= P[no early 1 found in s samples] = (1- ε/2)s ≤ e-ε·s/2
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P1= P[no early 1 found in s samples] = (1- ε/2) ≤ e

� P0= P[no late 0 found in s samples] ≤ (1- ε/2)s ≤ e-ε·s/2

� P10=P [no early 1 nor late 0 in s samples] ≤ P1+ P0 ≤ 2e-ε·s/2

� And since s = 4/ε we get P10  ≤ 1/3

� It is interesting to note that the query complexity (the number 

of sampled bits) is O(1/ε) which is independent of n.

Property Testing

� Recall that a language is a class of finite (e.g., 

strings, graphs) objects. 

A language is can be sometimes called a (class of 

07/04/2008 Applied Algorithmics - week10 22

� A language is can be sometimes called a (class of 

objects possessing some) property. 

� The research area that studies the notion of 

approximation for decision problems (such as 

language membership) is called Property Testing.

Notion of the distance
� As we saw in the 0*1* example, our notion of 

approximation for decision problems calls for a distance 
function on the inputs δ(x,y)∈ [0,1]. The distance function 
depends on the problem at hand.

Examples of distance functions that have been considered 
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� Examples of distance functions that have been considered 
in the literature include:

� Relative Hamming distance - the fraction of 
bits/characters/matrix entries on which x and y differ.

� Relative Edit distance - the minimum number of character 
substitutions, inserts and deletes needed to transform x
into y divided by the length of x

Notion of the distance

� Most of the applications studied in the field 

require use of the Hamming distance.

� A distance from an input x to the property P is 
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� A distance from an input x to the property P is 

defined as the distance between x and the input in 

P closest to x:

δ(x,P) = miny∈P δ(x,y)

� We say an input x is ε-far from P if δ(x,P) ≥ ε



Input representation

� An important issue in defining the distance between inputs 
is the input representation.

� For example, a graph can be represented by an adjacency 
matrix or adjacency lists for all its vertices. 
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matrix or adjacency lists for all its vertices. 

� The distance, as we defined it, depends on the 
representation. 

� Also, representation defines what an algorithm can access 
in one step. We will usually work in the random access 
model, where in a single step the algorithm can access one 
bit/character/matrix entry or an entry in an adjacency list.

The concept of ε-tester

Definition: (ε -tester) 

� An algorithm A is an ε-tester for property P if it

1) accepts all x ∈ P with probability at least 2/3, and

ε
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2) rejects all x that are ε-far from P with prob. at least 2/3

where the probability is taken over the internal 
coin tosses of the algorithm A.

� We can reduce the error to any constant ∆ by 
repeating the algorithm O(log 1/∆) and taking the 
majority/maximal answer.

Testing sorted list

� How can we perform the ε-test of an input list to 

check whether its element are sorted, i.e., where
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� Input: a list X=(x1,.., xn) of arbitrary numbers.

� Solution: an ε-tester for the list X with the running 

time O(log n / ε)

The ε-tester for almost sorted lists

1) Pick s = θ(1/ε) random numbers xi (i.e., pick the 
indices i uniformly at random).

2) Do a binary search for each xi, and reject it if you 
find any numbers out of order.
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find any numbers out of order.

3) Accept it if for all the binary searches no numbers 
were out of order.

� Theorem: The ε-tester recognizes the ε-far 
(unsorted) lists with probability ≥ 2/3.


