
1

27/04/2015 Applied Algorithmics - week10 1

Efficient (Parallel) Sorting

� One of the most frequent operations performed by
computers is organising (sorting) data

� The access to sorted data is more convenient/faster

� There is a constant need for good sorting algorithms
including sequential, parallel and distributed solutions

� There is a plethora of sorting algorithms. We already know
that one can use heaps for sorting. Here we focus on two
sorting procedures including quick-sort and merge-sort

Merging to ordered sequences

� The key to merge-sort is merging procedure

merge, s.t., having two input sequences

� A= <a1≤a2≤
…≤am> and B= <b1≤b2≤

…≤bn>

� it produces combined C= <c1≤c2≤
…≤cm+n>

� Example:

A = < 3, 8, 9 > B = < 1, 5, 7 >

merge(A, B) = < 1, 3, 5, 7, 8, 9 >

Merging (cont.)

3 10 23 54 1 5 25 75

1

A: B:

Result:

pointers

pick the minimum

and save it here

Merging (cont.)

3 10 23 54 5 25 75

1 3

X: Y:

Result:

2

Merging (cont.)

10 23 54 5 25 75

1 3 5

X: Y:

Result:

Merging (cont.)

10 23 54 25 75

1 3 5 10

X: Y:

Result:

Merging (cont.)

23 54 25 75

1 3 5 10 23

X: Y:

Result:

Merging (cont.)

54 25 75

1 3 5 10 23 25

X: Y:

Result:

3

Merging (cont.)

54 75

1 3 5 10 23 25 54

X: Y:

Result:

Merging (cont.)

75

1 3 5 10 23 25 54 75

X: Y:

Result:

� Single run of merge procedure produces combined sorted

sequence. Thus the time complexity is linear O(m+n).

week 10 Complexity of Algorithms 11

Divide-and-Conquer Method

� A very natural recursive approach

� Divide

� if the input size is small then solve the problem directly;

� otherwise divide the input data into two or more disjoint subsets

� Recur

� recursively solve the sub-problems associated with the subsets

� Conquer

� take the solutions to the sub-problems and merge them into a solution to

the original problem

week 10 Complexity of Algorithms 12

Merge-Sorting

� Divide: if input sequence S has 0 or 1 element then return

S; otherwise split S into two sequences S1 and S2, each

containing about ½ elements of S

� Recur: recursively sort sequences S1 and S2

� Conquer: Put the elements back into S by merging the

sorted sequences S1 and S2 into a single sorted sequence

4

week 10 Complexity of Algorithms 13

Merge-Sorting (top down approach)

Divide the input sequence evenly to S1 & S2

Recur

Conquer by merging sorted sequences

S1 S2

week 10 Complexity of Algorithms 14

Merge-Sorting (example)

week 4 Complexity of Algorithms 15

Merge-Sorting (analysis)

� Recall that merging two sorted sequences S1 and

S2 takes O(n1+n2) time, where n1 is the size of S1

and n2 is the size of S2

� The depth of the recursion is O(log n) due to the

halving process

� Thus merge-sort runs in O(n log n) time in the

worst (and average) case

week 4 Complexity of Algorithms 16

Merge-Sorting (analysis)

5

week 4 Complexity of Algorithms 17

Quick-Sort

� Divide if ¦S¦>1, select a pivot value x in S and

create three sequences: L, E and G, s.t.,

� L stores elements in S < x

� E stores elements in S = x

� G stores elements in S > x

� Recur recursively sort sequences L & G

� Conquer put sorted elements from L, E and finally

from G back to S.

week 4 Complexity of Algorithms 18

Quick-Sort Tree

Divide the sequence S using random pivot x

Recur

Conquer by concatenating sorted sequences

L (<x) H(>x)

week 4 Complexity of Algorithms 19

Quick-Sort (example)

week 4 Complexity of Algorithms 20

Quick-Sort (worst case)

� Let si be the sum of the input sizes of the nodes at depth i

in a quick sort tree T

� si ≤ n-i (and si = n-i when use of pivots lead always to

only one nonempty sequence: either L or G)

� The worst-case complexity is bounded by O(n2).

6

week 4 Complexity of Algorithms 21

Quick-Sort (randomised algorithm)

� Thm: the expected running time of randomised (pivot is chosen in

random) quick-sort is O(n log n)

� Proof:

� The expected number of times that a fair coin must be flipped until it shows

heads k times is 2k.

� Randomly chosen pivot is right if neither of the groups L nor G is > ¾ ¦S¦

� The probability of a success in choosing a right pivot is ½

� A path in quick-sort tree can contain at most log4/3 n nodes with right pivots

� Hence, the expected length of each path is 2log4/3 n

week 4 Complexity of Algorithms 22

Quick-Sort (randomised algorithm)

week 4 Complexity of Algorithms 23

Lower Bound (comparison-based model)

� In comparison-based model the input elements can be compared only with
themselves and the result of each comparison xi ≤ xj is always yes or no

� Thm: the running time of any comparison-based sorting algorithm is Ω(n log n)
in the worst case

� Proof:

� Sorting of n elements can be identified with recognising a particular permutation of n
elements

� There is n!=n·(n-1) ·…·2·1 permutations of n elements

� Each comparison splits a group of permutations into two groups (one that satisfies
the inequality and one that doesn’t)

� In order to ensure that the size of each group of permutations is brought down to one
we need log2(n!) > log (n/2)n/2=n/2·log n/2 = Ω(n log n) comparisons

week 4 Complexity of Algorithms 24

Lower Bound (comparison-based model)

7

List ranking and prefix sums

� In the link ranking problem one is expected to

compute for each element its distance to the front

of the list

� In the prefix sum problem one is expected to

compute for each prefix of the list the sum of the

keys stored in this prefix

� Computing prefix sums with all keys of value 1 is

equivalent to the link ranking problem.

27/04/2015 Applied Algorithmics - week11 25

List ranking and prefix sums

27/04/2015 Applied Algorithmics - week10 26

3 0 0 5 7 0 0 2 0 0 0 4 0 8 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 0 0 5 7 0 0 2 0 0 0 4 0 8 0 1

1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

All read at distance 20 & add to their own values

27/04/2015 Applied Algorithmics - week10 27

3 3 0 5 12 7 0 2 2 0 0 4 4 8 8 1

1 1 0 1 2 1 0 1 1 0 0 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 0 0 5 7 0 0 2 0 0 0 4 0 8 0 1

1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

27/04/2015 Applied Algorithmics - week10 28

All read at distance 21 & add to their own values

3 3 3 8 12 12 12 9 2 2 2 4 4 12 12 9

1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 3 0 5 12 7 0 2 2 0 0 4 4 8 8 1

1 1 0 1 2 1 0 1 1 0 0 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

8

27/04/2015 Applied Algorithmics - week10 29

3 3 3 8 15 15 15 17 14 14 14 13 6 14 14 13

1 1 1 2 3 3 3 4 3 3 3 3 2 3 3 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

All read at distance 22 & add to their own values

3 3 3 8 12 12 12 9 2 2 2 4 4 12 12 9

1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

27/04/2015 Applied Algorithmics - week10 30

3 3 3 8 15 15 15 17 17 17 17 21 21 29 29 30

1 1 1 2 3 3 3 4 4 4 4 5 5 6 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

All read at distance 23 & add to their own values

3 3 3 8 15 15 15 17 14 14 14 13 6 14 14 13

1 1 1 2 3 3 3 4 3 3 3 3 2 3 3 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

27/04/2015 Applied Algorithmics - week10 31

3 3 3 8 15 15 15 17 17 17 17 21 21 29 29 30

1 1 1 2 3 3 3 4 4 4 4 5 5 6 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

List ranking and prefix sums

3 0 0 5 7 0 0 2 0 0 0 4 0 8 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

List ranking and prefix sums

� List ranking and prefix sums can be computed in

O(log n) time when n is the size of the input

� During every single round we increase knowledge

about preceding block of 2i positions in O(1) time.

� After O(log n) rounds od doubling the job is done

� We need also another tool that will allow us to

collect and distribute information to all processors

also in O(log n) time

27/04/2015 Applied Algorithmics - week10 32

9

Information dissemination

27/04/2015 Applied Algorithmics - week10 33

m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

m m 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

� P0 informs neighbour at distance 20

m m 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

27/04/2015 Applied Algorithmics - week10 34

Information dissemination

27/04/2015 Applied Algorithmics - week10 34

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

m m m m 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

� P0 , P1 inform neighbours at distance 21

m m m m 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

27/04/2015 Applied Algorithmics - week10 3527/04/2015 Applied Algorithmics - week10 35

Information dissemination

27/04/2015 Applied Algorithmics - week10 35

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

m m m m m m m m 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

� P0, P1 P2, P3 inform neighbours at distance 22

m m m m m m m m 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

27/04/2015 Applied Algorithmics - week10 36

Information dissemination

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

m m m m m m m m m m m m m m m m

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

� P0, …, P6, P7 inform neighbours at distance 23

10

Information collection/dissemination

� The process of collection of information is done

by reversing communication (direction of arrows)

used during information dissemination

� Both processes take time O(log n).

� This means that processors can all agree on simple

decisions (via exchanging small messages), e.g.,

“is there any work left to do?” in time O(log n).

27/04/2015 Applied Algorithmics - week10 37

Parallel Quick-Sort
� Sequence S[l…r] is being sorted

� The local size of the input n= r-l+1

� Each Pi (i=l,..,r) picks value S[i] with prob. 1/n

� A unique pivot value p is communicated to all (if none

or more values are picked the process is repeated)

� The values from S[l...r] are distributed to

L[l…r] & H[l…r]

� Using list ranking and prefix sums compute the

ranks of values in L and H

� The number of values #L in L is communicated

� The values are copied back to S as follows

� Value with rank α in L is moved to S[l+α-1]

� The pivot p is moved to S[l+#L]

� Value with rank β in H is moved to S[l+#L+β-1]

� Sort recursively S[l…l+#L-1] & S[l+#L+1…r]

27/04/2015 Applied Algorithmics - week10 38

S[l…r]

l r

S[l…r]

l r

L[l…r]

l r
H[l…r]

l r

< <

L[l…r]

l r
H[l…r]

l r

2 3 4 5 61

1 2 3 4 5 6 7 8 9

S[l…r]

r

� The complexity analysis of parallel quick-sort

� Every stage takes at most time O(log n)

� Expected number of stages is O(log n)

� The total computation time is O(log2 n)

� The number of processors needed is n

� The total work is O(nlog2 n)

� One can reduce work to optimal using n/log n

processors

27/04/2015 Applied Algorithmics - week10 39

Parallel Quick-Sort Parallel Merge-Sort

27/04/2015 Applied Algorithmics - week10 40

� Assume two halves L & H of S[l…r] are

already (recursively) sorted

� The local size of the input n= r-l+1

� Using binary search compute a rank of each L

value in the other half H, and vice versa

� Combine (add) the two ranks (from L and H) to

find the new position in the sorted sequence

l rL H

S[l…r]

l rL H

l rL H

S[l…r]

S[l…r]

5 5

10

11

Parallel Merge-Sort

27/04/2015 Applied Algorithmics - week10 41

� The complexity analysis of parallel merge-sort

� Each stage (binary search) takes at most time O(log n)

� The number of recursive stages is O(log n)

� The total computation time is O(log2 n)

� The number of processors needed is n

� The total work is O(nlog2 n)

� One can reduce work to optimal using n/log n

processors

