Efficient (Parallel) Sorting

O One of the most frequent operations performed by
computers is organising (sorting) data

O The access to sorted data is more convenient/faster

O There is a constant need for good sorting algorithms
including sequential, parallel and distributed solutions

O There is a plethora of sorting algorithms. We already know
that one can use heaps for sorting. Here we focus on two
sorting procedures including guick-sort and merge-sort

27/04/2015 Applied Algorithmics - week10 1

Merging to ordered sequences

O The key to merge-sort is merging procedure
merge, s.t., having two input sequences
®» A= <a;<a,<<a > and B=<b;<b,<

® it produces combined C= <c,<c,<<c, >

m+n’

O Example:
A=<3,8,9> B=<1,5,7>
merge(A,B)=<1,3,5,7,8,9>

——
Merging con)

pick the minimum

.~

Al 3 [10]23 54|81 |5]25]75]
1 1
\ \

Result: | 1 ‘ ‘ |

and save it here \ pointers

————————————————————
Merging con)

x[3T10]23]s4]|v:[[5]25]75]

1 1

Reste | 1) 3] | | | | | |

1

Merging con
x| J10]23 54|y |5 [25]75]
t 1
Result: | 1 ‘ 3 ‘ 5 ‘ ‘ ‘ ‘ ‘ |

1

Merging o
x| J10]23]54|v:| | [25]75|
1 t
Result: | 1 ‘ 3 ‘ 5 ‘ 10 ‘ ‘ ‘ ‘ |

1

Merging con
x| | Jaafsa]v| | [25][75]
1 f

Result:|1‘3‘5‘10‘23‘ ‘ ‘ |

1

Merging o
x| | | Isafv[| [25]75]
1 1
Resule [1 [3 [s5[10][23]25] [|
1

———————————————
Merging con,)

S I T 0 I B 7

1 f

Result:ll‘3‘5‘10‘23‘25‘54‘ |

1

————————————————————
Merging con)

oS I I I) O B

1
Result: | 1| 3 [5 [10]23[25]54]75]

1

O Single run of merge procedure produces combined sorted
sequence. Thus the time complexity is linear O(m+n).

———————————————
Divide-and-Conquer Method

O A very natural recursive approach
m Divide

o if the input size is small then solve the problem directly;

O otherwise divide the input data into two or more disjoint subsets
= Recur

O recursively solve the sub-problems associated with the subsets
= Conquer

o take the solutions to the sub-problems and merge them into a solution to
the original problem

week 10 Complexity of Algorithms 11

Merge-Sorting

o Divide: if input sequence S has O or 1 element then return
S; otherwise split S into two sequences S; and S,, each
containing about ¥2 elements of S

O Recur: recursively sort sequences S; and S,

O Conquer: Put the elements back into S by merging the
sorted sequences S; and S, into a single sorted sequence

week 10 Complexity of Algorithms 12

———————————————
Merge-Sorting (top down approach)

[Divide the input sequence evenly to S; & Sz]

PR

Recur

Conquer by merging sorted sequences

week 10 Complexity of Algorithms 13

Merge-Sorting (example)

Css % 63 45 17 31 9% 50 J

/ \ 17 24 31 45 50 63 85 9%)
C85246345) (17319650) /\
)0 @)@ @6)

(@

(24 45 63 sg (17 350 9%)

week 10 Complexity of Algorithms 14

———————————————
Merge-Sorting (analysis)

O Recall that merging two sorted sequences S; and
S, takes O(n,;+n,) time, where n, 1s the size of S,
and n, is the size of S,

O The depth of the recursion is O(log n) due to the
halving process

O Thus merge-sort runs in O(n log n) time in the
worst (and average) case

week 4 Complexity of Algorithms 15

Merge-Sorting (analysis)

height ~ time per level

()

O(log n)
--== O(m)

Total time: O(n log n)

week 4 Complexity of Aigorithms 16

]
Quick-Sort

o Divide if 151>/, select a pivot value x in S and
create three sequences: L, E and G, s.t.,
= L stores elements in S < x
= FE stores elements in § = x
m G stores elements in § > x
O Recur recursively sort sequences L & G

o Conquer put sorted elements from L, E and finally
from G back to S.

week 4 Complexity of Algorithms 17

B
Quick-Sort Tree

[Divide the sequence S using random pivot x}

N

Recur

L (<x)

Conquer by concatenating sorted sequences

week 4 Complexity of Algorithms 18

Quick-Sort (example)

i

week 4 Complexity ¢ _

Quick-Sort (worst case)

O Let s; be the sum of the input sizes of the nodes at depth i
in a quick sort tree T

O s;<n-i (and s; = n-i when use of pivots lead always to
only one nonempty sequence: either L or G)

O The worst-case complexity is bounded by O(n?).

o (”Xj s,~> , whichis O (nzl(n - l)) thatis, O (i i)

i=0 i=0 i=1

week 4 Complexity of Algorithms 20

Quick-Sort (randomised algorithm)

O Thm: the expected running time of randomised (pivot is chosen in
random) quick-sort is O(n log n)
O Proof:

= The expected number of times that a fair coin must be flipped until it shows
heads k times is 2k.

= Randomly chosen pivot is right if neither of the groups L nor G is > % iSi

= The probability of a success in choosing a right pivot is ¥2

= A pathin quick-sort tree can contain at most log,/; n nodes with right pivots
= Hence, the expected length of each path is 2log,,; n

week 4 Complexity of Algorithms 21

Quick-Sort (randomised algorithm)

expected height time per level

O(log n)

week 4 . total expected time: O(n logn) ,

Lower Bound (comparison-based model)

O In comparison-based model the input elements can be compared only with
themselves and the result of each comparison x; <x; is always yes or no

0 Thm: the running time of any comparison-based sorting algorithm is Q(n log n)
in the worst case

O Proof:
= Sorting of n elements can be identified with recognising a particular permutation of n
elements
= Thereis n!=n-(n-1) -...-2-1 permutations of n elements

= Each comparison splits a group of permutations into two groups (one that satisfies
the inequality and one that doesn’t)

= In order to ensure that the size of each group of permutations is brought down to one
we need log,(n!) > log (n/2)"?=n/2-log n/2 = Q(n log n) comparisons

week 4 Complexity of Algorithms 23

Lower Bound (comparison-based model)

B s N \’v/

week 4 Complexity of Algorithms 24

List ranking and prefix sums

O In the link ranking problem one is expected to
compute for each element its distance to the front
of the list

O In the prefix sum problem one is expected to
compute for each prefix of the list the sum of the
keys stored in this prefix

O Computing prefix sums with all keys of value 1 is
equivalent to the link ranking problem.

27/04/2015 Applied Algorithmics - week1 1 25

List ranking and prefix sums
PO Pl P2 P3 P4 PS P6 P7 PS P9 PIO P]] P12P13 P]4P]5

0 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15

3 4 4

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

27/04/2015 Applied Algorithmics - week10 26

All read at distance 2° & add to their own values
N\

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

! 3 !
BE

]
0 1 2

27/04/2015 Applied Algorithmics - week10 27

34 5 6 7 8 9 10 11 12 13 14 15

All read at distance 2! & add to their own values

N\
[3]3]
[T
RE

34 5 6 7 8 9 10 11 12 13 14 15

4 4

EBRE
L2
0o 1 2 3 4

27/04/2015 Applied Algorithmics - week10 28

5 6 7 8 9 10 I1 12 13 14 15

All read at distance 22 & add to their own values

N

B8]

L] 2]
0 1 2 3 4

56 7 8 9 10 11 12 13 14 15

4

J J
3133 [1s3s[15]17
DDDEEREH
o 1 2 3 4 5 6 7 8

27/04/2015 Applied Algorithmics - week10 29

9 10 11 12 13 14 15

All read at distance 2° & add to their own values

—

333 [s[s]is]is[1n

(L] 1]2]513]3]¢]
0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

J 4 3
513318 s s[18 77717 21 1 3]0 30
DNNEEENNnDEEnnD

10 11 12 13 14 15

27/04/2015 Applied Algorithmics - week10 30

———————————————
List ranking and prefix sums

PO P] PZ P3 P4 PS P6 P7 PS P9 P]0 P11 P]2P]3 P141)15

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

J J 4
533 8 118 o717 o 3]0 0

INIEEEENNaaEEaanM

10 11 12 13 14 15

27/04/2015 Applied Algorithmics - week10 31

List ranking and prefix sums

O List ranking and prefix sums can be computed in
O(log n) time when n is the size of the input

= During every single round we increase knowledge
about preceding block of 2 positions in O(1) time.

m After O(log n) rounds od doubling the job is done
O We need also another tool that will allow us to

collect and distribute information to all processors
also in O(log n) time

27/04/2015 Applied Algorithmics - week10 32

Information dissemination

O P, informs neighbour at distance 2°
PO P] P2 P3 P4 PS P6 P7 PS P9 P]0 P11 P]2P]3 P141315

.123456789101112131415

J 4 4
..23456789101112131415

lied Algorithmics - week10

Information dissemination

o P, , P, inform neighbours at distance 2!

1;ilil\l)2 P3 P4 P5 P6 P7 PS P9 PlO P]] P12P13 P]4P]5
..2 3 4 5 6 7 8 9 10 11 12 13 14 15

J J 4
m [m [mm|
.... 4 5 6 7 8 9 10 11 12 13 14 15

Applied Algorithmics - week10

|
Information dissemination

o P,, P, P,, P; inform neighbours at distance 22
PO S P4 PS P6 P7 PS P9 P]0 P11 P]2P]3 P141315

....456789101112131415

m o m o
EEEEEEEE

Applied Algorithmi

Information dissemination

O Py, ..., Pg, P; inform neighbours at distance 23

llllllll89wnnwmw

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

........................

Information collection/dissemination

0 The process of collection of information is done
by reversing communication (direction of arrows)
used during information dissemination

O Both processes take time O(log n).

O This means that processors can all agree on simple
decisions (via exchanging small messages), e.g.,
“is there any work left to do?” in time O(log n).

27/04/2015 Applied Algorithmics - week10 37

B
Parallel Quick-Sort

O Sequence S/I...r] is being sorted St THLLELLEEL LT
u The local size of the input n= r-I+1 1 r

o Each P; (i=1,..,r) picks value S[i] with prob. I/n S[l...r] I I | | I I I I I I I I I I I I
i r

n A unique pivot value p is communicated to all (if none
or more values are picked the process is repeated)
e ETTHITTITEE BB<E
O The values from S[l...r] are distributed to 1 T
L & HlL) .| TANA T IT
Ji r

O Using list ranking and prefix sums compute the

ranks of values 1nLandH. . . Lil...r]]III:IIIIMI
The number of values #L in L is communicated)

The values are copied back to S as follows
[Value with rank o in L is moved to S[l+a-1]

n The pivot p is moved to S[I+#L]

u Value with rank f in H is moved to S[I+#L+f-1]

o Sortrecursively S/I...[+#L-1] & S[I+#L+1...r]

27/04/2015 Applied Algorithmics - week10 38

]
Parallel Quick-Sort

0 The complexity analysis of parallel quick-sort

m Every stage takes at most time O(log n)
Expected number of stages is O(log n)
The total computation time is O(log? n)
The number of processors needed is n
The total work is O(nlog? n)

One can reduce work to optimal using n/log n
processors

27/04/2015 Applied Algorithmics - week10 39

Parallel Merge-Sort

O Assume two halves L & H of S/I...r] are
already (recursively) sorted
L] The local size of the input n= r-I+1

o0 Using binary search compute a rank of each L
value in the other half H, and vice versa

o Combine (add) the two ranks (from L and H) to
find the new position in the sorted sequence

27/04/2015 Applied Algorithmics - week10 40

4N\

———————————————
Parallel Merge-Sort

0 The complexity analysis of parallel merge-sort
m Each stage (binary search) takes at most time O(log n)
The number of recursive stages is O(log n)
The total computation time is O(log? n)
The number of processors needed is n
The total work is O(nlog? n)

One can reduce work to optimal using n/log n
processors

27/04/2015 Applied Algorithmics - week10 41

44

