Applied Algorithmics COMP526 - tutorial 2

L.A. Gąsieniec and D. Cartwright

1 Questions

1.1 Decreasing function and amortisation method

Apply the decreasing function method, see lecture notes from week 1 , to prove that the function $\operatorname{Mod}(n, k)$ (introduced last week, see also below) stops eventually. Try also to establish the time complexity of this procedure.
function $\operatorname{Mod}(n, k$: integer $)$: integer,
Input: positive integers n, k.
Output: value of $n \bmod k$.
temp $\leftarrow n$;
while $t e m p \geq k$ do
temp $\leftarrow($ temp $-k) ;$
end-while;
return temp;
end-function.

1.2 Telescoping recurrence and mathematical induction

Given a complexity function $T(n)$ defined as:

$$
T(n)= \begin{cases}3 & \text { for } n=0 \tag{1}\\ T(n-1)+4 & \text { for } n \geq 1\end{cases}
$$

Use telescoping method to find a closed form (without recursive reference) for the complexity function $T(n)$. Further prove by mathematical induction that the obtained closed form is correct.

1.3 Bottom-up heap construction

For this extra material consult COMP526 web pages.

2 Solutions

2.1 Decreasing function and amortisation method

Recall that a decreasing function $f()$ must satisfy two conditions. During each consecutive iteration of the loop the value of the function must be reduced, however it should never reach value 0 . In our case we can take a (linear) function $f($ temp $)=$ temp +1 , where we add 1 to ensure that the value of the function remains positive. Note that the initial potential of $f($ temp $)$ is $n+1$, since at the start temp is set to n. Further, during each consecutive iteration of the loop this potential is reduced exactly by k (this is due to the instruction temp $\leftarrow(\operatorname{temp}-k)$;). Thus clearly $f(t e m p)$ is a decreasing function. Finally, $f(t e m p)$ must stay above 0 because the value temp is always ≥ 0 due to the condition (while $t e m p \geq k$ do) in the loop. I.e., as soon as $t e m p<k$, further reduction of temp is not possible. Thus the value (potential) of $f(t e m p)$ is always ≥ 1.

Note that the potential of $f(t e m p)$ is originally equal to n. During each iteration of the loop we perform a constant number of basic operations. The number of iterations can be easily bounded (from above) by $\frac{n}{k}$, since during each iteration the potential is always reduced by k (and it never reaches 0). Thus the time complexity of the procedure $\operatorname{Mod}(n, k)$ is $O\left(\frac{n}{k}\right)$.

2.2 Telescoping recurrence and mathematical induction

We first use the telescoping mechanism to establish a closed form of the complexity function $T(n)$. Assume that n is large, i.e., we can apply the second part of the recursive definition of $T(n)$, namely $T(n)=T(n-1)+4$. Note also that since n is large we can iterate this process a number (say i) times. We obtain:

$$
\begin{aligned}
& T(n)=T(n-1)+4=(T(n-2)+4)+4=T(n-2)+2 \cdot 4= \\
& (T(n-3)+4)+2 \cdot 4=T(n-3)+3 \cdot 4=\ldots=T(n-i)+i \cdot 4,
\end{aligned}
$$

for all integer $i \leq n$. Also note that for $i=n$ we get $T(n)=T(0)+n \cdot 4$, where $T(0)=3$ from the first part of the definition. Thus we conclude with the closed form $T(n)=4 n+3$.

We can now check whether this form is correct using mathematical induction.
Basis Case Take $n=0$. From the definition (1st part) we get $T(0)=3$. Also from the closed form $T(0)=4 \cdot 0+3=3$. Thus the basis case is done.

Inductive Step Assume now that the closed form gives the correct value of function $T(i)$, for all $0 \leq i \leq n-1$, i.e., in particular $T(n-1)=4 \cdot(n-1)+3$. Now since we know (from the definition) that $T(n)=T(n-1)+4$ and (from the inductive assumption) that $T(n-1)=4 \cdot(n-1)+3$ we conclude that $T(n)=4 \cdot(n-1)+3+4=4 n+3$, which completes the proof.

