
Complexity Measures

� In traditional algorithm design, the primary complexity
measures used to determine the efficiency of an algorithm
are running time and memory space used

07/04/2008 Applied Algorithmics - week10 1

are running time and memory space used

� In network algorithms, inputs are spread across the
computers of the network and computations must be
carried out across many computers too

� We need to consider various complexity measures in order
to characterise the performance of network algorithms

Computational Rounds

� Several network algorithms proceed via a series of
global computational rounds so as to eventually
converge on a solution

� The number of rounds needed for convergence can be

07/04/2008 Applied Algorithmics - week10 2

� The number of rounds needed for convergence can be
used as a crude approximation of time

� In synchronous algorithms, these rounds are
determined by clock ticks

� In asynchronous algorithms, these rounds are often
determined by propagating waves of events across the
network

Space Measure

� The amount of space needed by a computation can

be used for network algorithms, but it must be

qualified as to whether it is:

07/04/2008 Applied Algorithmics - week10 3

� a global bound on the total space used by all

computers in the algorithms, or

� a local bound on how much space is needed per

computer involved

Local Running Time

� For asynchronous algorithms, we can focus on analysis of
local computing time needed for a particular computer to
participate in a network algorithm

� If all computers are essentially performing the same type

07/04/2008 Applied Algorithmics - week10 4

� If all computers are essentially performing the same type
of function, then a single local running time bound can
suffice for all

� If the computers and their functions differ, we need to
characterise the local running time for each class of
computers

Message Complexity

� This parameter measures the total number of messages (of

fixed or unlimited size) that are sent between all pairs of

computers during the computation

� For example, if message M is routed via p edges to get

07/04/2008 Applied Algorithmics - week10 5

� For example, if message M is routed via p edges to get

from one computer to another, we would say that the

message complexity of this communication task is p¦M¦,

where ¦M¦ denotes the size of M

Complexity Measures

� Complexity measures for network algorithms are

often thought of as being functions of some

intuitive notions of the ‘’size’’ of the problem:

07/04/2008 Applied Algorithmics - week10 6

intuitive notions of the ‘’size’’ of the problem:

� #of words used in description of the input

� the number of processors deployed

� the number of communication connections between

processors

Basic Probability

� When we analyse algorithms that use

randomisation or if we wish to analyse the

average-case performance of an algorithm

07/04/2008 Applied Algorithmics - week10 7

� Then we need to use some basic facts from

probability theory

Sample space

� Sample space is defined as the set of all possible

outcomes from some experiment

E.g., flipping a coin until it comes up heads. The

07/04/2008 Applied Algorithmics - week10 8

� E.g., flipping a coin until it comes up heads. The

sample space is infinite, with the ith outcome being

a sequence of i tails followed by a single head, for

i= 0,1,2,3,4,….

Probability Space, Events

� Probability space is a sample space S together

with a probability function P, that maps subsets of

07/04/2008 Applied Algorithmics - week10 9

with a probability function P, that maps subsets of

S to real numbers in interval [0,1].

� Formally each subset A of S is called an event

Probability Function

� Probability function P is assumed to posses the

following properties

� P(Ø) = 0

07/04/2008 Applied Algorithmics - week10 10

� P(S) = 1

� 0 ≤ P(A) ≤ 1, for any A ⊆ S

� If A, B ⊆ S and A ∩ B = Ø,

then P(A ∪ B) = P(A) + P(B)

Independent Events

� Two events are independent if

P(A ∩ B) = P(A) ⋅ P(B)

� A collection of events {A1,A2,…,An} is mutually

07/04/2008 Applied Algorithmics - week10 11

� A collection of events {A1,A2,…,An} is mutually

independent if

P(Ai1 ∩ … ∩ Aik) = P(Ai1) ⋅ … ⋅ P(Aik)

for any subset {Ai1, …, Aik}

Example

� E.g., Let A be the event that the roll of a die is a 6,

and let B be the event the roll of a second die is a

3, and let C be the event that sum of these two

07/04/2008 Applied Algorithmics - week10 12

3, and let C be the event that sum of these two

dice is a 10.

� Then A and B are independent events, but C is not

independent with either A or B

Sub-linear algorithms

� In what follows we will consider algorithms which the

running time is sub-linear in the size of the input.

� In particular, what it means is that only part of the input

can be read and processed.

07/04/2008 Applied Algorithmics - week10 13

can be read and processed.

� There are many examples in which this setting is

interesting, mainly when dealing with large data sets.

� Some specific examples include: large data streams,

scientific databases, the world wide web, data from the

Genome Project, and high-resolution images.

Sub-linear algorithms

� The exact solution to a decision problem is characterized

by always correct answer of the form either yes/no or

accept/reject

� In case of approximate solution to a decision problem the

07/04/2008 Applied Algorithmics - week10 14

� In case of approximate solution to a decision problem the

answer is positive (with high probability):

� on all positively recognized inputs by an algorithm that

provides the exact solutions, and

� on some other inputs which are relatively “close” to those

positively recognized by the exact algorithm

Sub-linear algorithms

� More formally, we split the set of all possible inputs into YES-
instances (on which an exact algorithm should accept) and NO-
instances (on which an exact algorithm should reject).

� We will require that on YES-instance, the algorithm will accept
with probability at least 2/3, and all NO-instances will be split into

07/04/2008 Applied Algorithmics - week10 15

with probability at least 2/3, and all NO-instances will be split into
two groups.

� One group contains all inputs that are “far” from all YES-instances,
and one group that contains inputs that are “close” to some YES-
instance.

� We require that the algorithm rejects inputs of the first kind with
probability at least 2/3, and in real terms we do not care how the

algorithm handles inputs of the second kind.

Example: 0∗1∗ Strings

� The 0∗1∗ (00..011..1) string problem

� Input: x = x[0..n-1], where x[i] ∈ {0, 1} ∀ i ∈ {0,..,n-1}

� Output: positive if x ∈ 0∗1∗ and negative otherwise

07/04/2008 Applied Algorithmics - week10 16

∈ ∀ ∈

� Output: positive if x ∈ 0∗1∗ and negative otherwise

� To get an exact answer all the time, it is necessary to read

the entire input. This is because there may be only 1 bit that

is “wrong”, and we must see that bit in order to detect that

the string is actually a NO-instance.

Example: 0∗1∗ Strings

� But suppose we only want an approximate answer.

� First we define a distance between two strings as the
fraction of bits on which the differ. This is called the
relative Hamming distance:

07/04/2008 Applied Algorithmics - week10 17

relative Hamming distance:

δ(x,y)=|{i: x[i] ≠ y[i]}|/n.

� We will examine the distance of a string to a good string -
that is, how many bits, if any, must be changed in order
for the string to be of the form 0*1*.

� For example, the string 1010..10 is at distance 1/2 from
being good.

Example: 0∗1∗ Strings

� So now what we require from our algorithm is that

if x ∈ 0*1*, then it accepts. If x is of distance at

least ε from a good string, then our algorithm

07/04/2008 Applied Algorithmics - week10 18

should reject with probability at least 2/3.

� Consider the following algorithm:

� Pick s = 4/ε bits uniformly at random.

� Check if they are in the correct order, and if not, reject.

� Otherwise, accept.

Example: 0∗1∗ Strings

� We will now analyze this algorithm.

� First note that it always accepts good strings, as

any bits we choose will be in the correct order.

07/04/2008 Applied Algorithmics - week10 19

� Now suppose that x needs at least ε·n

modifications in order to become a good string.

� We will show that we reject such x with

probability 2/3.

Example: 0∗1∗ Strings

� Consider the first ε·n/2 1s of the string x. Note that there must be at
least ε·n/2 1s, otherwise we could flip all 1s to 0s, and our string
will be the all 0 string. But this string is good, and x is at distance
only ε/2 from it, contradicting the assumption that x is ε-far from
good. We call these 1s as early 1s.

07/04/2008 Applied Algorithmics - week10 20

good. We call these 1s as early 1s.

� Now, x also contains at least ε·n/2 0s after the early 1s, for the same
reason. We call these as late 0s.

� Now, while testing random bits, if we pick both an early 1 and a
late 0, we reject the string, otherwise we accept it.

� In what follows we analyze the probability that we do not reject a
distant string, in which case the algorithm fails.

Example: 0∗1∗ Strings

� P[x[i] is an early 1] = ε/2 , P[x[i] is a late 0] = ε/2

--- we also known that (1-α/n)n ≤ e-α, thus

� P1= P[no early 1 found in s samples] = (1- ε/2)s ≤ e-ε·s/2

07/04/2008 Applied Algorithmics - week10 21

P1= P[no early 1 found in s samples] = (1- ε/2) ≤ e

� P0= P[no late 0 found in s samples] ≤ (1- ε/2)s ≤ e-ε·s/2

� P10=P [no early 1 nor late 0 in s samples] ≤ P1+ P0 ≤ 2e-ε·s/2

� And since s = 4/ε we get P10 ≤ 1/3

� It is interesting to note that the query complexity (the number

of sampled bits) is O(1/ε) which is independent of n.

Property Testing

� Recall that a language is a class of finite (e.g.,

strings, graphs) objects.

A language is can be sometimes called a (class of

07/04/2008 Applied Algorithmics - week10 22

� A language is can be sometimes called a (class of

objects possessing some) property.

� The research area that studies the notion of

approximation for decision problems (such as

language membership) is called Property Testing.

Notion of the distance
� As we saw in the 0*1* example, our notion of

approximation for decision problems calls for a distance
function on the inputs δ(x,y)∈ [0,1]. The distance function
depends on the problem at hand.

Examples of distance functions that have been considered

07/04/2008 Applied Algorithmics - week10 23

� Examples of distance functions that have been considered
in the literature include:

� Relative Hamming distance - the fraction of
bits/characters/matrix entries on which x and y differ.

� Relative Edit distance - the minimum number of character
substitutions, inserts and deletes needed to transform x
into y divided by the length of x

Notion of the distance

� Most of the applications studied in the field

require use of the Hamming distance.

� A distance from an input x to the property P is

07/04/2008 Applied Algorithmics - week10 24

� A distance from an input x to the property P is

defined as the distance between x and the input in

P closest to x:

δ(x,P) = miny∈P δ(x,y)

� We say an input x is ε-far from P if δ(x,P) ≥ ε

Input representation

� An important issue in defining the distance between inputs
is the input representation.

� For example, a graph can be represented by an adjacency
matrix or adjacency lists for all its vertices.

07/04/2008 Applied Algorithmics - week10 25

matrix or adjacency lists for all its vertices.

� The distance, as we defined it, depends on the
representation.

� Also, representation defines what an algorithm can access
in one step. We will usually work in the random access
model, where in a single step the algorithm can access one
bit/character/matrix entry or an entry in an adjacency list.

The concept of ε-tester

Definition: (ε -tester)

� An algorithm A is an ε-tester for property P if it

1) accepts all x ∈ P with probability at least 2/3, and

ε

07/04/2008 Applied Algorithmics - week10 26

2) rejects all x that are ε-far from P with prob. at least 2/3

where the probability is taken over the internal
coin tosses of the algorithm A.

� We can reduce the error to any constant ∆ by
repeating the algorithm O(log 1/∆) and taking the
majority/maximal answer.

Testing sorted list

� How can we perform the ε-test of an input list to

check whether its element are sorted, i.e., where

07/04/2008 Applied Algorithmics - week10 27

� Input: a list X=(x1,.., xn) of arbitrary numbers.

� Solution: an ε-tester for the list X with the running

time O(log n / ε)

The ε-tester for almost sorted lists

1) Pick s = θ(1/ε) random numbers xi (i.e., pick the
indices i uniformly at random).

2) Do a binary search for each xi, and reject it if you
find any numbers out of order.

07/04/2008 Applied Algorithmics - week10 28

find any numbers out of order.

3) Accept it if for all the binary searches no numbers
were out of order.

� Theorem: The ε-tester recognizes the ε-far
(unsorted) lists with probability ≥ 2/3.

